
Fuzzy Integral Similarity for TFBSs. Additional

File 4. Methodological background

1 Alternative approaches

During last years, several measures for comparing motifs have been proposed.
In this section we give a brief overview of those that provide better results. The
measures are computed for all the possible alignments between the two motifs as
well as in their reverse complementary sequences. All but the measure proposed
by Pape et al. (1) compound the measure from column-to-column comparisons.
In what follows, C1 = (AC1 , CC1 , GC1 , TC1) and C2 = (AC2 , CC2 , GC2 , TC2) are
the two columns from the PFMs to be compared, bC1 and bC2 (b ∈ B,B =
{A,C, G, T}) are the probabilities of the base b in C1, and C2. NbC1

and NbC2

are the counts of the base b in C1 and C2.

Pearson correlation coefficient

Pietrokovski (2) first introduced the Pearson correlation coefficient for compar-
ing motif columns:

PCC =
∑

b∈B (bC1 − C1)(bC2 − C2)√∑
b∈B (bC1 − C1)2

∑
b∈B (bC2 − C2)2

.

The correlations of all the columns are summarized using the mean.

Average log-likelihood ratio

Wang and Stormo (3) defined the Average log-likelihood ratio (ALLR) statistic
to perform motif columns comparisons, which is the sum of two log-likelihood
ratios. ALLR is defined as:

ALLR =

∑
b∈B NbC1

log
(

bC2
pb

)
+
∑

b∈B NbC2
log
(

bC1
pb

)
∑

b∈B (NbC1
+ NbC2

)
,

where pb is the prior for base b. To compare multiples columns, the scores of
single columns are summed.

χ2 test

χ2 test was proposed by Schones et al. (4) for comparing motifs. This test
is computed under the hypothesis that the columns are observations from the
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same distribution. The p-value is computed from this χ2 score with 3 degrees
of freedom:

χ2 =
∑

j=C1,C2

∑
b∈B

(No
jb −Ne

jb)
2

Ne
jb

,

where No
jb is the observed number of base b at position j, and Ne

jb is the ex-
pected number of base b at position j (see (4) for more details). The p-value is
considered as an additive score.

Kullback-Leibler divergence

Kullback-Leibler divergence has been used to determine similarities between
motifs (5). Its symmetric form is:

KLD =
1
2

(∑
b∈B

bC1 log

(
bC1

bC2

)
+
∑
b∈B

bC2 log

(
bC2

bC1

))
.

Multiple columns are compared averaging column-to-column divergences.

Tomtom

Gupta et al. (6) developed an algorithm (Tomtom) that admits any column-to-
column measure to compute the p-values of the match scores for the columns
of the query motif aligned with a given target motif. Best results are obtained
when using euclidean distance (7). ED is defined as:

ED = −
√∑

b∈B

(bC1 − bC2)2.

In the Tomtom algorithm, a null distribution is approximated in order to obtain
a p-value for the sum of the distances for all positions in the motif. The proba-
bility of observing a minimum p-value of p∗ among a collection of N independent
p-values is 1− (1− p)N . This value is the motif p-value.

Natural measure

Pape et al. (1) defined their measure under the assumption that two motifs
should be considered as similar if they yield a high number of overlapping hits
on a random sequence, and the number of hits is correlated between both motifs
using the asymptotic covariance. Let A and B the motifs to be compared. They
compute the score distributions sA and sB for the fixed thresholds tA and tB .
Let Qk

nA+k(sA, sB) be the probability to observe score sA starting at position j
and score sB starting at position j + k (see (1) for more details). The overlap
probability is:

γA,B(k) =
∑

sA≥tA

∑
sB≥tB

Qk
nA+k(sA, sB).
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2 c-means

c-means clustering (8) is a maximization of expectation algorithm that minimize
the following cost function:

c−meanscost =
c∑

i=1

∑n
j=1

∑n
k=1 MjiMkiDjk∑n

l=1 Mli
(1)

where c is the number of clusters, n is the number of objects to cluster, D is
the pairwise distance matrix, and M is a binary stochastic matrix M ∈ {0, 1}n×k

where Mji = 1 if object j is in cluster i.

3 Kernel methods.

Given a space X of objects we want to classify, cluster, rank, etc., we can define
a function φ : X → F , where F is a feature space that eases X classification,
clustering, ranking, etc. For example, objects could be more separable in F
than in X. Imagine we have a real-valued function k : X × X → < and for
each x, y ∈ X, k(x, y) tells us how similar x and y are in F . k is called a kernel
function and can be defined as the inner product in F : k(x, y) = φ(x) · φ(y).
In fact, most of the times F is hard or impossible to compute, e.g. it could be
infinite dimensional. A learning method that uses k to avoid F computation is
called a kernel method. More on this topic can be found in (9).

Let us call P = {x1, x2, ..., xn} the set of objects to be analyzed. We can
construct a kernel matrix Ki,j = k(xi, xj), xi, xj ∈ X. K can be thought as a
similarity matrix in F and it is the only way kernel methods access data. For
K to be a kernel, it must be semidefinite positive, i.e. all its eigenvalues must
be non-negative.

Any learning algorithm that can be formulated in terms of inner products
can be interpreted as a kernel method if we replace the inner product with a
kernel function. This is known as the kernel trick (9) and allows us to convey
kernel ideas to clustering, as can be seen in the original paper.
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