
A Constrained minimization algorithm
Before discussing our solution method for the linearly constrained �1-penalized least-squares problem, we briefly recall

the homotopy/LARS method which manages to recover the unconstrained minimizer of the �1-penalized least-squares

objective function

w̄(τ) = arg min
w

[‖RRRw − y‖2
2 + τ‖w‖1

]
for a whole range of values of the (positive) penalty parameter τ .

The variational equations describing the minimizer w̄(τ) are:

(RRR�(y −RRRw))i =
τ

2
sgn wi wi �= 0 (1)

|(RRR�(y −RRRw))i| ≤ τ

2
wi = 0. (2)

The minimizer w̄(τ) is a continuous piecewise linear function of τ . We shall denote the breakpoints by τ0 > τ1 > . . .
and the corresponding minimizers by w̄(τ0), w̄(τ1), . . . The breakpoints occur where a new component enters or leaves

the support of w̄(τ). We will use b to denote the residual b = RRR�(y −RRRw).
The homotopy/LARS method for solving these equations starts by considering the point w = 0, which satisfies the

equations (1,2) for all τ ≥ τ0 ≡ 2 maxi |(RRR�y)i|. Hence w̄(τ ≥ τ0) = 0.

Given a breakpoint w̄(τn), it is possible to construct the next breakpoint w̄(τn+1) by solving a small linear system.

Let J = {i for which |bi| = τn/2} (i.e. the set of maximal residual), RRRJ the submatrix consisting of the columns J of

RRR. We define the walking direction u by

RRR�
J RRRJ uJ = sgn (bJ)

and ui = 0 for i �∈ J (sgn (bJ) denotes the vector (sgn(bj)j∈J)). In this way, a step w → w + γu results in a change

in the residual b → b − γv, where vj = sgn(bj) for j ∈ J . In other words, the maximal components of the residual

decrease at the same rate. The step size γ > 0 is now determined to be the smallest number for which the absolute value

of a component |bi − γvi| (with i �∈ J) of the new residual becomes equal to |bj − γvj | for j ∈ J (i.e. a new component

joins the maximal residual set), or for which a nonzero component of w is turned into zero.

The new penalty parameter is then τn+1 = τn − 2γ (which is smaller than τn), and the corresponding minimizer is

w̄(τn+1) = w̄(τn) + γu. By construction it is guaranteed to satisfy the variational equations (1,2).

The two main advantages of this method are thus that it is exact (in particular zero components are really zero) and

that it yields the breakpoints (and hence the minimizers) for a whole range of values of the penalization parameters

τ ≥ τstop ≥ 0. At each step, only a relatively small linear system has to be solved. If this procedure is carried through

until the end, one finds limτ→0 arg min ‖RRRw − y‖2
2 + τ‖w‖1 = arg min

w s.t. RRR�RRRw=RRR�y
‖w‖1.

For the constrained case, i.e. the minimization problem

w̃(τ) = argmin
w s.t. AAAw=a

[‖RRRw − y‖2
2 + τ‖w‖1

]
(3)

subject to the linear constraint AAAw = a, we can devise a similar procedure. We assume, of course, that the constraint

AAAw = a has a solution.

An approximation of the minimizer w̃(τ) can be obtained by applying the unconstrained procedure described above

to the objective function ˜̃w(τε) = arg min
w

[‖AAAw − a‖2
2 + ε‖RRRw − y‖2

2 + τε‖w‖1

]
. (4)

For sufficiently small ε, this will give a good approximation of the constrained minimizer w̃(τ) corresponding to the

penalty τ = τε/ε (after first going through a number of breakpoints for which AAAw �= a, not even approximately).

However, this is clearly an approximate method (often very good) whereas the unconstrained procedure did not involve

any approximation.

We solve this issue, and provide an exact method, by solving the minimization problem (4) up to the first order in ε.

In this approach ε is a small formal positive parameter. Now the minimizer ˜̃w(τε) and τε both depend on ε. We can write

w = w(0) + εw(1) +O(ε2) and τε = τ (0) + τ (1)ε+O(ε2). We again follow the procedure for the unconstrained method,

but take care to use arithmetic (addition, multiplication, comparison, . . .) up to first order in ε.

1

As before, one starts from w = 0, corresponding to a large initial value of τε, and follows the path of descending τε.

The strategy consists of satisfying the variational equations(
AAA�(a −AAAw) + εRRR�(y −RRRw)

)
i

=
τε

2
sgn wi wi �= 0 (5)∣∣(AAA�(a −AAAw) + εRRR�(y −RRRw)

)
i

∣∣ ≤ τε

2
wi = 0 (6)

at each breakpoint by carefully determining a walking direction u = u(0) + u(1)ε + O(ε2) and a step length γ =
γ(0) + γ(1)ε + O(ε2). Using w = w(0) + εw(1) + O(ε2), we can rewrite equations (5) as(

AAA�(a −AAAw(0))
)

i
=

τ (0)

2
sgn wi (7)(

−AAA�AAAw(1) + RRR�(y −RRRw(0))
)

i
=

τ (1)

2
sgn wi . (8)

From a known breakpoint w we can proceed to the following breakpoint by a step direction u and step size γ (both

depending on ε). We again set

J = arg max
i

∣∣∣(AAA�(a −AAAw(0)) + ε(−AAA�AAAw(1) + RRR�(y −RRRw(0)))
)

i

∣∣∣ .

As long as τ (0) �= 0, the components J of u are determined by(
RRR�

J RRRJ AAA�
J AAAJ

AAA�
J AAAJ 0

) (
u(0)

J

u(1)
J

)
=

(
0

sgn(bJ)

)
(9)

and the other components of u remain zero. The step size γ is again determined as before, i.e. when a new component

enters the maximal residual set, or when a component leaves the active set. The penalty parameter τε decreases as before:

τε → τε − 2γ.

At some point in this procedure, τε will become zero in zeroth order: τε = 0 + τ (1)ε + O(ε2). The corresponding

minimizer (more precisely the zeroth-order part of this breakpoint) will satisfy the constraint AAAw = a and we will have

found the first constrained minimizer w̃ of (3), corresponding to τ0 = τ (1) (i.e. the first-order part of the parameter τε of

the ε-dependent problem at this breakpoint). In the unconstrained case, no such calculations were necessary as the starting

point was always equal to 0. Similarly to the unconstrained case, we have that w̃(τ > τ0) = w̃(τ0).
In principle, one could continue the ε-dependent algorithm, but now that the first breakpoint of w̃(τ) is determined, it

is more advantageous to continue the descent of τ by introducing Lagrange multipliers λλλ for the problem (3):

w̃(τ) = arg min
λλλ, w s.t. AAAw=a

[‖RRRw − y‖2
2 + τ‖w‖1 + 2λλλ�(AAAw − a)

]
.

This minimization problem (analogous to (3)) amounts to solving the equations:

(RRR�(y −RRRw) + AAA�λλλ)i =
τ

2
sgn wi wi �= 0 (10)

|(RRR�(y −RRRw) + AAA�λλλ)i| ≤ τ

2
wi = 0 (11)

AAAw = a. (12)

Equation (10) is the equivalent of equation (8) whereas equation (12) replaces equation (7). We now already have τ0,

w̃(τ ≥ τ (0)) and the initial Lagrange multipliers λλλ = −AAA ˜̃w(1)
(from the first-order part of the last step of the ε-dependent

problem).

To proceed from one breakpoint to the next (w → w + γu, and λλλ → λλλ + γs as the multipliers also change), we again

need to solve a linear system: (
RRR�

J RRRJ AAA�
J

AAAJ 0

) (
uJ

s

)
=

(
sgn(b̃J)

0

)
(13)

2

with b̃ = RRR�(y−RRRw)+AAA�λλλ. This will guarantee that w → w+γu and λλλ → λλλ+γs still satisfy the constraint (12) and

the variational equations (10,11). The step size γ is determined by the same rule as before: stop when a new component

enters the set J = arg maxi |(RRR�(y − RRRw) + AAA�λλλ)i| or when a nonzero component of w is set to zero. Notice the

differences and similarities between the linear systems (13) and (9).

At each breakpoint, this algorithm provides the penalty τn, the corresponding minimizer w̃(τn) and the Lagrange

multipliers λλλn. Unlike for the unconstrained case, it is now possible that w̃(τ) remains constant between two breakpoints

(i.e. only the Lagrange multipliers λλλ change).

One simplifying assumption (not solved in the homotopy/LARS algorithm) was made in the above description of the

algorithm: if the set of maximal residual and the support set differ by more than one component, one should carefully

select the correct new components to enter the support. This can be done by using the variational equations, and our

implementation handles this case.

One could argue that the starting point (i.e. the first breakpoint) for the constrained minimization problem is simply

given by w̃(τ0) = argmin
w s.t. AAAw=a

‖w‖1, which could be calculated by letting the unconstrained solution procedure run its

course: w̃(τ0) = limσ→0 arg minw

[‖AAAw − a‖2
2 + σ‖w‖1

]
. Generically (i.e. excluding special cases), this is correct.

However, the problem is that sometimes the minimizer argminw s.t. AAAw=a ‖w‖1 is not unique. In that case, the starting

point for the constrained minimizer is not solely determined by AAA and a but also by RRR and y. In this case, the ε-dependent

algorithm still chooses the correct starting point from the set arg min
w s.t. AAAw=a

‖w‖1. This is important to mention because the

special constraint
∑

wi = 1 used in this paper, gives rise to such cases.

Our algorithm is well-suited for the portfolio problems discussed in this paper. The size of the matrix, the number of

constraints (just two) and, more importantly, the number of nonzero weights in the portfolios are such that a minimization

run (i.e. finding the minimizer for a whole range of penalty parameters) can be done in a fraction of a second on a standard

desktop.

We calculated the portfolio examples in this paper using both the formal ε approach (in Mathematica) and the approx-

imate small ε approach (in Matlab). The outcomes were always consistent.

3

