Cancer Cell, Volume 14

Supplemental Data

Article

Discovery of Drug-Resistant

and Drug-Sensitizing Mutations

in the Oncogenic PI3K Isoform p110 α

Eli R. Zunder, Zachary A. Knight, Benjamin T. Houseman, Beth Apsel, and Kevan M. Shokat

Supplemental Experimental Procedures

YRP1 Transformation

YRP1 was transformed with plasmid DNA by electroporation with a protocol adapted from D. Gottschling, Fred Hutchinson Cancer Research Center, Seattle:

http://www.fhcrc.org/science/labs/gottschling/yeast/ytrans.html. Briefly, YRP1 were grown in 50 ml YPD medium at 30°C until early stationary phase (OD₆₆₀ = 1.05-1.25) and then harvested by centrifugation at 3000 RPM, 4°C, for 5 minutes. The cells were then washed twice with ice-cold sterile distilled H₂0, centrifuging at 2500 RPM, 4°C, for 5 minutes, and washed once with ice-cold 1 M Sorbitol, centrifuging at 2000 RPM, 4°C, for 5 minutes. The cells were then resuspended with 1.5 ml ice-cold 1 M Sorbitol, and 80 µl of the cell suspension was mixed with 2 µl plasmid DNA prep (0.5-2 µg) and transferred to a pre-chilled 0.1 cm gap electroporation cuvette (BioRad Genepulser), and electroporated with the following settings: 1.5 kV Voltage, 25 µF Capacitance, 200 Ω Resistance. Immediately after electroporation, the cells were suspended in 1 ml ice-cold 1 M Sorbitol and transferred to a pre-chilled 1.5 ml eppendorf tube, before spreading onto selective media. Transformation efficiencies of 1 x 10⁵ colonies/µg DNA were routinely observed, greatly improving on the 1 x 10² colonies/µg DNA efficiency observed with standard lithium acetate transformation.

Supplemental References

Hayakawa, M., Kaizawa, H., Kawaguchi, K., Ishikawa, N., Koizumi, T., Ohishi, T., Yamano, M., Okada, M., Ohta, M., Tsukamoto, S., *et al.* (2007). Synthesis and biological evaluation of imidazo[1,2-a]pyridine derivatives as novel PI3 kinase p110alpha inhibitors. Bioorg Med Chem *15*, 403-412.

Knight, Z. A., Gonzalez, B., Feldman, M. E., Zunder, E. R., Goldenberg, D. D., Williams, O., Loewith, R., Stokoe, D., Balla, A., Toth, B., *et al.* (2006). A pharmacological map of the PI3-K family defines a role for p110alpha in insulin signaling. Cell *125*, 733-747.

Stauffer, F., Maira, S. M., Furet, P., and Garcia-Echeverria, C. (2008). Imidazo[4,5-c]quinolines as inhibitors of the PI3K/PKB-pathway. Bioorg Med Chem Lett *18*, 1027-1030.

Figure S1. DNA Sequencing Chromatograms of the p110a Mutagenic Libraries

Randomized codons of the p110 α affinity pocket NNK libraries, sequenced with the following primer: (5'-3') ACCCAGATCCTATGGTTCGAGG.

Figure S2.

Figure S2. Characterization of Yeast Screen Hits by Serial Dilution Analysis

Six-fold serial dilutions of YRP1-p*URA3*-2 μ -*GAL1*-p110 α H1047R-CAAX strains with the indicated p110 α mutations spotted onto agar plates of SD –uracil medium containing either glucose or galactose. The plates were incubated at 30°C for 2 days (glucose) and 6 days (galactose). Strains that were not sequenced are labeled N.S. (not sequenced). Strains that were unable to be sequenced due to plasmid rescue failure are labeled U.S. (unable to sequence).

Figure S3.

Figure S3. p110aH1047R-Transformed MCF-10A Growth Curves at Additional Drug Concentrations

Growth of the I800L, I800M, and L814C MCF-10A cell lines in medium lacking EGF was monitored as in Figure 6A in the presence of the indicated PI3K inhibitors. Data are represented as mean \pm SEM.

Table S1. Inhibitor Concentrations Used in the p110α Mutant Screen				
	Low	Medium	High	
PIK-85	2 µM	10 µM	20 µM	
PIK-93	2 µM	10 µM	20 µM	
PI-103	1 µM	2 µM	5 μΜ	
PW-12	100 nM	500 nM	2 µM	
PP-110	2 µM	10 µM	not done	

Table S2. Inhibitory Values for PI3K Inhibitors against p110α and Off-Target	
Protein Kinases	

	p110a	Off-Target Protein Kinases
PIK-90	0.011 µM IC ₅₀	
PIK-93	0.039 µM IC ₅₀	
PI-103	0.008 µM IC ₅₀	0.02 μM IC ₅₀ @ 100 μM ATP (mTORC1) 0.083 μM IC ₅₀ @ 100 μM ATP (mTORC2)
PW-12	0.003 μM IC ₅₀ @ 1 μM ATP	 91% inhibition at 1 uM (CDK1/cyclin B) 94% inhibition at 1 uM (FLT3) 89% inhibition at 1 uM (Fyn) 92% inhibition at 1 uM (GSK3β) 91% inhibition at 1 uM (PKCα)
PP-110	0.069 μM IC ₅₀	0.03 μM IC ₅₀ (Hck) 0.069 μM IC ₅₀ (Src)
BEZ-235	0.004 µM IC ₅₀	low nM IC ₅₀ (mTOR)

This table was assembled with published inhibitory values (Hayakawa et al., 2007; Knight et al., 2006; Stauffer et al., 2008) (B.A. and K.M.S., unpublished data) and experimentally determined results. All inhibitory values were determined at 10 μ M ATP unless otherwise indicated.

	Primer Sequence (5'-3')
hp110α-FM	cctctatactttaacgtcaaggagaaatgcctccacgaccatcatcaggtgaactg
hp110a-CRM	gcgcgcctcatcaagagagcacacacttacagttcaatgcatgc
hp110a-FL	gtatcaacaaaaaattgttaatatacctctatactttaacgtcaagg
hp110a-CRL	cgcgtaatacgactcactatagggcgaattgggtaccccggcgcgcctcatcaagagagc
hp110aR1047H-F	aatgatgcacATcatggtggctggacaacaaaaatgg
hp110aR1047H-R	ccagccaccatgATgtgcatcattcatttgtttc
hp110aK802R-F	gagatcatctttCGaaatggggatgatttacggc
hp110aK802R-R	ccccatttCGaaagatgatctcattgttctgaaacagtaactc
p110α-BamHI-NtermMyc-F	cttctggtaccatggaacagaaactcatatcggaggaggatctacctccacgaccatcatcaggtgaactgtgg
p110a-EcoRV-R	ccgcgatatetcagttcaatgcatgetgtttaattgtgtgg
hp110aF-XhoI	gtgetttgetegagatgeeteeaegaecateateaggtgaaetg
hp110aR-HpaI	gtgcctcggttaactcagttcaatgcatgctgtttaattgtgtgg

Table S3. Oligonucleotide Primers Used for Cloning and Site-Directed Mutagenesis

Table S4. Oligonucleotide Primers Used for Site-Directed NNK Mutagenesis

	Primer Sequence (5'-3')
I800-Forward	caatgagatcNNKtttaaaaatggggatgatttacggcaagatatgc
I800-Reverse	catttttaaaMNNgatctcattgttctgaaacagtaactctgacatgatgtctgg
L807-Forward	gggatgatNNKcggcaagatatgctaacacttcaaattattcg
L807Reverse	catatcttgccgMNNatcatccccatttttaaagatgatctcattg
L814-Forward	gatatgctaacaNNKcaaattattcgtattatggaaaatatctggc
L814-Reverse	cgaataatttgMNNtgttagcatatcttgccgtaaatcatcccc
Y836-Forward	cgaatgttacctNNKggttgtctgtcaatcggtgactgtgtgggac
Y836-Reverse	ccgattgacagacaaccMNNaggtaacattcgaagatcaagacc
G837-Forward	cgaatgttaccttatNNKtgtctgtcaatcggtgactgtgtgggac
G837-Reverse	ccgattgacagacaMNNataaggtaacattcgaagatcaagacc
C838-Forward	cgaatgttaccttatggtNNKctgtcaatcggtgactgtgtgggac
C838-Reverse	ccgattgacagMNNaccataaggtaacattcgaagatcaagacc
I848-Forward	tgtgggacttNNKgaggtggtgcgaaattctcacactattatgc
I848-Reverse	gcaccacctcMNNaagtccccacagtcaccgattgacagac
S854-Forward	gtgcgaaatNNKcacactattatgcaaattcagtgcaaaggcggc
S854-Reverse	gcataatagtgtgMNNatttcgcaccacctcaataagtccc