Characteristics of Colorectal Cancer Cell (CRC) Lines

The panel of 18 human CRC cell lines used in this study reflects the range of genetic changes associated with colon cancer development¹ (Supplementary Table 1): most were mutant for both APC and K-Ras, with a minority harboring mutations in β -catenin rather than APC (i.e., HCT116 and LS180), or in B-Raf rather than K-Ras (i.e., Colo205).²⁻⁶ Notably, while RKO cells have mutant B-Raf, they are wild-type for both APC and β -catenin, and show no aberrant activation of β -catenin signaling.^{4, 7} The study also included an isogenic series of cell lines comprised of parental FET cells and FET cells transfected with TGF α (FET-6 α), wild-type TGF β receptor II (FET-RII), or a dominant negative form of TGF β RII (FET/DNR). These cell lines differ in tumorigenic potential, with FET/DNR and FET-6 α being more tumorigenic than FET cells, and FET-RII exhibiting the lowest tumorigenicity.^{8, 9} HCT116 and HCT116b cells were derived from the same primary tumor; HCT-116 cells have a more progressed tumor phenotype than HCT-116b cells, as characterized by more rapid proliferation and markedly higher tumorigenicity.⁷ The HCT116T cell line is a clone isolated after transfection of HCT116 cells with a TGF α antisense vector, and is unaggressive.¹⁰

Supplementary Table 1

CRC Cell	APC Mutation	β-catenin Mutation	K-Ras Mutation	Other mutations associated	Differentiation	Aggressiveness	References
Line				tumorigenesis	status		
FET [#]	+	-	+	p53	Well	Unaggressive	6, 9, 11-14
FET- $6\alpha^{\#}$	+	-	+	p53	Moderate	Intermediate	9
FET-RII [#]	+	-	+	p53	Well	Unaggressive	9
FET/DNR [#]	+	-	+	p53	Poor	Aggressive	9
HCT-15	+	-	+	p53, TGFβ-RII, PI3KCA	Moderate	Intermediate	3, 6, 14-18
CBS4	+	NA	+	NA	Well	Unaggressive	11-13, 15
RKO	-	-	-	B-Raf, p53, PI3KCA	Poor	Aggressive	12-16
TENN	+	NA	-	PI3KCA	Poor	Aggressive	12, 13
RCA	+	+	NA	NA	Moderate	Intermediate	11, 13
Moser	+	NA	NA	NA	Moderate	Intermediate	11
GEO	+	NA	+	NA	Well	Unaggressive	2, 11-13, 16
DLD-1	+	-	+	p53, PI3KCA	Poor	Intermediate	3, 14, 15, 18
Colo205	+	+	-	p53, B-Raf, SMAD4	Poor	Aggressive	2, 3, 14, 15, 17
SW620	+	-	+	p53	Poor	Aggressive	2, 3, 14, 15, 17
HCT116T*	-	+	+	TGFβ-RII	Poor	Unaggressive	10, 19
HCT116b [*]		+	+	TGFβ-RII	Poor	Unaggressive	7, 12
HCT116 [*]	-	+	+	TGFβ-RII, E2F-4, PI3KCA	Poor	Aggressive	2, 6, 7, 12-18
LS180	_	+	+	TGFβ-RII, TCF-4, PIK3CA	Well	Aggressive	2, 3, 6, 11, 14, 15, 17

* HCT116 and HCT116b cell lines were established from the same primary tumor. HCT116T denotes HCT116 cells transfected with a TGF- α antisense vector and stably selected.

FET cell line derivatives include FET- 6α cells, which overexpress TGF- α ; FET-RII cells, which overexpress TGF- β RII; and FET/DNR cells, which express dominant negative TGF- β RII.

NA = Not available.

References:

- 1. Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell 1990;61:759-67.
- 2. Ilyas M, Tomlinson IP, Rowan A, et al. Beta-catenin mutations in cell lines established from human colorectal cancers. Proc Natl Acad Sci U S A 1997;94:10330-4.
- 3. Trainer DL, Kline T, McCabe FL, et al. Biological characterization and oncogene expression in human colorectal carcinoma cell lines. Int J Cancer 1988;41:287-96.
- 4. da Costa LT, He TC, Yu J, et al. CDX2 is mutated in a colorectal cancer with normal APC/beta-catenin signaling. Oncogene 1999;18:5010-4.
- 5. Rowan AJ, Lamlum H, Ilyas M, et al. APC mutations in sporadic colorectal tumors: A mutational "hotspot" and interdependence of the "two hits". Proc Natl Acad Sci U S A 2000;97:3352-7.
- 6. Gayet J, Zhou XP, Duval A, et al. Extensive characterization of genetic alterations in a series of human colorectal cancer cell lines. Oncogene 2001;20:5025-32.
- 7. Brattain MG, Levine AE, Chakrabarty S, et al. Heterogeneity of human colon carcinoma. Cancer Metastasis Rev 1984;3:177-91.
- 8. Jiang D, Yang H, Willson JK, et al. Autocrine transforming growth factor alpha provides a growth advantage to malignant cells by facilitating re-entry into the cell cycle from suboptimal growth states. J Biol Chem 1998;273:31471-9.
- 9. Ye SC, Foster JM, Li W, et al. Contextual effects of transforming growth factor beta on the tumorigenicity of human colon carcinoma cells. Cancer Res 1999;59:4725-31.
- 10. Howell GM, Humphrey LE, Ziober BL, et al. Regulation of transforming growth factor alpha expression in a growth factorindependent cell line. Mol Cell Biol 1998;18:303-13.
- 11. Chantret I, Barbat A, Dussaulx E, et al. Epithelial polarity, villin expression, and enterocytic differentiation of cultured human colon carcinoma cells: a survey of twenty cell lines. Cancer Res 1988;48:1936-42.
- 12. Buard A, Zipfel PA, Frey RS, et al. Maintenance of growth factor signaling through Ras in human colon carcinoma cells containing K-ras mutations. Int J Cancer 1996;67:539-46.
- 13. Wang J, Kuropatwinski K, Hauser J, et al. Colon carcinoma cells harboring PIK3CA mutations display resistance to growth factor deprivation induced apoptosis. Mol Cancer Ther 2007;6:1143-50.
- 14. Schwartz S Jr . DE. BRAF. Atlas Genet Cytogenet Oncol Haematol. , 2004.
- 15. ATCC. Volume 2008. Manasses, 2008.
- 16. Jhawer M, Goel S, Wilson AJ, et al. PIK3CA mutation/PTEN expression status predicts response of colon cancer cells to the epidermal growth factor receptor inhibitor cetuximab. Cancer Res 2008;68:1953-61.
- 17. Institute S. Cambridge, UK, 2008.
- 18. Jhawer M, Goel S, Wilson AJ, et al. PIK3CA mutation/PTEN expression status predicts response of colon cancer cells to the epidermal growth factor receptor inhibitor cetuximab. Cancer Res 2008;68:1953-61.

19. Brattain MG, Fine WD, Khaled FM, et al. Heterogeneity of malignant cells from a human colonic carcinoma. Cancer Res 1981;41:1751-6.

SUPPLEMENTARY INFORMATION

Supplementary Figure Legends

Supplementary Figure 1. CRC cells infected with LacZ, PKC α , or PKC δ adenovirus were stained with propidium iodide, and percentage of cells in G1, S, and G2/M phases was determined by flow cytometry. Data represent the average of 2 independent experiments \pm s.e.

Supplementary Figure 2A. PKC α expression does not affect cyclin D1 protein stability. *Left Panel*: LacZ- and PKC α -transduced DLD-1 cells were treated with 30 µg/mL CHX for various times and subjected to anti-cyclin D1 immunoblotting. Fast green-stained membranes are shown as loading controls. A longer exposure is shown for PKC α -transduced cells to facilitate comparison between samples. The graph shows densitometric quantification of cyclin D1 levels normalized to 0 h control. *Right panel*: Lighter exposure at time 0 confirms down-regulation of cyclin D1 steady-state levels in PKC α -transduced cells. Data are representative of 2 independent experiments.

Supplementary Figure 2B. Northern blot (NB) analysis of cyclin D1 mRNA in DLD-1 cells treated with 2 μ g/mL ActD for the indicated times. The graph shows relative levels of cyclin D1 mRNA normalized to 28S RNA. Data are representative of \geq 2 independent experiments.

Supplementary Figure 3. CRC cells were infected with LacZ, PKC α , or PKC δ adenovirus as indicated and plated in soft agarose. Colonies were imaged after 1-2 weeks.

Supplementary Figure 4A. Immunoblot analysis of cyclin D1, phospho-EGFR (Tyr¹¹⁷³) (indicative of EGFR activation), and total EGFR in FET and GEO cells transduced with LacZ or PKC α adenovirus. Actin: loading control. Data are representative of ≥ 2 independent experiments.

Supplementary Figure 4B. SW620 cells, which do not express EGFR, were infected with 20 moi LacZ, PKC α , or PKC δ adenovirus. After 48 h expression of the indicated proteins was detected by immunoblot analysis. Fast Green staining shows even protein loading. Data are representative of ≥ 2 independent experiments.

Supplementary Figure 1

Percent distribution

Pysz et al.

Supplementary Figure 2A

Quantification of IB:Cyclin D1

Supplementary Figure 2B

Pysz et al.

Supplementary Figure 3

Pysz et al.

Supplementary Figure 4

Α.

Β.

