

Figure S1. TRIM32-β-geo fusion protein is not produced in T32KO

- (A) Schematic of hypothetical *Trim32-\beta-geo* fusion mRNA.
- (B) *Trim32-β-geo* fusion cDNA was not detected in T32KO muscles or brain by RT-PCR. DNase I untreated RNA from KO tissue was used as a positive control to assure capability of the primers (shown as arrows 1 and 2 in A). M – markers (DNA ladder), Sk. muscle – skeletal muscle, (-) – negative control in which no DNA was added into the PCR reaction. βactin PCR is shown for loading control.
- (C) β-galactosidase immunoblotting of skeletal muscle (left panel) and brain (right panel) extracts confirmed the absence of TRIM32-β-geo fusion protein in KO tissues. Lane (+) – positive control (bacterial lysate expressing β-galactosidase – 116 kDa).

Lifespan Biosciences - synthetic peptide?

Santa Cruz T-20 – peptide mapping within an internal region?

Figure S2. Western blotting analysis using a panel of anti-TRIM32 antibodies

- (A) Immunoblotting of recombinant TRIM32 fused to GFP using a panel of anti-TRIM32 antibodies: 1 T332, 2 Aviva Systems Biology (N-term.), 3 Aviva Systems Biology (C-term.), 4 LifeSpan Biosciences, 5 Novus Biologicals, 6 Proteintech Group, 7 Santa Cruz (N-12), 8 Santa Cruz (T-20).
- (**B**) Immunoblotting of brain lysates using TRIM32 antibody from different sources. Note absence of the 80 kDa band in T32KO only with T332 antibody. Anti-GAPDH blot is shown as a loading control.
- (C) Schematic of TRIM32 domain structure with known pathogenic mutations and position of antibody epitopes (where available).

Figure S3. MALDI-TOF MS

Mass spectrum of the in-gel trypsin-digested immunoprecipitated 75 kDa protein detected in brain lysates by anti-TRIM32 antibodies. Mass signals in red boxes correspond to predicted trypsin-digested peptides of NEFL. Sequence coverage is shown in the inset (matched peptides are shown in red).

Table S1. P	Primers used	l for PCF	R and	genotyping
-------------	--------------	-----------	-------	------------

Name	Application	Primer Sequence (5'->3')		
(Seqtag up) forward (1)	Genotyping (Figure 1A,B)	GGCCATACCATCTGCCGCCAGTGTC		
(beta-gal dn) reverse (3)	Genotyping (Figure 1A,B)	GGGGACGACGACAGTATCGGCCTCAGG		
(noCC dn) reverse(2)	Genotyping (Figure 1A,B)	CCGCTCCTCAGCTGCCTCCTTGACC		
(1) forward	RT-PCR (Figure 1C,D)	ATGGCTGCGGCTGCAGCAGCTTCT		
(2) forward	RT-PCR (Figure 1C,D)	CTGTGGCCATACCATCTGCCG		
(3) reverse	RT-PCR (Figure 1C,D)	CTGTGTCAATGATCTTCAGCA		
(4) reverse	RT-PCR (Figure 1C,D)	CCGCTCCTCAGCTGCCTCCTTGACC		
(5) reverse	RT-PCR (Figure 1C,D)	GCTTCTTGAGAAACAGACACTG		
(6) forward	RT-PCR (Figure 1C,D)	GGGGCGAAAGGCAGCACTCCCGGC		
(7) reverse	RT-PCR (Figure 1C,D)	CCCGCCTTCCACGTTAGTCACCTCAAAC		
(8) reverse	RT-PCR (Figure 1C,D)	TTAAGGGGTGGAATATCTTCTCAG		
(ASTN2F) forward	Q-PCR (Figure 1F,G)	CGAGGCTTTATACGGTTCTGAGC		
(ASTN2R) reverse	Q-PCR (Figure 1F,G)	GGTGTGGGGGCTCAGCTCTTTGC		
(ASTN2Fex3) forward	RT-PCR (Figure 1E)	CCGATCCTCCAGACTTCAGA		
(ASTN2Rex16) reverse	RT-PCR (Figure 1E)	GCCTGCTGAGAGGGTGATAG		
(Fusion) forward (1)	RT-PCR (Figure S1A,B)	ATGGCTGCGGCTGCAGCAGCTTCT		
(Fusion) reverse (2)	RT-PCR (Figure S1A,B)	GGGGACGACGACAGTATCGGCCTCAGG		
beta-actin forward	RT-PCR (Figure 1D,E and S1B)	CGTTGACATCCGTAAAGACCTCTA		
beta-actin reverse	RT-PCR (Figure 1D,E and S1B)	TAAAACGCAGCTCAGTAACAGTCCG		
Trim32 forward	Q-PCR (Figure 5A,B)	GTGGACTCGCGTCGGAGCTG		
Trim32 reverse	Q-PCR (Figure 5A,B)	GGTTCAGGTGAGAAGCTGCTGC		
GAPDH forward	Q-PCR (Figure 5A,B)	ACTCCACTCACGGCAAATTC		
GAPDH reverse	Q-PCR (Figure 5A,B)	TCTCCATGGTGGTGAAGACA		
(NEFL up) forward	Q-PCR (Figure 6C)	AGCATAACCAGCGGCTACTC		
(NEFL dn) reverse	Q-PCR (Figure 6C)	TCCTTGGCAGCTTCTTCCTCCTCA		
(NEFM up) forward	Q-PCR (Figure 6C)	AGAACATGCACCAGGCCGAAGAGT		
(NEFM dn) reverse	Q-PCR (Figure 6C)	GCAAATGACGAGCCATTTCCCACT		
(NEFH up) forward	Q-PCR (Figure 6C)	GGAGGCCCTGAAAAGCACCAA		
(NEFH dn) reverse	Q-PCR (Figure 6C)	CAGGAGCTTTCTGTAAGCGGC		
(PRPH up) forward	Q-PCR (Figure 6C)	GCTCAAGCAGAGGTTAGAAG		
(PRPH dn) reverse	Q-PCR (Figure 6C)	TCTACGCTCACCTGCAGGTCTC		
(INA up) forward	Q-PCR (Figure 6C)	GAGGAGATCCACGAGTACCGGC		
(INA dn) reverse	Q-PCR (Figure 6C)	TGCTAAACCGCGTCTCTTCAC		
(GAPDH up) forward	Q-PCR (Figure 6C)	GACTTCAACAGCAACTCCCAC		
(GAPDH dn) reverse	Q-PCR (Figure 6C)	TCCACCACCCTGTTGCTGTA		