SUPPLEMENTARY FIGURE LEGENDS

Figure 1S. Annexin A6 fusion proteins maintain the properties of native annexin A6.

- (A) and (B) HEK293 cells expressing annexin A6YFP-tH and GFP-tH were mixed, and homogenized in the presence of 0.2 mM Ca²⁺. Lysates were extracted with 0.5% Triton X-100 (TX-100) and fractionated on a discontinuous 5-30% flotation sucrose gradient in 0.2 mM Ca²⁺, as shown. Fractions were collected from the top of the gradient and analyzed by SDS-PAGE and Western blotting with (A) anti-GFP MAbs or (B) anti-annexin A6 and anti-RhoA MAbs. Graphs show the distribution of annexin A6YFP-tH, GFP-tH, endogenous annexin A6 and RhoA in gradient fractions, expressed as % of the total protein.
- (C) Gradient fractionation of HEK293 cell lysates containing annexin A6YFP-tK and GFP-tK was performed as described in (A and B) and analyzed by Western Blotting with anti-GFP MAbs. Low-density membrane fractions 3 and 4; soluble proteins in 40% sucrose fraction 8, pellet fraction 9P.

Figure 2S. PM-localized annexin A6 reduces EGF-stimulated Ca²⁺ entry into A431 cells.

A431 cells were transiently transfected with annexin A6YFP-tH or mCherry-tH constructs, co-cultured and stimulated with 100 ng EGF in the presence of 2 mM Ca^{2+} . (A) shows a representative recording of 5 cells each in the same field and (B) an average of 3 independent experiments (n = 9 coverslips), *p<0.05.

Figure 3S. Annexin A2 does not influence Ca2+ entry in annexin A2YFP-tH cells

- (A) Annexin A2 was expressed as a fusion with YFP and the H-Ras anchor sequence. Live HEK293 cells producing A2YFP-tH were analyzed by confocal microscopy under resting conditions, and after stimulation with 2 mM Ca^{2+} 5 μ M ionomycin. Annexin A2YFP-tH was targeted to the PM at rest, and at high Ca^{2+} . Bar = 5 μ m.
- (B) Annexin A2YFP-tH expressing cells were co-cultured with mCherry-tH control, loaded with Fluo-3/AM and stimulated with 10 μ M carbachol (CCh), followed by SERCA inhibition with 1 μ M thapsigargin (TG), and activation of SOCE with 2 mM and 5 mM [Ca²⁺]_{ex}. In a representative experiment, responses in mCherry-tH- expressing cells (control, black line) were compared to annexin A2YFP-tH cells (grey line).
- (C) The graph shows an average of 4 independent experiments (n=16 fields) \pm SEM. There was no statistically significant difference between the responses in annexin A2YFP-tH cells compared to the mCherry-tH control.

Figure 4S. Re-loading with 3 mM Ca²⁺ restores the ER contents in annexin A6YFP-tH cells

- (A) A typical recording of SOCE stimulation from co-cultured A6YFP-tH and mCherry-tH cells, incubated in Ca^{2+} -free buffer. ER [Ca^{2+}] levels are reduced compared to the control.
- (**B**) Same cells as in (A) pre-incubated in 3 mM $[Ca^{2+}]_{ex}$ for 2 h. Immediately before the experiment, cells were perfused with Ca^{2+} -free buffer, and TG-induced SOCE stimulated.
- (C) Graph shows average of 4 independent experiments \pm SEM (n=8 coverslips for control, n=11 coverslips for reloaded cells), *p<0.05.

Figure 5S. Annexin A6 binds purified actomyosin

Smooth muscle actomyosin and annexin A6 were purified as described (58). The absence of lipid contamination in both preparations was confirmed by thin-layer chromatography.

Purified annexin A6 (**Anx 6**; 2 μ g of protein) was recombined with the indicated amounts of purified actomyosin (**AM**) in NCS buffer (120 mM KCl, 20 mM imidazol, pH 7.0) (final volume = 40 μ l) containing 1 mM EGTA and 1.2 mM CaCl₂ (+) or 1mM EGTA alone (-). The samples were incubated for 10 minutes at ambient temperature. Pellets obtained after centrifugation at 12 000 x g for 30 minutes were made up to a final volume of 40 μ l with NCS buffer. Equal aliquots of the resulting pellets (**pel**) and supernatants (**sup**) were analyzed by SDS-PAGE.

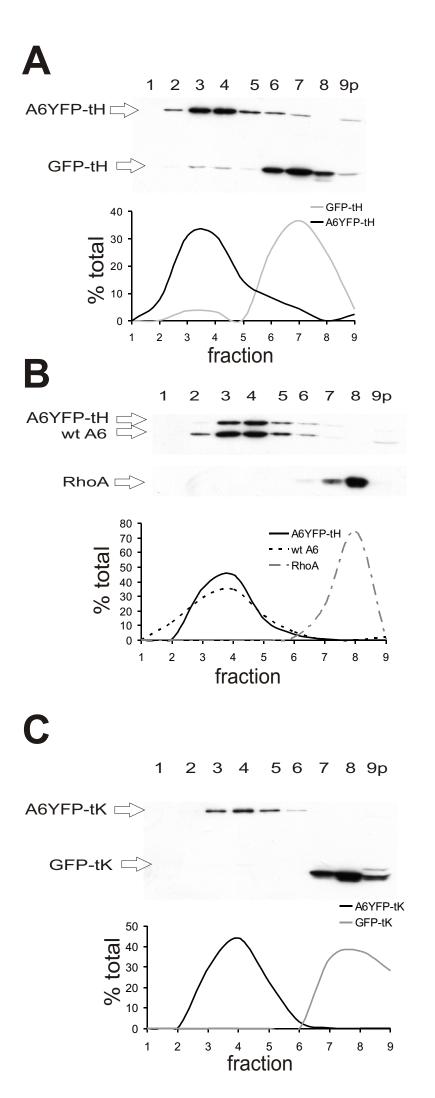
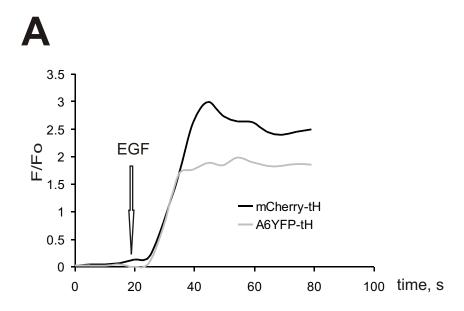
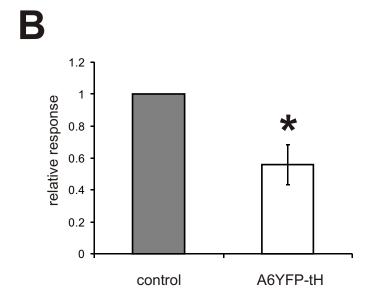
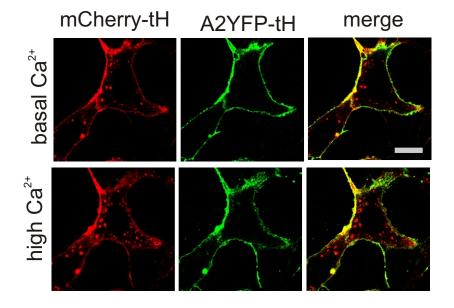
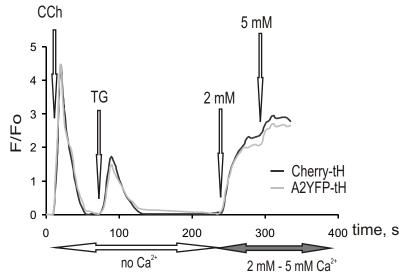





Fig. 1S



A

C

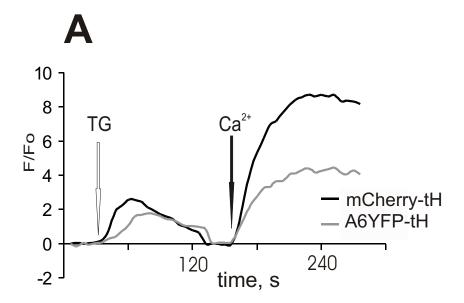
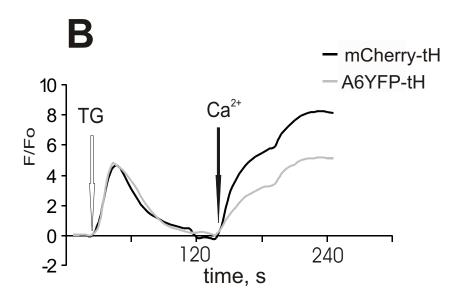




Fig. 3S

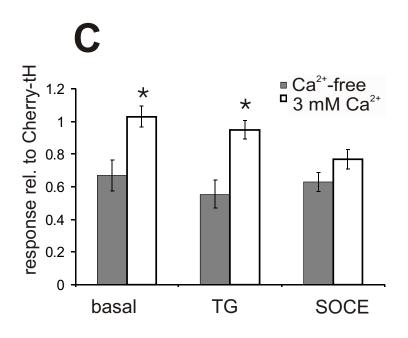
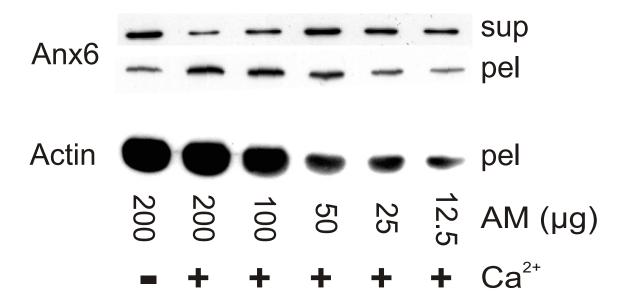



Fig. 4S

