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BrainMap Activation Experiment Data and Analysis. The BrainMap
database contains the results of a large number of brain activa-
tion studies; at the time of our analyses, it contained the results
from 1,687 journal articles. Each study can involve multiple
‘‘conditions,’’ for example, comparing finger tapping with rest
and comparing different rates of tapping with each other. The
1,687 studies resulted in 7,342 separate activation images and
between them involved 29,671 human subjects. In the BrainMap
database, the spatial distributions of these activations are rep-
resented via the coordinate locations of statistically-significant
local maxima in the activation images. All coordinates are in a
standard brain ‘‘space,’’ in the case of BrainMap, the Talairach
coordinate system (1). For each activation result, we recreated
a 2-mm-resolution standard space pseudoactivation image by
filling an empty image with points corresponding to the activa-
tion coordinates and then convolving this with a Gaussian kernel
of FWHM 12 mm (2). Although the actual spatial extent of the
original activation has not been preserved, this smoothing extent
is a reasonably close match to that applied as data preprocessing
in most FMRI activation studies and is close to the spatial
variability in database coordinate locations as carefully investi-
gated by ref. 3. We tested other spatial smoothing extents from
8- to 15-mm FWHM and found the results not significantly
sensitive to the exact extent.

The resulting 7,342 activation images are concatenated to-
gether to produce a 2D dataset, where the first dimension is
space (the 3 spatial dimensions are ‘‘unwrapped’’ onto 1 dimen-
sion), and the second is experiment ID (1:7,342; this dimension
is referred to as ‘‘time’’ at points in our text, as a convenient
shorthand, and in analogy to the temporal dimension in the
resting FMRI data). For the PCA-based dimensionality reduc-
tion (described below) it is necessary for the data to be de-
meaned; also, as part of the pre-ICA processing, all voxels’ time
series are normalized to have variance of unity. These 2 practical
data transformations are necessary in order for the PCA and
ICA models to function correctly but do result in the presence
of a few ‘‘artifactual’’ components in the ICA output. For parts
of standard space involving very few nonzero values in the raw
data (e.g., in voxels that do not correspond to gray matter), the
combination of demeaning (of what was originally positive or
zero data) and the variance normalization of voxels’ time series
(poorly conditioned and inflated in such voxels) leads to mean-
ingless components. These can be seen below in Results: 20-
Dimensional Results in Detail and are easily identified and
discarded from further consideration.

The initial spatial maps generated by the principal component
analysis (run before the final ICA) are not generally interpret-
able; although they ‘‘span the space’’ of the strongest d covari-
ance components in the database, they are uninterpretably
separated from each other because of the mathematical con-
straint in PCA that components are orthogonal in space and
time. ICA aims to resolve this problem, by optimizing the
independence of the resulting spatial maps while applying only
a weak constraint on the relationship between any 2 networks’
associated time courses; in ICA, time courses only have to be
noncolinear, just as is required for the covariates in a multiple
regression. Indeed, ICA resembles multiple regression, being
different in that the covariates here are estimated from the data.
In effect, the ICA ‘‘unmixing’’ is applying the central limit
theorem in reverse, utilizing the fact that the optimal (and most
meaningful) identification of components is achieved by mini-

mizing the mutual statistical dependence between any 2 esti-
mated components. A further strength of an ICA decomposition
is that the ICA model allows any given brain region to be
associated with �1 component, if the region’s time series is a
linear combination of the time series of �1 component. This
makes biological sense, because a given point in the brain may
be part of �1 functional network, but in general, such a
representation is not possible with many other (e.g., clustering-
based) approaches to multivariate decompositions. Hence, we
apply ICA to identify the primary ‘‘independent components’’ in
this data: d spatial maps, each with its own associated experiment
ID time course that describes how strongly that particular map
was relevant to each of the original 7,342 activation maps.

For the ICA decomposition, we used the MELODIC (multi-
variate exploratory linear optimized decomposition into inde-
pendent components) tool (4) in the FSL [FMRIB Software
Library (5, 6)] brain image analysis tool set. The ICA spatial
maps are scaled by dividing by the noise standard deviation
image from the residuals of the initial PCA-based dimensionality
estimation and then Gaussianized by fitting a Gaussian-center
�-tailed mixture model, with the parameters of the fitted ‘‘null’’
Gaussian used to set the background mode to zero and back-
ground standard deviation to unity. The final ICA spatial maps
were affine-transformed from BrainMap standard space (Ta-
lairach space) into 2-mm MNI152 space. These maps are, at any
given dimensionality d, the d � nartifacts most representative
functional networks from the entire BrainMap database.

Resting FMRI Experiment Data and Analysis. The resting-state
FMRI dataset and analysis followed a fairly standard protocol,
albeit with a higher number of subjects than often acquired for
resting state experiments. Thirty-six healthy adult subjects were
imaged (age range � 20–35 y, mean � 28.5 y; 21 male, 15 female)
in a 3T Siemens Trio MRI scanner, using a 12-channel head coil.
Structural brain images were acquired by using a T1-weighted 3D
MPRAGE sequence with whole-head coverage, TR � 2.04 s,
TE � 4.7 ms, f lip angle � 8°, resolution 1 � 1 � 1 mm, total
acquisition time 12 min. These were used purely to aid the
registration of the functional data into a common standard brain
coordinate system (MNI152). Resting FMRI BOLD (blood
oxygenation level-dependent) data were acquired with a stan-
dard gradient echo echo-planar-imaging (EPI) acquisition,
TR � 2 s, TE � 28 ms, f lip angle � 89°, resolution 3 � 3 � 3.5
mm, whole-head coverage except for the lowest parts of the
cerebellum in some subjects. The resting FMRI scan lasted 6
min. Ambient light was minimized, and the subjects were
instructed to lie with eyes open, think of nothing in particular,
and not to fall asleep. This dataset is not related to any
experiments contained in BrainMap.

Data preprocessing was carried out with FSL tools. The
following prestatistics processing was applied for each subject:
head motion correction by using MCFLIRT (7); non-brain-
removal by using BET (8); spatial smoothing by using a Gaussian
kernel of FWHM 5 mm; grand-mean intensity normalization of
the entire 4D dataset by a single multiplicative factor; high-pass
temporal filtering (subtraction of Gaussian-weighted least-
squares straight-line fitting, with � � 50.0 s). Registration of each
subject’s FMRI data to that subject’s high-resolution structural
image was carried out by using FLIRT (7). Registration from the
high-resolution structurals to MNI152 standard space was
achieved by using FLIRT affine registration and then further
refined by using FNIRT nonlinear registration (9, 10).
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All subjects’ 4D FMRI time series data were transformed into
standard space at 2 � 2 � 2-mm resolution, by using the
registration transformations derived as described above. All
resulting datasets were concatenated in the temporal dimension,
resulting in a 2D dataset with spatial dimension of size 91 �
109 � 91 � 902,629 and 6,226 time points. ICA was run using
MELODIC at dimensionalities of 20 and 70. In normal usage,
MELODIC estimates the optimal dimensionality of the data;
this aids in achieving ICA convergence stability. However, in this
case, because we were enforcing the dimensionality and, hence,
reducing the likelihood of guaranteed stable convergence, we
ran the ICA unmixing 8 times and combined these analyses (via
a metalevel ICA decomposition fed by all d�8 maps) to find the
overall most stable decomposition. The ICA spatial maps were
Gaussianized as described above. The resulting maps are, at a
chosen dimensionality d, the d � nartifacts most representative
resting state covarying networks across a large sample of normal
subjects.

Spatial and Functional Associations of the ICA Components. For the
20-component decompositions of the resting FMRI and Brain-
Map datasets, spatial maps were compared between the 2 sets of
results by using simple Pearson correlation of the unthresholded,
Gaussianized spatial maps. For the 70-component decomposi-
tions, maps were again compared/matched between the resting
FMRI and BrainMap results by using spatial correlation, also
related to the 20-component decompositions by using a combi-
nation of spatial correlations and ‘‘functional’’ correlations (i.e.,
also by using ICA time courses). This latter analysis is now
described in more detail.

Let the matrix of spatial cross-correlation values between the
70-component BrainMap and resting FMRI maps be
RS:RSN70�BM70. Let the matrix of temporal cross-correlation
values between the 70-component BrainMap and 20-component
BrainMap maps (where the 20-component maps have been
reordered to be consistent between BrainMap and RSNs, ac-
cording to the pairings found in the 20-component analyses) be
RT:BM70�BM20, and the matrix of spatial cross-correlations be
RS:BM70�BM20. Likewise, let the matrices of temporal and spatial
correlations from the resting FMRI maps be RT:RSN70�RSN20 and
RS:RSN70�RSN20. When associating 70-component with 20-
component maps, we care about both spatial overlap and
functional correspondence and so (because these are normalized
correlations) average the spatial and temporal matrices to give
spatiotemporal correspondence matrices:

RST:BM70�BM20 � �RS:BM70�BM20 � RT:BM70�BM20� /2, [s1]

RST:RSN70�RSN20 � �RS:RSN70�RSN20 � RT:RSN70�RSN20� /2.

[s2]

We now associate 70-component maps with the 20-component
maps by combining all of the above spatial and temporal
information and utilizing information from both domains simul-
taneously to give automated pairings across dimensionalities and
domains:

RRSN70�BM20 � RS:RSN70�BM70 RST:BM70�BM20 [s3]

RRSN70�RSN&BM20 � RRSN70�BM20 . RST:RSN70�RSN20

�Schur product� , [s4]

where searches for maxima in the rows of this final matrix,
RRSN70�RSN&BM20, map the RSN70 maps onto the reordered (and
matched) 20-component BrainMap-RSN maps. The equivalent
calculation is also made for the BM70 maps, resulting in corre-
spondences across dimensionalities and domains.

Extracting Behavioral Domain Information from BrainMap. To add
functional interpretation to each of the ICA components, we
projected each BrainMap-derived component time course back
onto the original list of 7,342 experimental conditions and,
hence, extracted the corresponding behavioral domain informa-
tion from the BrainMap database. We now describe this process
in more detail.

We define e � 7,342 to be the number of ‘‘experiments’’
(different activation conditions in BrainMap) and d to be the
dimensionality of the PCA-reduced dataset (e.g., d � 20). The
standard-brain-space image has s � 199,191 nonzero voxels.
Hence, the raw BrainMap data matrix Y is of size s � e. The PCA
decomposition is

Y � USV�, [s5]

where U are the spatial modes, S is a diagonal matrix containing
the singular values (ordered, by convention), and V are the
‘‘temporal’’ (experiment ID) modes. To pass on the strongest d
spatial modes to the ICA decomposition, we take the first d
columns from V (corresponding to the d largest singular values),
giving Vd, of size e � d, and then calculate

Ud � YVdSd
�1, [s6]

which is an s � d matrix of the top d whitened spatial modes. ICA
is then applied, and the resulting mixing matrix Md is of size d �
d; to project this back onto the experiment-ID domain, and
hence onto BrainMap, we need to reuse Vd:

M � VdMd. [s7]

Thus, we have M, an e � d matrix whose d columns (one for each
ICA component) describe the weightings of each component for
each of the original activation images. We then extract the b
(behavioral domains) � e matrix P from BrainMap and form the
final matrix of domains vs. ICA maps,

Pd � PM . [s8]

We scale each row of Pd to have mean of unity, to normalize for
different numbers of different behavioral domains existing in the
database. This results in the mapping matrix as seen in Fig. 2 in
the main article.

Note that a normalization for the different numbers of
different paradigms (behavioral domains) is not straightforward
to apply to the raw data fed into the PCA/ICA decomposition,
because there will be some functional covariance between the
different ‘‘paradigms,’’ so it would not be correct to treat every
behavioral domain in the same way (in terms of variance scaling);
however, it would be good to achieve normalization if possible,
to improve the ‘‘objectivity’’ of the derived maps. With respect
to the ‘‘reverse inference’’ of ICA spatial maps and experimen-
tal-ID-time courses back onto the 66 BrainMap behavioral
domains, we note the warning made in articles such as ref. 11; this
discusses the danger of oversimplistically assigning a limited set
of functions to an ‘‘activated’’ brain region, on the basis of prior
experiments that activated that region. Our figure is included for
illustrative purposes, and as a ‘‘sanity check’’ for our spatiotem-
poral manipulations of the BrainMap data; the fact that we have
presented the back-projection matrix unthresholded directly
relates to the wish for caution in such reverse inference of
function from location. In fact, we could immediately head
toward the (Bayesian) selectivity discussed by Poldrack if we
were to normalize vertically in the matrix, and not just horizon-
tally, as described above.

Results: 20-Dimensional Results in Detail. In this section, we show
more complete images of the 10 main corresponding pairs
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presented in Fig. 1 of the main article as well as for all other
components extracted by the 20-dimensional ICA decomposi-
tions of BrainMap and the resting FMRI data. We also give more
detailed descriptions of the nonpaired components.

The 10 well-matched pairs of components (maps 1–1020) are
shown in Figs. S1 and S2. As with all images in this article, the
left side of the brain is shown on the right of the image. All ICA
spatial maps were originally Gaussianized via a normalized
mixture-model fit, and then thresholded at Z � 2 for all images
shown in this section. Both datasets are in 2 � 2 � 2-mm MNI152
standard space; every third slice is shown here, starting with the
lowest slice at �28 mm in the MNI152 coordinate system.

The weakest spatial correlation in these 10 paired maps is r �
0.25 (Pearson). A correction for the number of possible paired
comparisons would be a factor of 20 � 20 � 400 (conservative
because not all components are considered to be nonartifactual).
A correction for the spatial degrees of freedom is given via
Gaussian random field theory and empirical smoothness esti-
mation (12, 13); for this data, the number of independent
‘‘resels’’ (resolution elements) was found to be �665; we there-
fore set this conservatively to be 500. Applying Fisher’s r-to-z
transform by using degrees-of-freedom 500, converting to a P
value and multiplying by 400 to correct for multiple comparisons,
we obtain P � 5 � 10�6, hence, our statement in the main article
that the weakest pairing corresponds to (at least as small as) P �
10�5 (corrected).

Figs. S3–S5 show BrainMap and RSN components that are
plausible functional networks but that did not find a strong and
unambiguous (1:1) mapping between BrainMap and the resting
FMRI data. Each also has some overlap with the 10 main paired
maps, or some combination of these. We have loosely grouped
these maps along with one or more of the paired maps (the latter
being shown in the top part of each of these 3 figures, for
reference), partly on the basis of spatial overlap but also taking
into account ‘‘functional correspondence.’’ For an RSN, this
means using the temporal correlation between the RSN map in
question and the paired RSN maps; for a BrainMap map, this

means using the experiment-ID correlation between the Brain-
Map map in question and the paired BrainMap maps.

Fig. S3 shows map BM-1120. This component has clear spatial
overlap with the visual subset of paired components, as well as
functional similarity to the visual subset of BrainMap compo-
nents. This map includes the parahippocampal gyrus, lateral
occipital cortex, and, possibly, lingual gyrus and primary visual
cortices.

Fig. S4 shows map BM-1220. This component has clear spatial
overlap with the ‘‘default mode network’’ map 420 as well as
functional similarity to the BrainMap 420 map.

Fig. S5 shows maps RSN-11, 12, 1320 and BM-13, 14, 1520 from
the 20-component ICA decomposition of BrainMap and the
resting FMRI data. These components do not directly match
single maps but do have some spatial overlap with the set of maps
6, 8, 9, 1020 as well as functional similarity.

Fig. S6 shows maps RSN-14, 15, 1620 and BM-16, 17, 1820 from
the 20-component ICA decomposition of BrainMap and the
resting FMRI data. It is not clear whether the resting FMRI
maps are artifactual (e.g., caused by the presence of larger blood
vessels), or valid RSNs. The BrainMap maps are biologically
plausible, corresponding probably to thalamus/caudate, hip-
pocampus/amygdala, and orbitofrontal cortex/anterior insular;
however, the decomposition at this dimensionality did not find
exactly corresponding maps in the resting FMRI data.

Fig. S7 shows clearly artifactual maps from the 20-component
ICA decomposition of BrainMap and the resting FMRI data.
The ‘‘RSN’’ maps do not lie within gray matter and are caused
by confound factors such as variations in subjects’ head sizes
(residual after registration to standard space), head motion, and
nonneural physiological f luctuations. ICA has been shown to be
very effective at separating such artifacts into separate compo-
nents from plausible functional components (14). The BrainMap
components are mathematical artifacts, again not in gray matter,
caused by the temporal variance standardization and data de-
meaning carried out by the PCA-based initial dimensionality
reduction.
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