Supplementary material for Newman *et al.* (2000) *Proc. Natl. Acad. Sci. USA* **97** (24), 13203–13208.

Construct*	Systematic Name	Yeast Proteome	Region used [†]	Dimer score [‡]	Interactions [§]
1	YFL008W	SMC1	159–497 [¶]	0.99	A, B
2	YFL008W	SMC1	688–929 [¶]	0.99	A, B
3	YFL008W	SMC1	688–1076 [¶]	0.99	А, В
4	YDL181W	INH1	37–84	0.99	А, В
5	YHL010C	YHL010C	477–560	0.96	А
6	YKL179C	YKL179C	44–113	0.62	
7	YKL179C	YKL179C	159–222	0.63	
8	YKL179C	YKL179C	217-354	0.63	А
9	YKL179C	YKL179C	382–455	0.96	
10	YKL179C	YKL179C	484–548	0.60	А
11	YLR131C	ACE2	171–253	0.95	А
12	YDR499W	YDR499W	76–152	0.93	
13	YLL026W	HSP104	447–519	0.93	
14	YHL009C	YAP3	144-220	0.93	
15	YDR184C	ATC1	235–293	0.93	
16	YDL072C	YDL072C	156-202	0.92	В
17	YMR117C	SPC24	24–136 [¶]	0.92	А
18	YMR117C	SPC24	72–136	0.92	A, B
19	YLR190W	YLR190W	280–347	0.92	
20	YLR190W	YLR190W	342-400	0.28	A, B
21	YCL029C	BIK1	178–409 [¶]	0.92	В
22	YCL029C	BIK1	346-409	0.92	
23	YBR057C	MUM2	169–236	0.92	
24	YBR057C	MUM2	233–294	0.24	В
25	YBR057C	MUM2	310–365	0.31	
26	YKL050C	YKL050C	481–547	0.92	В
27	YKL023W	YKL023W	143–228	0.92	
28	YOL069W	NUF2	124–449 [¶]	0.91	A, B
29	YCL024W	YCL024W	520-583	0.91	
30	YLR314C	CDC3	427–516	0.91	В
31	YJL036W	SNX4	330–394	0.90	
32	YOR195W	SLK19	277–821 [¶]	0.90	A, B
33	YNL079C	TPM1	1–198	0.90	А
34	YIL138C	TPM2	1–160	0.90	A, B
35	YPL146C	YPL146C	307–380	0.90	
36	YLL021W	SPA2	267–410	0.89	В
37	YGR059W	SPR3	439–505	0.89	В
38	YLR429W	CRN1	589–650	0.89	A, B
39	YCR086W	YCR086W	7–86	0.88	В
40	YIR018W	YAP5	61–148	0.87	А

Table 1. Putative coiled-coil regions used in this study

41	YHR158C	KEL1	770–1163 [¶]	0.87	A, B
42	YHR158C	KEL1	959–1092	0.54	В
43	YHR158C	KEL1	770–971 [¶]	0.87	A, B
44	YHR158C	KEL1	$1078 - 1163^{\P}$	0.27	А
45	YLR319C	BUD6	584–641	0.86	
46	YMR124W	YMR124W	480–546	0.85	
47	YMR124W	YMR124W	803-863	0.48	A, B
48	YDR379W	RGA2	606–686	0.85	A, B
49	YGL086W	MAD1	61–333 [¶]	0.49	A, B
50	YGL086W	MAD1	379–598 [¶]	0.85	
51	YJL114W	(TY4B)	30–125	0.83	A, B
52	YJL113W	(TY4A)	30–125	0.83	A, B
53	YDR200C	YDR200C	444–547	0.83	
54	YDL074C	YDL074C	118–183	0.44	
55	YDL074C	YDL074C	118–635 [¶]	0.83	A, B
56	YGL075C	MPS2	145–227	0.83	A, B
57	YGL066W	YGL066W	264–334	0.83	
58	YNL271C	BNI1	696–807	0.81	
59	YNL271C	BNI1	1517-1578	0.83	
60	YPR049C	YPR049C	676–865 [¶]	0.83	
61	YNL272C	SEC2	$11 - 178^{\P}$	0.83	A, B
62	YDL099W	YDL099W	173–290	0.86	A, B
63	YOR326W	MYO2	575–1101 [¶]	0.84	В
64	YOR326W	MYO2	575–1192 [¶]	0.84	
65	YLR238W	YLR238W	354-419	0.46	
66	YIR017C	MET28	111–185	0.82	В
67	YGR285C	ZUO1	285-372	0.82	
68^{\parallel}	YLR045C	STU2	681–775	0.81	
69	YFR031C	SMC2	159–398	0.28	А
70	YFR031C	SMC2	774–958 [¶]	0.82	A, B
71	YAL011W	YAL011W	182–277	0.82	В
72	YAL035W	YAL035W	73–251 [¶]	0.72	
73	YAL047C	SPC72	91–155	0.20	В
74	YAL047C	SPC72	335–471 [¶]	0.10	В
75	YAL047C	SPC72	566-621	0.44	
76	YBL063W	KIP1	701–758	0.74	
77	YBR211C	AME1	189–248	0.76	В
78	YDL087C	LUC7	113–166	0.20	А
79	YDL126C	CDC48	750-800	0.05	
80	YDR150W	NUM1	103–303 [¶]	0.66	A, B
81	YDR159W	SAC3	677–747	0.48	
82	YDR218C	SPR28	369–422	0.73	
83	YDR251W	PAM1	346–531 [¶]	0.79	
84	YDR285W	ZIP1	182–357 [™]	0.79	А
85	YDR285W	ZIP1	388–761 [™]	0.66	А
86	YDR295C	YDR295C	439–655 [¶]	0.74	A, B

	87	YDR356W	NUF1	135–803 [¶]	0.60	
	88	YDR507C	GIN4	539–645	0.78	А
	89	YEL043W	YEL043W	214–392 [¶]	0.80	A, B
	90	YEL061C	CIN8	543-670	0.59	A, B
	91	YEL061C	CIN8	873–931	0.06	А
	92	YER149C	PEA2	249–416 [¶]	0.76	A, B
	93	YGL216W	KIP3	431–482	0.04	
	94	YGR089W	YGR089W	762–936 [¶]	0.75	A, B
	95	YGR130C	YGR130C	422–782 [¶]	0.74	А
	96	YGR142W	BTN2	255-331	0.80	
	97	YHR107C	CDC12	356-407	0.67	A, B
	98	YJL074C	SMC3	$107-518^{\P}$	0.50	A, B
	99	YJL074C	SMC3	$751 - 1050^{\P}$	0.75	A, B
	100	YJL187C	SWE1	289–339	0.10	
	101	YJR035W	RAD26	75–146	0.77	А
	102	YJR076C	CDC11	348–414	0.31	А
	103	YJR083C	YJR083C	70–135	0.78	A, B
	104	YJR112W	NNF1	59–187 [¶]	0.78	А
	105	YJR112W	NNF1	113–187	0.78	А
	106	YKL042W	SPC42	47–150	0.81	A, B
	107	YKL113C	RAD27	80–138	0.36	
	108	YKR054C	DYN1	469–524	0.26	А
	109	YKR054C	DYN1	3249–3318	0.20	A, B
	110	YKR054C	DYN1	$3522 - 3620^{\P}$	0.63	A, B
	111	YLR045C	STU2	681–775	0.81	
	112	YLR086W	SMC4	$382-684^{\P}$	0.80	A, B
	113	YLR086W	SMC4	834–1275 [¶]	0.69	А
	114	YLR200W	YKE2	1–51	0.77	
	115	YLR200W	YKE2	55-113	0.71	В
	116	YLR200W	YKE2	1–113 [¶]	0.77	
	117	YLR212C	TUB4	401–457	0.21	
	118	YLR254C	YLR254C	1–134	0.73	А
	119	YLR309C	IMH1	117–828 [¶]	0.77	
	120	YLR454W	YLR454W	1070-1128	0.30	В
	121	YLR454W	YLR454W	1878–1949	0.78	В
	122	YML072C	YML072C	924–985	0.77	
	123	YMR029C	YMR029C	14-82	0.73	
	124	YMR065W	KAR5	302–438 [¶]	0.16	А
	125	YMR192W	YMR192W	552-707 [¶]	0.75	А
	126	YMR198W	CIK1	190–374 [¶]	0.72	В
	127	YMR294W	JNM1	86–235 [¶]	0.26	
ļ	128	YNL084C	END3	277–349	0.72	В
	129	YNL153C	GIM3	62–128	0.73	В
	130	YNL225C	CNM67	166–461 [¶]	0.73	
	131	YNL250W	RAD50	200–538	0.74	В
	132	YNL250W	RAD50	730–1115 [¶]	0.74	A, B

133	YOL145C	CTR9	484–528	0.77	
134	YOR058C	ASE1	478–540	0.29	
135	YOR127W	RGA1	585-668	0.76	А
136	YOR269W	PAC1	74–140	0.78	A, B
137	YPL018W	CTF19	27-100	0.78	В
138	YPL115C	BEM3	39–104	0.79	
139	YPL155C	KIP2	495–554	0.43	А
140	YPL155C	KIP2	495–702 [¶]	0.43	A, B
141	YPL242C	IQG1	741-810	0.78	
142	YPL255W	BBP1	309–368	0.15	
143	YPR141C	KAR3	84–384 [¶]	0.47	A, B
144	YER016W	BIM1	161–229	0.33	
145	YGL093W	SPC105	583–714 [¶]	0.12	В
146	YIL144W	TID3	361–690 [¶]	0.69	A, B
147	YIL144W	TID3	511–690 [¶]	0.69	A, B
148	YPL124W	NIP29	1–52	0.44	А
149	YPL124W	NIP29	124–180	0.09	A, B
150	YPL124W	NIP29	$1 - 180^{\P}$	0.44	A, B
151	YER018C	SPC25	4–76	0.01	В
152	YJR060W	CBF1	272–331	0.10	
153	YDR201W	SPC19	1–44	0.23	
154	YDR201W	SPC19	61–164 [¶]	0.23	В
155	YDR201W	SPC19	$1-164^{\P}$	0.23	A, B
156	YEL009C	GCN4	227-281	0.72	
157	YER111C	SWI4	856–927	0.23	
158	YER111C	SWI4	926–974	0.08	
159	YDR146C	SWI5	169–232	0.83	А
160	YLR182W	SWI6	553-645	0.68	
161	YOL004W	SIN3	468–517	0.08	
162	YOL004W	SIN3	892–922	0.01	
163	YNL103W	MET4	591-650	0.57	A, B

From the Yeast Proteome Database, Version 9.46A (1).

*DNA corresponding to each putative coiled-coil region was subcloned into the pGAD-C1 and pGBDU-C1 vectors (2) to yield two plasmids denoted p(Construct)A and p(Construct)B, respectively (see *Materials and Methods*).

[†]Amino acid sequences encoded by two-hybrid plasmids used in this study. Primers were chosen using **primer3** (see *Materials and Methods*) to lie within a region corresponding to up to 42 nucleotides adjacent to the ends of the predicted coiled coil and up to 20 nucleotides into the predicted coiled-coil sequence.

[‡]Coiled-coil scores for the regions denoted at left were calculated using the program MULTICOIL (3).

[§]Activation-domain fusion constructs that interact in the two-hybrid assay are denoted A. DNA-binding-domain constructs that interact are denoted B.

[¶] Denotes a region predicted to contain multiple coiled coils.

^{||}Construct 68 is identical to 111.

References

- Costanzo, M. C., Hogan, J. D., Cusick, M. E., Davis, B. P., Fancher, A. M., Hodges, P. E., Kondu, P., Lengieza, C., Lew-Smith, J. E., Lingner, C., *et al.* (2000) *Nucleic Acids Res.* 28, 73–76.
- 2. James, P., Halladay, J. & Craig, E. A. (1996) Genetics 144, 1425–1436.
- 3. Wolf, E., Kim, P. S. & Berger, B. (1997) Protein Sci. 6, 1179–1189.