SUPPLEMENTARY FIGURE LEGENDS

Figure 1S. Annexin A6 fusion proteins maintain the properties of native annexin A6.

(A) and (B) HEK?293 cells expressing annexin A6YFP-tH and GFP-tH were mixed, and homogenized in
the presence of 0.2 mM Ca?". Lysates were extracted with 0.5% Triton X-100 (TX-100) and fractionated on
a discontinuous 5-30% flotation sucrose gradient in 0.2 mM Ca®, as shown. Fractions were collected from
the top of the gradient and analyzed by SDS-PAGE and Western blotting with (A) anti-GFP MADbs or (B)
anti-annexin A6 and anti-RhoA MAbs. Graphs show the distribution of annexin A6YFP-tH, GFP-tH,
endogenous annexin A6 and RhoA in gradient fractions, expressed as % of the total protein.

(C) Gradient fractionation of HEK293 cell lysates containing annexin A6YFP-tK and GFP-tK was
performed as described in (A and B) and analyzed by Western Blotting with anti-GFP MAbs. Low-density
membrane fractions 3 and 4; soluble proteins in 40% sucrose fraction 8, pellet fraction 9P.

Figure 2S. PM-localized annexin A6 reduces EGF-stimulated Ca* entry into A431 cells.

A431 cells were transiently transfected with annexin A6YFP-tH or mCherry-tH constructs, co-cultured and
stimulated with 100 ng EGF in the presence of 2 mM Ca?". (A) shows a representative recording of 5 cells
each in the same field and (B) an average of 3 independent experiments (n = 9 coverslips), *p<0.05.

Figure 3S. Annexin A2 does not influence Ca?* entry in annexin A2YFP-tH cells

(A) Annexin A2 was expressed as a fusion with YFP and the H-Ras anchor sequence. Live HEK293 cells
producing A2YFP-tH were analyzed by confocal microscopy under resting conditions, and after stimulation
with 2 mM Ca**- 5uM ionomycin. Annexin A2YFP-tH was targeted to the PM at rest, and at high Ca?*. Bar
=5um.

(B) Annexin A2YFP-tH expressing cells were co-cultured with mCherry-tH control, loaded with Fluo-
3/AM and stimulated with 10 uM carbachol (CCh), followed by SERCA inhibition with 1 uM thapsigargin
(TG), and activation of SOCE with 2 mM and 5 mM [Ca®'].. In a representative experiment, responses in
mCherry-tH- expressing cells (control, black line) were compared to annexin A2YFP-tH cells (grey line).
(C) The graph shows an average of 4 independent experiments (n=16 fields) + SEM. There was no
statistically significant difference between the responses in annexin A2YFP-tH cells compared to the
mCherry-tH control.

Figure 4S. Re-loading with 3 mM Ca”" restores the ER contents in annexin A6YFP-tH cells

(A) A typical recording of SOCE stimulation from co-cultured A6YFP-tH and mCherry-tH cells, incubated
in Ca**-free buffer. ER [Ca?'] levels are reduced compared to the control.

(B) Same cells as in (A) pre-incubated in 3 mM [Ca®']e for 2 h. Immediately before the experiment, cells
were perfused with Ca*-free buffer, and TG-induced SOCE stimulated.

(C) Graph shows average of 4 independent experiments £+ SEM (n=8 coverslips for control, n=11
coverslips for reloaded cells), *p<0.05.

Figure 5S. Annexin A6 binds purified actomyosin

Smooth muscle actomyosin and annexin A6 were purified as described (58). The absence of lipid
contamination in both preparations was confirmed by thin-layer chromatography.

Purified annexin A6 (Anx 6; 2 pg of protein) was recombined with the indicated amounts of purified
actomyosin (AM) in NCS buffer (120 mM KCI, 20 mM imidazol, pH 7.0) (final volume = 40 ul)
containing 1 mM EGTA and 1.2 mM CaCl, (+) or ImM EGTA alone (-). The samples were incubated for
10 minutes at ambient temperature. Pellets obtained after centrifugation at 12 000 x g for 30 minutes were
made up to a final volume of 40 pl with NCS buffer. Equal aliquots of the resulting pellets (pel) and
supernatants (sup) were analyzed by SDS-PAGE.
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