
Characteristics of Colorectal Cancer Cell (CRC) Lines 

 
The panel of 18 human CRC cell lines used in this study reflects the range of genetic changes associated with colon cancer 

development1 (Supplementary Table 1): most were mutant for both APC and K-Ras, with a minority harboring mutations in β-catenin 

rather than APC (i.e., HCT116 and LS180), or in B-Raf rather than K-Ras (i.e., Colo205).2-6  Notably, while RKO cells have mutant 

B-Raf, they are wild-type for both APC and β-catenin, and show no aberrant activation of β-catenin signaling.4, 7  The study also 

included an isogenic series of cell lines comprised of parental FET cells and FET cells transfected with TGFα (FET-6α), wild-type 

TGFβ receptor II (FET-RII), or a dominant negative form of TGFβRII (FET/DNR).  These cell lines differ in tumorigenic potential, 

with FET/DNR and FET-6α being more tumorigenic than FET cells, and FET-RII exhibiting the lowest tumorigenicity.8, 9 HCT116 

and HCT116b cells were derived from the same primary tumor; HCT-116 cells have a more progressed tumor phenotype than HCT-

116b cells, as characterized by more rapid proliferation and markedly higher tumorigenicity.7 The HCT116T cell line is a clone 

isolated after transfection of HCT116 cells with a TGFα antisense vector, and is unaggressive.10 



Supplementary Table 1 
 

CRC Cell 
Line 

APC 
Mutation 

β-catenin 
Mutation 

K-Ras 
Mutation 

Other mutations associated 
with intestinal 
tumorigenesis 

Differentiation 
status 

Aggressiveness References 

FET# + - + p53 Well Unaggressive 6, 9, 11-14 
FET-6α# + - + p53 Moderate Intermediate 9 
FET-RII# + - + p53 Well Unaggressive 9 
FET/DNR# + - + p53 Poor Aggressive 9 
HCT-15 + - + p53, TGFβ-RII, PI3KCA Moderate Intermediate 3, 6, 14-18 
CBS4 + NA + NA Well Unaggressive 11-13, 15 
RKO - - - B-Raf, p53, PI3KCA Poor Aggressive 12-16 
TENN + NA - PI3KCA Poor Aggressive 12, 13 
RCA + + NA NA Moderate Intermediate 11, 13 
Moser + NA NA NA Moderate Intermediate 11 
GEO + NA + NA Well Unaggressive 2, 11-13, 16 
DLD-1 + - + p53, PI3KCA Poor Intermediate 3, 14, 15, 18 
Colo205 + + - p53, B-Raf, SMAD4 Poor Aggressive 2, 3, 14, 15, 17 
SW620 + - + p53 Poor Aggressive 2, 3, 14, 15, 17 
HCT116T* - + + TGFβ-RII Poor Unaggressive 10, 19 
HCT116b* - + + TGFβ-RII Poor Unaggressive 7, 12 
HCT116* - + + TGFβ-RII, E2F-4, PI3KCA  Poor Aggressive 2, 6, 7, 12-18 
LS180 - + + TGFβ-RII, TCF-4, PIK3CA Well Aggressive 2, 3, 6, 11, 14, 15, 17 
* HCT116 and HCT116b cell lines were established from the same primary tumor.  HCT116T denotes HCT116 cells transfected with 
a TGF-α antisense vector and stably selected. 
# FET cell line derivatives include FET-6α cells, which overexpress TGF-α; FET-RII cells, which overexpress TGF-β RII; and 
FET/DNR cells, which express dominant negative TGF-β RII. 
NA = Not available. 
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SUPPLEMENTARY INFORMATION 

Supplementary Figure Legends 

Supplementary Figure 1.  CRC cells infected with LacZ, PKCα, or PKCδ adenovirus were 

stained with propidium iodide, and percentage of cells in G1, S, and G2/M phases was 

determined by flow cytometry. Data represent the average of 2 independent experiments ± s.e. 

 

Supplementary Figure 2A.  PKCα expression does not affect cyclin D1 protein stability.  Left 

Panel: LacZ- and PKCα-transduced DLD-1 cells were treated with 30 µg/mL CHX for various 

times and subjected to anti-cyclin D1 immunoblotting. Fast green-stained membranes are shown 

as loading controls. A longer exposure is shown for PKCα-transduced cells to facilitate 

comparison between samples.  The graph shows densitometric quantification of cyclin D1 levels 

normalized to 0 h control.  Right panel: Lighter exposure at time 0 confirms down-regulation of 

cyclin D1 steady-state levels in PKCα-transduced cells.  Data are representative of 2 independent 

experiments. 

Supplementary Figure 2B.  Northern blot (NB) analysis of cyclin D1 mRNA in DLD-1 cells 

treated with 2 µg/mL ActD for the indicated times.  The graph shows relative levels of cyclin D1 

mRNA normalized to 28S RNA.  Data are representative of ≥2 independent experiments. 

 

Supplementary Figure 3.  CRC cells were infected with LacZ, PKCα, or PKCδ adenovirus as 

indicated and plated in soft agarose. Colonies were imaged after 1-2 weeks. 
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Supplementary Figure 4A.  Immunoblot analysis of cyclin D1, phospho-EGFR (Tyr1173) 

(indicative of EGFR activation), and total EGFR in FET and GEO cells transduced with LacZ or 

PKCα adenovirus.  Actin: loading control.  Data are representative of ≥2 independent 

experiments.  

 
Supplementary Figure 4B.   SW620 cells, which do not express EGFR, were infected with 20 

moi LacZ, PKCα, or PKCδ adenovirus. After 48 h expression of the indicated proteins was 

detected by immunoblot analysis.  Fast Green staining shows even protein loading.  Data are 

representative of ≥2 independent experiments.  
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Supplementary Figure 2A Pysz et al.
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Supplementary Figure 2B Pysz et al.
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Supplementary Figure 3 Pysz et al.
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