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Supporting Information 

Supporting information (SI) contains two major parts. In the first part, we describe the 

measurements used for statistical analysis of dendritic arbor shapes, and present data to 

further support the universality and self-similarity. In the second part, we present our 

theory that accounts for statistical properties of basal dendrites of pyramidal cells from 

maximizing the repertoire of possible connectivity patterns between dendrites and 

surrounding axons for a given dendritic cost.  

Our theoretical calculation relies on the analogy with maximization of the entropy for a 

given energy in statistical physics. In particular, calculating the connectivity repertoire by 

enumerating different arbor shapes of given dimensions is analogous to counting 

conformations of a branched polymer in statistical physics. We show that the sparseness 

of basal dendrites results from avoiding multiple potential synapses with the same axon, 

which is mathematically analogous to the Flory-type self-repulsive energy of a polymer 

chain in 2D (1).    

 

I. Experimental procedures and statistical analysis of dendritic arbors 

 

I.1 Reconstruction of dendritic arbors  

The “2D” data set consists of 2161 basal dendritic arbors from layer 3 pyramidal cells of 

primate neocortex (see Supporting Table). Experimental procedures were described 

previously (2). Briefly, cells were labeled in vitro with Lucifer yellow, projected on a 2D 

plane parallel to the cortical surface and reconstructed with a Camera Lucida. All 

reconstructions were corrected for tissue shrinkage. 
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Supporting table 
 

 

Summary of pyramidal dendritic arbors in the “2D” data set 

Species Case Gender Hemisphere      Cortical areas Number of 
cells 

Baboon(3-
5) B2 Male Right V1, V2, V4,  3b, 4, 5, 

6, 7, 23, 24, 46 446 

Macaque 
monkey(2, 

6-10) 
 Male Right 

V1, V2, TEO, TE, 
STP, MT, LIP, 7a, 

FEF 
395 

Vervet 
monkey(11-

13) 
 Male Right 

V1, V2, V4, IT, 3b,4, 
5, 6, 7a, 9d, 9m, 23, 

24, 32 
880 

Marmoset 
monkey(14)   Right V1, V2, ITc, ITr, DA, 

DM, DL, PP, MT 330 

Galago(15, 
16)   Right V1, V2, DL, IT 110 

 

The “3D” data set is consists of ten basal dendritic arbors of pyramidal cells from 

cat primary visual cortex (V1) (17). Reconstructions are publicly accessible from 

www.neuromorpho.org [see also(18)]. Cells were labeled with biocytin in vivo and 

reconstructed with Neurolucida (MicroBrightField, Cochester, VT) from multiple tissue 

sections. All reconstructions were corrected for tissue shrinkage in three dimensions. 

The “Purkinje” data set consists of ten reconstructions of Purkinje dendrites 

available at www.neuromorpho.org  [see also (18), (19-21)]. 

I.2 Dendritic Arbor Radius  

To quantify the linear size of an arbor, we define the arbor radius R of a dendritic arbor, 

— similar to the gyration radius in polymer physics — as 

http://www.neuromorpho.org/
http://www.neuromorpho.org/
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where ri is the position vector of a dendritic segment i, δli is the length of the segment, K 

is the total number of segments, and L is the total dendritic length.  

As dendrites in “3D” and “Purkinje” data sets were reconstructed in vector format, 

we can use Eq. (S1) to calculate R. 

Scarcity of 3D arbor reconstructions corrected for tissue shrinkage from 

homogeneous populations of neurons compelled us to use a collection of 2D 

reconstructions. This choice is supported by the fact that measurements on existing tissue 

shrinkage corrected 3D reconstructions are consistent with those on 2D reconstructions 

(Figure 3 and Supporting Figure 1). 
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Supporting Figure 1 | Spatial pairwise correlation between dendritic segments of 

a neuron from 2D projections of the “3D” data set and “2D” data set overlap on 

the rescaled coordinates. The 2D projections for arbors in the “3D” and “2D” data 

sets are parallel to the cortical surface. These data suggests that the 

measurements from pyramidal dendrites in the “3D” and the “2D” data sets are 

consistent with each other. 

 

For the “2D” data set, we first skeletonized black and white images so that dendritic 

segments are represented by lines one pixel wide. Then we used Eq. (S1) to calculate R, 

where δli is given by the pixel size. In this case, L should be calculated as the product of 

the number of pixels in the arbor skeleton and the pixel size. We note that due to isotropic 

distribution of dendritic branches, our estimate of L would be similar to other more 

accurate length estimator algorithms (22). 

I.3 Spatial correlations among dendritic branches 

The statistical analysis of the distribution of branches within an arbor has a long history. 

The famous Sholl analysis (23-33), developed more than fifty years ago, measures the 

number of branches that intersect concentric spheres (or circles for 2D projections) 

centered at the soma as a function of sphere radius. The Sholl plot can be fit by a Gamma 

distribution (34), by a polynomial function (35), or, in the rising part, by a power law 

(36). However, the significance of the functional form of the Sholl plot remains unclear. 

Another tool, called cumulative-mass method, measures the total length of branches 

within a sphere as a function of the sphere radius (37, 38). Unlike the Sholl analysis, in 

which all spheres are centered at the soma, the cumulative-mass method involves 

averaging the dendritic length over identical spheres centered at different locations on the 

arbor. When the sphere radius is smaller than R, the average dendritic length within a 
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sphere scales with the sphere radius to some power called the fractal dimension (39). 

Nevertheless, the above methods have not revealed universal properties of dendritic arbor 

shape. 

Here, we generalized the traditional Sholl plot (23) by repeating the branch-sphere 

intersections for spheres centered on randomly chosen dendritic segments, just like in the 

cumulative mass method (37).  To avoid boundary effects due to regions with low 

density, we restricted the choice of the sphere center to the interior of the arbor, which is 

a distance less than R/√2 from the center of mass of the arbor. For each sphere radius r, 

we averaged the number, n, of branch-sphere intersections over center locations 

(Supporting Figure 2a). In the language of statistics, the generalized Sholl plot measures 

pairwise correlation in the locations of dendritic segments. 

As most very small Sholl spheres intersect only one branch, they are not 

informative about the branch distribution and can be safely omitted. For this reason, our 

pairwise correlation measure start from sphere radius of 10 µm on the regular scale and 

from 0.1 R in rescaled units. 

By combining the dendrites in the 3D data set, we found that the rescaled pairwise 

correlation function can be well fit by a function of the form, 

 ( ) exp( )n x gx hxμ γ= −�   (S2) 

where x = r/R. Note that the fit only contains two free parameters, which we choose to be 

μ and γ; whereas the coefficients g and h were determined from the following 

normalization conditions:  

 
0

( ) 1n x dx
∞

=∫ � , (S3) 
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which means that L in rescaled units is equal to one. The second moment of the 

distribution is equal to the R2 and should be set to unity in rescaled units: 

 2

0

( ) 1n x x dx
∞

=∫ � . (S4) 

In addition, the rising part of the pairwise correlation function in rescaled units 

(with x ranging from ~ 0.1 to 0.5) and on the regular scale (with r ranging from ~ 10 µm 

to R/2) were fit separately by power law functions (Figure 3b inset and Supporting Figure 

2a). The goodness of the fit is not different from that in a canonical universal behavior, 

such as the 3D random walk (Supporting Figure 2b). Note that although the exponents μ 

obtained from the power law fit are slightly different from that obtained by fitting the 

entire curve with Eq. (S2) (Figure 3b), all exponents are well within the uncertainty of the 

measurement, compelling us to keep the same notation. 
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Supporting Figure 2 | The spread in the pairwise correlation function for 

pyramidal dendritic arbors is similar to that for 3D random walks. a, Rising part of 

the pairwise correlation function on regular scale for pyramidal dendritic arbors 



7 

and the same data on log-log scale (inset) show a power law relationship 

supporting self-similarity. Red line is the best fit and the adjusted coefficient of 

determination r2 = 0.91, which gives the proportion of variability in the data set 

that is accounted by our statistical model. b, Rising part of the pairwise 

correlation function for a canonical universal behavior ⎯ 3D random walk. A 

simulated 3D random walk contains 105 steps and each step is 5 μm in length. 

Each of the 50 curves represents a different trajectory. The rising part of the 

pairwise correlation function for random walks should be characterized by a 

power law with exponent μ = 1. Red line is the best fit with the exponent μ = 

0.989 ± 0.015, which is not significantly different from the theoretical value. For 

this simulated data set, r2 = 0.83. Thus, power law accounts as much variability in 

the rising part of the pairwise correlation function for pyramidal dendritic arbors 

as it does in random walks. 

 

I.4 Relation between scaling exponents 

If the statistical properties of different dendritic arbors were universal and dendritic 

arbors were indeed self-similar, the scaling exponent, ν, from the power law between R 

and L, would be related to the exponent from the rising part of spatial pairwise correlation 

function between dendritic segments, μ, as shown below.  

For self-similar dendritic arbors built by common rules, the rising part of the 

pairwise correlation function on the regular scale, n(r), would be described by the power 

law function (Supporting Figure 2a),  

 ,  n r r Rμ <∼ . (S5) 

In addition, the pairwise correlation function would be characterized by a single length 

scale, R. Specifically, if n(r) decays fast for r > R, and the rising part of n(r) remains a 
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power law until r is on the order of R (as in agreement with our data), then the 

normalization condition
0

( )n r dr L
∞

=∫  can be well approximated by introducing a cutoff R  

 
0

( )
R

n r dr L≈∫ . (S6) 

By using Eq. (S5) for n(r) in Eq. (S6), we obtain  

 1~L Rμ+ . (S7) 

Recall that our measurement for arbor dimensions shows R ~ Lν (Figure 3a). Therefore, 

we arrive at a relation between exponents µ and ν  

 1 1μ
ν

= − . (S8) 
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In addition, given Eqs. (S5) and (S8), the rising part of the rescaled pairwise correlation 

function should follow a similar power law ñ ~ (r / R)μ. This can be derived 

straightforwardly from the relation ñ = nR / L, which is a consequence of the 

normalization conditions.   

I.5 Tortuosity of pyramidal dendrites 

We measured the tortuosity of dendrites in 345 pyramidal cells from various cortical 

areas of one vervet and one baboon monkey. These cells come from the most complete 

subsets of neurons that one could obtain from only two brains. We vectorized cell 

drawings by manually tracing dendrites using NeuronJ (a plug-in to ImageJ). The 

retraced and digitally reconstructed data set is accessible from 

http://research.janelia.org/Chklovskii/Data.htm. 

I.6 Expected number of potential synapses 

To characterize the ability of a dendritic arbor to establish synaptic connections, we 

calculated the expected number of potential synapses, P, between a dendritic arbor and a 

straight axon passing through the arbor. First, we considered dendrites of a Purkinje cell, 

which are confined to a plane orthogonal to their major synaptic inputs – Parallel fibers. 

We define the dendritic arbor territory as the interior of the circle with radius R centered 

on the centroid of an arbor (Supporting Figure 3b). Then, P is given by the ratio of the 

spine-reach zone area, which is twice the average spine length s times the total arbor 

length in the arbor territory (≈ L), to the area of the arbor territory, πR2,  

 2

2sLP
Rπ

≈ . (S9) 

We used s = 2 µm estimated from the center of a dendritic segment to the tip of a spine 

head (40-42). 

http://research.janelia.org/Chklovskii/Data.htm
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Supporting Figure 3 | Pyramidal and Purkinje dendritic arbors differ in sparseness 

and, consequently, in the expected number of potential synapses per axon 

passing through the arbor territory. a, Basal dendritic arbor (red) of a pyramidal 

cell from rat cortex (43) and its spine-reach zone (grey). The arbor territory is 

approximated by the dashed circle. b, Dendritic arbor of a Purkinje cell from 

mouse cerebellum and its spine-reach zone. c, Ratio of the area of the spine-

reach zone to the area of the arbor territory on a 2D projection [n = 10 for both 

pyramidal and Purkinje cells (17-21)].  Pyramidal basal dendrites are sparser 

than Purkinje dendrites (p < 10-5, t-test with unequal variances) and, therefore, 

have lower probability to form a potential synapse with an axon passing through 

its territory. See Supporting information I.6 for details. Error bars are s.e.m. 

These digitally reconstructed arbors are publically accessible from 

http://NeuroMorpho.Org [see also (18)]. 

Second, we calculated the expected number of potential synapses between the basal 

dendritic arbor of a pyramidal cell and a straight axon passing through the arbor 

(Supporting Figure 3a). The expected number of potential synapses can be estimated on a 

projection as the ratio of the area of spine-reach zone to the arbor area. The area of the 

http://neuromorpho.org/
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spine-reach zone seen by the axon is given by the length of the projection of the 3D arbor 

onto a plane orthogonal to the axon Lproj times twice the spine length s. As axons run in 

various directions, we averaged over projections onto different planes:  

 2

2
 proj

proj proj

sL
P

Rπ
≈ , (S10) 

where Rproj  is calculated by applying Eq. (S1) to the 2D projection of the arbor. 

In the above we approximated the dendritic territory by a circle with radius R. This 

choice is consistent with statistical physics conventions and convenient for the following 

exposition. We verified that the results of this sub-section stand for other choices of the 

dendritic arbor territory, such as the convex hull. 

I.7 Curve fitting and error analysis 

Plots were fit by using the nonlinear least squares method from the MATLAB curve-

fitting toolbox (MathWorks, Natick, MA). The errors of the fitting coefficients 

correspond to the 95 percent confidence bounds. For power law fit, we used linear 

regression method in the log-log coordinates as well, and the results are not significantly 

different from those obtained from the nonlinear method. 
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II. Theory and comparison with experimental data 

II.1 Formulation of the theoretical principle  

Our theory is based on the hypothesis that a dendritic arbor maximizes its functionality 

for a given dendritic cost to the organism. Consider a neuron that needs to make synapses 

with N out of M (M  N) axons in a given territory. We assume that each axon can be 

characterized by its appropriateness index i, so that the arbor functionality is proportional 

to the minimum appropriateness among connected axons. In the course of development, 

the arbor searches for the combination of axonal inputs that has maximum 

appropriateness. Below, we show that maximizing the arbor functionality reduces to 

maximizing the connectivity repertoire, which is defined as the natural logarithm of the 

total number of different combinations of axons that could synapse on a dendritic arbor of 

given dimensions.  

We assume that C(i) axons with appropriateness index i or greater are distributed 

randomly and uniformly among M axons passing through the dendritic arbor territory 

(see next section for experimental support of this assumption). Then the probability that 

the neuron would encounter N inputs with appropriateness index i or greater is given by 

the fraction: 

 

( )

( )

C i
N

f i
M
N

⎛ ⎞
⎜ ⎟
⎝=
⎛ ⎞
⎜ ⎟
⎝ ⎠

⎠ . (S11) 

If all 
M
N

⎛ ⎞
⎜ ⎟
⎝ ⎠
⎞
⎟

⎝ ⎠

combinations of axonal inputs are available to a neuron, it could access all 

 different input combinations with appropriateness index i or greater. In reality, 
( )C i
N

⎛
⎜
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the neuron can access only a small subset  Ω of all 
M
N

⎛ ⎞
⎜ ⎟
⎝ ⎠

ons

( )
ln

combinations. One or more 

combinations of N inputs with appropriateness index i or greater are accessible to the 

neuron only if    

 , (S12) ( )  ( 1 and is c tant)f i Ω Λ Λ ≥�

which is a necessary condition for finding combinations of N inputs with appropriateness 

index i or greater. Furthermore, if the searching algorithm is sufficiently good during 

development, then the neuron is able to find a combination of N inputs with 

appropriateness index i or greater. 

Now by substituting Eq. (S11) into (S12), we find that the connectivity repertoire, 

defined as S = lnΩ, is given by 

 ln ln
M C i
N N

⎛
⎜
⎝

S ⎛ ⎞
= Λ + −⎜ ⎟

⎝ ⎠

⎞
⎟
⎠

. (S13) 

Since M  N, and C(i)  N, Eq. (S13) can be well approximated as  

 ( )C iNln lnS
M

. (S14) ≈ Λ −

 

As appropriate inputs are randomly and uniformly distributed in space, the fraction C/M 

is independent of arbor dimensions such as arbor radius R. Moreover, C/M decreases 

monotonically with i, and, hence, S increases monotonically with i (Supporting Figure 4). 

Thus, maximizing the arbor functionality, which we equate to finding axons with the 

highest minimum appropriateness index value, reduces to maximizing S. 
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Supporting Figure 4 | Connectivity repertoire is a monotonic increasing function 

of the minimum appropriateness index value i among axons connected with a 

dendritic arbor. The functionality of a real arbor operates in the vicinity of i=i0, at 

which the slope of the curve is given by κ. 

 

Maximizing arbor functionality for a given dendritic cost E reduces to maximizing 

their combination  i − αE, where α is a Lagrange multiplier reflecting the weight of E 

relative to functionality. As a consequence, the arbor functionality would operate at i0 so 

that 
0i i

i
E

α
=

∂
=

∂
. Moreover, we can reduce the functionality-cost optimization to the 

minimization of the combination of S and E:  

 S Eβ= − +F , (S15) 

where 
0 0i i i i

S i S
E E i

β ακ
= =

∂ ∂ ∂
= = =

∂ ∂ ∂
, and κ is the slope of the S-i curve at i = i0 

(Supporting Figure 4). Minimizing F is analogous to minimizing free energy in statistical 

physics: S may be viewed as entropy and E as energy; β is analogous to inverse 
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temperature in statistical physics. If the solution of this optimization problem is 

consistent with observed properties of dendritic arbors, S and β  can be determined from 

experimental data. Then from the S-i curve, κ, α and i0 can be determined as well. 

 

The use of the logarithm in defining S is motivated by the following: (1) The 

number of different combinations of axons synapsing on the whole arbor is a 

multiplicative function of the numbers of combinations calculated for the parts of the 

arbor. Then the logarithm of the number of combinations is an additive and extensive 

quantity. (It doubles when the total dendritic length is doubled, in agreement with our 

intuition.) (2) Dendritic cost is also an additive and extensive quantity. Therefore, 

combining cost with the connectivity repertoire in a reasonable optimization framework 

requires addition, an operation that calls for a logarithm of different connectivity patterns. 
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II.2 Calculation of the connectivity repertoire — assumptions and approximations 

Prior to minimizing F, we should subsequently introduce each term in Eq. (S15). To 

calculate S, we would make the following assumptions and approximations: 

i.  We ignore the differences in synaptic weights among connectivity patterns because 

this contribution (44) is independent of the arbor shapes.    

ii. We ignore the contribution from both the variation in dendritic locations and the 

number of synaptic contacts between a pair of neurons to the connectivity repertoire. 

The latter scenario could be represented by a single contact with a combined synaptic 

weight, and, hence, is reduced to assumption i. [The effect of dendritic location on 

the number of input combinations has been considered by Poirazi and Mel (45).]  

iii. Axonal inputs thought appropriate to a particular basal dendritic arbor, for example, 

through the action of learning rules, are randomly and uniformly distributed in space. 

iv. Axons are uniformly and isotropically distributed in space.  

v. Axons are straight and non-branching within the dendritic arbor territory. 

vi. A dendritic arbor is sparse so that when an axon passes through the dendritic arbor 

field, there is a low probability of establishing a potential synapse (Supporting Figure 

3a).  

vii. Dendritic arbors are characterized as flexible chains jointed by rigid segments. The 

length of a segment, called persistence length in polymer physics, is much longer 

than the inter-synapse interval on a dendrite. 

viii. Dendritic branches are nearly straight (Figure 4e). In the language of polymer 

physics, dendrites are “strongly stretched”. 
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Assumption iii is supported by the following experimental observations. First, the 

numerically dominant inputs to pyramidal dendrites are pyramidal axons, and a 

pyramidal axonal arbor consists of sparsely distributed straight branches and the arbor 

size is much larger than the basal dendritic arbor radius (17, 26, 46-48). Second, most 

excitatory synapses of a pyramidal cell come from distant neurons. For example, in cat 

primary visual cortex, 83 percent of synapses on a dendrite originate from neurons 

located farther than 200 μm in the cortical plane (49). For these pre-synaptic neurons, 

typically only one axonal branch courses through the dendritic arbor territory. Thus, on 

the scale of a basal dendritic arbor, pyramidal axons are rarely branching straight lines 

running in different directions (50). As a result, basal dendrites located at different depths 

in the cortex have no way of predicting where they would meet appropriate axonal inputs. 

Third, there is no correlation in the location of pyramidal axonal and dendritic branches 

(51). 

Note that the random spatial distribution of axons does not imply random formation 

of actual connections. The former scenario could exist even if the exact neuronal circuit 

is specified genetically, that is, the circuits in different animals could be wired up 

identically despite the variation in the axonal locations. If the circuit is not 

predetermined, then there is no preferred spatial distribution, and random locations of 

synaptic inputs would be expected. 

We will recover assumptions vi-viii from the solution of minimizing F in Eq. (S15)

, thus making our theory self-consistent. The theory can be extended to the situation when 

axons are tortuous and branching, thus relaxing assumption v. 

As shown in the main text, the connectivity repertoire could be expressed as the 

sum of two contributions  
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 ln lnpS a= Ω + Ω . (S16) 

First, Ωp is the total number of distinct arbor shapes (Supporting Figure 5a), and each 

arbor shape selects a different subset of surrounding axons as potential synapses. Because 

dendritic arbor is thin (~ 1 μm in diameter) and long (L ~ 103 – 104 μm), calculating the 

first contribution is analogous to counting the number of different conformations of a 

branched polymer chain and lnΩp is called the conformational entropy. In this analogy, a 

piece of dendrite shorter than the persistence length a behaves like a stiff rod, due to the 

mechanical properties of cytoskeletal filament assembly. However, on the scale much 

longer than the persistence length, the dendrite can behave quite flexibly. Such a picture 

is consistent with the observation that dendrites can make sharp turns by substantially 

changing their orientations ( ≥ 90 degree, see Figure 2). Second, Ωa is the total number of 

ways of choosing actual connections out of potential synapses for given arbor shape 

(Supporting Figure 5b). Note that Eq. (S16) relies on the assumption that different arbor 

shapes could have very few identical combinations of inputs. In other words, we may 

ignore the possibility that all the actual connections on distinct arbors could be from the 

same axons. Below, we show that our approximation is justified under assumptions vi 

and vii. 
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Supporting Figure 5 | Two steps of calculating the connectivity repertoire. a, 

Distinct conformations of dendritic arbors result in different sets of potential 

synapses between dendrites and surrounding axons. b, For a given arbor shape, 

different input patterns can be achieved by choosing actual connections out of 

the set of potential synapses. 

 

 We start by estimating the probability that the connectivity pattern established by 

one arbor could be achieved by another arbor. If P is the probability of an axon to 

establish a potential synapse with a dendritic arbor, the probability of having N actual 
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connections in common is PN, if the locations of neighboring synapses are independent. 

As the number of different arbor shapes is Ωp, a given input pattern can be achieved by 

PNΩp arbor shapes. To guarantee that the total number of common input patterns is small, 

we must have 

 . (S17) 1N
pP Ω �

By taking the logarithm on both sides, Eq. (S17) is equivalent to 

 ln ln 0pN P + Ω < . (S18) 

According to results from polymer physics, the total conformation entropy lnΩp  

L/a (1), where a is the persistence length. Substituting the entropy expression into Eq. 

(S18), we find that for a reasonably sparse dendritic arbor (say P ≤ 0.3) with the 

persistence length longer than the inter-synapse interval (a > L/N), the number of 

common input patterns achievable by different arbors is small and can be neglected. 
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II.3 Multiple potential synapses reduce the connectivity repertoire 

Next, we elaborate upon each term in Eq. (S16). First, for a given arbor shape, we 

calculate the number of different ways to choose actual connections out of potential 

axonal targets. As individual connections can be selected independently, the number of 

choices Ωa is simply the binomial coefficient , where Np is the total number of 

potential synapses between the dendritic arbor and its surrounding axons, and N is the 

number of actual connections per dendritic arbor.  

pN
N

⎛
⎜
⎝ ⎠

⎞
⎟

⎞
⎟

p

However, an essential correction needs to be made. Even with the assumption of 

sparse dendritic arbors, a small number of axons establish multiple potential synapses 

with different dendritic segments in an arbor. These multiple potential synapses from the 

same axon do not expand the connectivity repertoire and should be subtracted. Thus, the 

number of choices for different actual connections reduces to  

 , (S19) 2p
a

N N
N
−⎛

Ω = ⎜
⎝ ⎠

where N2 is the number of axons establishing two potential synapses, which we call 

double hits. Higher numbers of potential synapses occur much less frequently than 

double-hits and can be ignored in the calculation. 

If N2  Np, the logarithm of Ωa can be approximated as  

 . (S20) 2ln ln ln(1 / )p
a

N
N N N

N
⎛ ⎞

Ω ≈ + −⎜ ⎟
⎝ ⎠

For cortical neurons, the connectivity fraction N/Np is much smaller than one (42). Then, 

using the relation ln(1- N/Np) ≈ -N/Np, we can simplify Eq. (S20) further as 
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 2ln ln p
a

p

N NN
N N

⎛ ⎞
Ω ≈ −⎜ ⎟

⎝ ⎠
. (S21) 

II.4  Avoiding multiple potential synapses generates effective repulsion among 

dendrites 

In this section, we calculate the dependence of the connectivity repertoire, lnΩa, on arbor 

dimensions. In particular, we compute a contribution of multiple hits to the repertoire. 

This calculation is mathematically analogous to calculating a self-exclusion energy of a 

polymer chain in 2D (52). First, let us calculate Np in Eq. (S21).  It was shown previously 

(42) that 

 2
4pN sL a
π ρ= , (S22) 

where s is the average spine length and ρa is the length density of axons with units of  

μm-2, that is the total length of axons enclosed in a given volume divided by the volume.  

The expression for Np can be understood by considering a 2D projection of a 

dendritic arbor. This idea will also turn out to be useful in calculating the number of 

double hits, N2. Each axon establishing potential synapses has to pass through the spine-

reach zone of the dendritic arbor (i.e., gray area surrounding the dendrites in Fig. 3). If 

axons are oriented perpendicular to dendritic segments, Np is simply the product of the 

spine-reach zone area 2sL and the axonal density.  

In a more realistic scenario, axons run in different directions and we may assume 

that the directions of axon are distributed isotropically relative to the dendrite. Then, in 

Eq. (S22), one should substitute 2sL by the mean area of the spine-reach zone on a 

random 2D projection, which is reduced by a numerical factor π/4. We refer to the 

previous work (42) for a general derivation of the result. Below, we consider a simpler 

version of the calculation.  
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The area of the spine-reach zone on a projection is 2 sin ii
s a θ∑ , where a is the 

persistence length and θi is the angle between a segment and the normal vector of the 2D 

plane. Then the area of the spine-reach zone averaged over random 2D projections is 
sin 2 sin 2i i

s a sθ =∑ i Lθ  and the mean sinθi is given by  

 
2

0 0

1sin sin sin
4 4i d d

π π πθ θ θ θ
π

ϕ= =∫ ∫ , (S23) 

where the solid angle 4π is a normalization factor.   

 Next we estimate N2 in Eq. (S21). If axons are straight, a double hit takes place 

when an axon pass through the sites where the spine-reach zones of two dendritic 

segments overlap on a 2D projection (Figure 4a), and N2 should be proportional to the 

number of double hit sites,  

 2
2 # double hit sites (2 ) aN s ρ≈ × , (S24) 

where (2s)2 approximates the area of one double hit site. 

To calculate the number of double hit sites, we adopt a mean-field approach 

developed by Flory (52) in polymer physics. Consider a dendritic arbor projecting onto a 

plane with arbor territory area πRproj
2.  We may divide the area into small pixels 2s in 

size. The probability that a pixel contains a dendritic segment is  

 2

2 proj

proj

sL
P

Rπ
≈ , (S25) 

where Lproj is the total dendritic length on a 2D projection.  

If we ignore the correlations among dendritic segments, which is the essence of 

Flory mean-field approximation, the probability that two dendritic segments stay in the 

same pixel is P2. Multiplying P2 by the total number of pixels πRproj
2/4s2, we have 
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2

2#double hit sites  proj

proj

L
Rπ

≈ . (S26)  

where 〈 〉 denotes an average over different 2D projections of an arbor. 

Eq. (S26) is in agreement with measurements from 3D basal dendritic arbors of 

pyramidal cells (Supporting Figure 6). To count the actual number of double hit sites, 

each 3D arbor (n = 10) was first projected randomly onto a 2D plane. On the 2D arbor, a 

disk with diameter 2s (s = 2 μm) was centered on each segment 2s in length. The total 

overlapping area between different pairs of disks dividing πs2 gives the number of double 

hit sites on one projection. The actual number of double hit sites for a dendritic arbor is 

the average over different 2D projections. 

In addition, Eq. (S26) can be re-written in terms of L and R defined in 3D. As L  

Lproj, R  Rproj, we may write 

 
2

2#double hit sites L
Rπ

≈ . (S27) 

 The agreement between Eqs. (S26)-(S27) and the measurements (Supporting 

Figure 6) strongly support the applicability of the mean-field approximation. By 

substituting Eq. (S27) into Eq. (S24), we obtain  

 
2

2
2 2 a

LN s
R

ρ� , (S28) 

which shows that the number of double hits decreases with R. 
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Supporting Figure 6 | Number of double-hit sites measured from arbor 

reconstructions versus that predicted from the Flory approximation. Perfect 

predictions fall on the diagonal. The number of double hit sites for 3D pyramidal 

cells is in agreement with the theory whereas Purkinje dendrites have fewer 

double hit sites than expected.  

  

By substituting the expressions for N2 and Np [Eqs. (S28) and (S22)] into Eq. (S21), 

we have  

 2ln ln a
a

sL sL N
N R
ρ⎛ ⎞

Ω −⎜ ⎟
⎝ ⎠

� . (S29) 

This formula is essential to understand the sparseness of a dendritic arbor. The first term, 

which is independent of R, is irrelevant for optimization. But the second term, arising 

from double hit, should be minimized with respect to R to maximize the connectivity 
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repertoire. As this term is inversely proportional to the arbor area, it can be viewed as an 

effective repulsion among dendrites that favors sparse arbors.  

However, we note that real physical force due to volume exclusion between 

branches cannot account for the sparseness of a pyramidal dendritic arbor. This is 

because the neuropil where a neuron is located is densely packed by other cells (50), and 

the volume density is about constant everywhere so that dendritic branches experience no 

net force. This effect is well known in the physics of polymer melts (1), an analogous 

system containing densely packed polymer chains. 

II.5 Conformational entropy of dendritic arbors 

Next, we switch our attention to the first term in Eq. (S16) and estimate the number of 

different arbor shapes Ωp for given dimensions. By using results from statistical physics 

of branched polymers (53, 54), the conformational entropy may be written as 

 
2

0ln ( , ) ln ln(1 / )p
LR R
a L

Ω = Ω + − −
AA
a

A , (S30) 

where  is the average path length from the tip of a branch to the soma.  

The first term lnΩ0  L/a is the total conformational entropy of dendritic arbors for 

given L and different arbor radii. The second term is a correction due to the fact that 

straighter branches have fewer arbor shapes. This logarithmic term is applicable only if 

dendritic branches are nearly straight (53), i.e., R ≈ , an assumption that will be 

recovered later by minimizing F in Eq. (S15), thus making our theory self-consistent. 

The last term is a correction due to the fact that branchy arbors have more arbor shapes, 

which is applicable only if    L (54). 

In calculating the conformational entropy, we have adopted the freely-jointed chain 

model: dendritic segments are completely rigid on the scale shorter than the persistence 
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length, but could be highly flexible on the scale longer than the persistence length. If a 

segment is stiff but can still fluctuate and bend, dendrites would be better characterized 

by the worm-like chain model (55). In the latter model, the conformational entropy may 

be given by  

 
2

0ln ( , ) ln
(1 )p

LR
a R L

Ω = Ω − −
−

AA
A a

. (S31) 

 Because we do not possess enough experimental data to distinguish between the 

two chain models, we primarily consider the freely jointed chain model. Results from the 

worm-like chain model are similar and are briefly compared below. 

Now, by substituting Eqs. (S29) and (S30) into Eq. (S16), the expression for the 

connectivity repertoire is given by 

 
2

02log ln ln(1 / )asL sL LS N R
N R a L
ρ⎛ ⎞

− + Ω + − −⎜ ⎟
⎝ ⎠

A� A
a

. (S32) 

By introducing S0 to absorb the terms independent of R and  and assuming N ~ L (56), 

we obtain the expression for S introduced in the main text  

 
2 2

0 2ln(1 / )LS S R
a La

+ − − −
A� A L

R
. (S33) 
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II.6 Maximizing the connectivity repertoire alone predicts tortuous dendritic 

branches  

In this section, we will show that maximizing the connectivity repertoire alone would 

predict more tortuous dendritic branches than those in a pyramidal cell, a discrepancy that 

motivates us to introduce the dendritic path length cost in the following sections. 

To calculate the tortuosity of dendritic branches, we need to find optimal   and R. 

However, maximizing Eq. (S33) with respect to  and R would not lead to a self-

consistent result satisfying R ≈  and   L, two conditions that justify the applicability 

of Eq. (S33). To find a self-consistent solution, we would assume that R  . In this case, 

the logarithmic term in Eq. (S33) should be replaced by R2/( a) (54) and the connectivity 

repertoire reads 

  
2 2

0 2

2R LS S
a La R

− − −
A�

A
. (S34) 

By taking  and , we find that   a2/10L8/10, R  a3/10L7/10, and 

hence R  a1/8 7/8 (54). Given that a is only a few microns, R ≈ 7/8 < , thus makin

calculation self-consistent. In Figure 4e, the relation R = 7/8 was plotted (yellow line) and 

compared with experimental measurements for pyramidal dendrites.  

/S∂ ∂ =A� 0 0

g our 

/S R∂ ∂ =�

II.7 A cost model for dendritic arbors 

As maximizing the connectivity repertoire alone leads to more tortuous branches than 

observed, we must include the dendritic cost in the optimization framework. The cost 

must grow with the path length  (34, 57, 58), because longer path length from synapses 

to soma invokes greater metabolic energy for intracellular transport and for counteraction 
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of attenuation of synaptic currents. In addition, the cost is likely to increase with L as well 

(59-61), for longer dendrites occupy more space and require more metabolic energy.  

After considering several simplified models based on the above reasoning (57), we 

propose that the cost scales with L and  as:  

 E L δ∼ A , (S35) 

The value of exponent δ is model-dependent. Below, we consider one simplified model 

that yields a specific value of δ. 

We assume that E is proportional to the total area of dendritic surface for the 

following reason. To maintain the resting potential of a neuron, or low [Na+] inside a 

cell, sodium ions permeating into a neuron should be actively extruded by Na+/K+ 

pumps (62). The amount of ATP expended is proportional to the membrane capacitance 

for action potential propagation or membrane input conductance in the absence of spikes 

(62). Hence, in both considerations, E is proportional to the membrane surface area, 

 , (S36) E Ld∼

where d is the mean dendritic diameter. 

Although E decreases as the mean dendritic diameter d is reduced, a small diameter 

would detrimentally affect dendritic function. One possible reason is that proteins must 

be transported from the cell body to synapses and the rate of transport is proportional to 

the number of microtubules at a given cross-section of a dendrite (63). As the rate of 

protein transport through a cross-section must be proportional to the number of synapses 

downstream of that cross-section. If the density of microtubules (per cross-sectional area) 

is roughly invariant, the cross-sectional area must be proportional to the number of 

microtubules and hence to the number of synapses downstream (63-65). If the typical 
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branch has length , the number of synapses on it is /L. Therefore, a typical dendritic 

diameter is: 

NA

 , (S37) 2 /d AN� A L

A

where A is a cross-sectional area needed to support one synapse. By substituting Eq. 

(S37) into Eq. (S36), we find that 

 . (S38) 1/ 2 1/ 2 1/ 2E N L∼

Given that N ~ L (56), we obtain  

 . (S39) 1/ 2E L∼ A

II.8 Minimizing the dendritic cost stretches dendrites 

With all the parts of the theory given in Eq. (S35) and Eq. (S33), now we can combine 

them into F  in Eq. (S15), which will be minimized with respect to R and . Note that we 

would only consider the regime βE   2/(La), and, thus, ignore the conformational 

entropy term due to branching. The opposite regime has already been discussed in 

Section II.7, and will not be considered any more. Ignoring all the terms independent of R 

and , we have 

 
2

2 ln(1 / )L L R L
R a

δβ− − +� AF A , (S40) 

where the weight of E relative to S, β, has absorbed all the constant pre-factors. Eq. (S40) 

will be minimized below. 

Let us start by considering two terms in F that depend on . One term,  

 ln(1 / )el
L R
a

= − − AF , (S41) 
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is analogous to the elastic energy in polymer physics. Minimizing this term favors   R, 

and, hence, tortuous branches. The dendritic cost L δ favors shorter path length, and 

hence, stretches the branches. When we add them, the competition leads to a minimum, at 

which the tortuosity of branches can be calculated. By taking / 0∂ ∂ =AF� , we find that 

 11
R aδδβ

− =
A

A
. (S42) 

The worm-like chain model would give a similar result but with a different exponent for 

: /R -1 ~ 1/ δ/2. 

Eq. (S42) shows that dendrites with longer path length tend to have smaller 

tortuosity. This prediction agrees with measurements for pyramidal dendrites (Figure 4f  

and Supporting Figure 7). To compare the prediction with the experimental data, we have 

substituted R in the formula by the average Euclidean distance from the tip of a branch to 

the soma Rts (Supporting Figure 7). The replacement will not affect the results, for R and 

Rts are approximately equal to each other ( R ≈ 1.01 Rts  measured for basal pyramidal 

dendrites). 
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Supporting Figure 7 | Tortuosity index as a function of the average path length 

from branch tip to soma. Rts is the average Euclidean distance from the tip of a 

branch to the soma. Each dot represents a different arbor. Red line is the power 

law fit with exponent δ = 0.36 +/- 0.12, which is not significantly different from the 

exponent extracted from Figure 4f. Note large cell to cell variability of tortuosity 

index. The coefficient in the power law function k = 0.71, which can be used to 

calculate the persistence length according to Eq. (S42).  

  

As discussed in section II.6, Eq. (S41) is applicable only if  ≈ R (dendrites are 

“strongly stretched” in the language of polymer physics). Thus, one must have βa δ  1 

so that our calculation is self-consistent. The numerical values of β and a will be 

computed later by fitting to the experimental data. 
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II.9 Scaling of the arbor radius with the total dendritic length 

If we combine Eq. (S42) and Eq. (S41) for “strongly stretched” arbors, the elastic energy 

can be approximated as  

 ln( )el
L R a
a

δβ�F . (S43) 

One sees that Fel  (L/a)βRδa ≈ βE and can be ignored in F. Then only two terms are 

left in Eq. (S40),  

 
2

2

L LR
R

δβ+�F . (S44) 

In Eq. (S44), the first term on the right side resembles the repulsive energy and favors a 

sparser arbor whereas the dendritic cost prefers a more compact arbor. The competition 

leads to a minimum for which the optimal arbor radius  

 

1
2LR

δ

β

+⎛ ⎞
⎜ ⎟
⎝ ⎠
� , (S45) 

The same formula holds in the worm-like chain model as well. Note that to build a self-

consistent theory, β should be sufficiently small so that the optimal arbor is sparse 

(assumption vi in section II.3).  

In Eq. (S45), assuming all the coefficients are constant, we obtain the scaling law R 

~ Lν with  

 1
2

ν
δ

=
+

. (S46) 



34 

II.10 Comparison of the theory with experimental data 

The theory leads to predictions that can be directly compared with experimental data. 

First, by using Eq. (S42) to fit the tortuosity of dendrites (Figure 4f), we found that the 

exponent in E (Eq. (S35)) δ = 0.309 ± 0.005. Second, substituting the measured δ into Eq. 

(S46), we predicted that ν = 0.43. This value is not significantly different from the direct 

measurement of this exponent,ν = 0.44 ± 0.01. 

We next determine the numerical values of β and the persistence length a by using 

the experimental data. By including all the numerical factors ignored in Eq. (S45), we 

find that β  is given by  

 2 2

16sL R
bR

δ

δβ
π δ +

⎛ ⎞= ⎜ ⎟
⎝ ⎠A

, (S47) 

where b is the average inter-spine interval. The values for L/R2+δ and R/  can be 

computed from the “2D” data set of pyramidal dendrites (see Figure 3a and Figure 4e). 

For other coefficients, we use b = 0.5 μm (50), s = 2 μm (42, 50) . We find β = 1.2 ± 0.2 

μm-1.3.  

To find the persistence length a, we use Eq. (S42) to fit the tortuosity of pyramidal 

dendrites (Supporting Figure 7) and compute the best-fit coefficient βaδ in the power 

law. Having determined β and δ, we find a ≈ 4 μm. Since a  b ≈ 0.5 μm, we recover 

assumption vii in section II.3, as promised previously. We note that this consistency also 

holds for the worm-like chain model. 

In summary, we accounted for the scaling relation between R and L and the 

tortuosity of dendritic branches by minimizing F in Eq. (S15). In addition, by using two 

independent measurements, we showed that sparse dendritic arbors, “strongly stretched” 
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branches, and long persistence length, are all consistent with the solution of minimizing 

F.  
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