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Derivation of Model for Ln(DPA) Binding Affinity. 
 
We start with the equilibrium described in [1], where Ln3+ is any lanthanide, and which 
has the corresponding equilibrium expression written in [2]. 
 
 
  Ln3+  +  DPA2-                          Ln(DPA)+            [1] 
 

 
       [2] 

 
 
We can write the total concentrations of lanthanide and DPA, or CLn and CDPA, as follows 
in equations [3] and [4]. 
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       [4] 
 
These can be rearranged to produce equations [5] and [6]. 
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Substituting equations [5] and [6] into equation [2], we have equation [7]. 
 

 
       [7] 

 
 
Rearranging, we have equation [8]. 

 
       [8] 

 
 
Let us introduce a normalization factor, R, given in equation [9]. 

 
       [9] 

 
 
Substituting equation [6] into equation [9], we have equation [10]. 

 
     [10] 

 
 
Substituting equation [10] into equation [8] and simplifying, we have equation [11]. 

 
     [11] 

 
 
 
Rearranging, we end with equation [12], which has a linear relationship between two 
components dependent on [Ln(DPA)+]eq, CLn and CDPA. 

 
     [12] 

 
 
Thus, a plot of log(CLn – RCDPA) vs log (R/(1 – R)) will produce a linear fit with a slope 
of unity and a y-intercept equal to the logarithm of Ka. 
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Figure S1.  Linear fit of log(CTb – RCDPA) vs log (R/(1 – R)) with slope set to unity and y-
intercept corresponding to log Ka. 10.0 nM DPA titrated with TbCl3 in 0.2 M sodium acetate, 
pH 7.4, 24.5°C (λex = 278 nm). 
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Figure S3.  Thermal ellipsoid plots of the Sm coordination geometry in the Sm(DO2A)(DPA)− ternary 
complex with 50% probability.  (A)  Looking across the complex, with DO2A below and DPA above 
the Sm3+ central ion.  (B)  Looking down the DPA ligand (the N1 of the DPA is obstructing the view of 
the Sm). 

A B

Figure S2.  Thermal ellipsoid plot of the Dy(DO2A)(DPA)− ternary complex with 50% 
probability.  Hydrogens omitted for clarity.
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Figure S4.  Normalized excitation (A) and absorption (B) spectra of Ln(DO2A)(DPA)- complexes, 
where Ln = Sm (dotted), Eu (dashed), Tb (solid) or Dy (dashed-dotted), at 10.0 μM in 0.1 M Tris, pH 
7.9.  Excitation wavelengths: λSm = 600 nm, λEu = 615 nm, λTb = 544 nm, λDy = 574 nm. 
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Calculation of Quantum Yields and Molar Extinction Coefficients for 
Ln(DO2A)(DPA)- Complexes. 
 
We start with the standard equation for calculation of luminescence quantum yield in [1]. 
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To fit our data to a linear least-squares regression, we introduce a gradient relationship in 
[2]. 

A

E
Grad                 [2] 

 
Substituting equation [2] into equation [1], we end with equation [3]. 
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Data was plotted as emission intensity against absorbance, and the resulting values of 
GradX and GradST were applied to equation [3] to obtain the quantum yield, with L-
tryptophan as the standard (εExp = 5277.4 M-1cm-1, εTheor = 5502 M-1cm-1).29 
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Molar extinction coefficients were also calculated for all four ternary complexes and the 
dipicolinate anion by plotting absorbance against concentration. 
 

 
 
 
 
 
Table S1.  Molar extinction coefficients of the Ln(DO2A)(DPA)- complexes (Ln = Sm, Eu, Tb, Dy) 
and the DPA2- anion. 
 

Complex Buffer λabs 
(nm) 

Temp 
(°C) 

pH εExp  
(M-1cm-1) 

Sm(DO2A)(DPA)- 22.0 7.49 4160 ± 10 

Eu(DO2A)(DPA)- 22.1 7.46 3369 ± 24 

Tb(DO2A)(DPA)- 22.0 7.43 2259 ± 10 

Dy(DO2A)(DPA)- 22.1 7.49 3803 ± 2 

DPA2- 

0.1 M Tris 280 

22.3 7.50 2832 ± 21 
 
 
Molar extinction coefficients are all in the same range of 103 M-1cm-1, which is expected 
as all contain the same amount of dipicolinate, the only strongly absorbing species. 
 

Figure S5.  Linear fit of absorbance (λabs = 280 nm) versus concentration for the 
Ln(DO2A)(DPA)- complexes (Ln = Sm, Eu, Tb, Dy) in 0.1 M Tris buffer, pH 7.5. 
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Table S2.  Stability of the Tb(DO2A)(DPA)- complex over time. 
 

Eq. Time pH log Ka’ 

8 days 7.5  9.25 ± 0.13§ 

5 months 7.4 9.30 ± 0.19 

11 months 7.5 9.12 ± 0.24 

 § Previous work.27 
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Figure S6.  Emission spectra of various terbium complexes, 10.0 μM in 0.2 M sodium acetate, pH 
7.4 (λex = 278 nm), showing characteristic splitting as a result of changes in the symmetry of the 
Tb3+ coordination sphere. 
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Figure S7.  Emission spectra of europium complexes, 10.0 μM in 0.2 M sodium acetate, pH 7.4 
(λex = 278 nm). 
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Figure S8.  Emission spectra of samarium complexes, 10.0 μM in 0.2 M sodium acetate, pH 7.4 
(λex = 278 nm). 
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Figure S9.  Emission spectra of the three terbium dipicolinate complexes, all 10.0 μM in 0.1 M 
MOPS buffer, pH 7.4. 
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Figure S11.  Emission intensity variation of 0.1 μM Tb(DO2A)(DPA)- complex (gray bars) or 
Tb(DPA)+ complex (white bars) with the addition of 0.01 M ion, pH 5.6.  Normalized integrated 
emission intensity, 530 – 560 nm; λex = 278 nm. 
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Figure S10.  Emission intensity variation of 0.1 μM Tb(DO2A)(DPA)- complex (gray bars) or 
Tb(DPA)+ complex (white bars) with the addition of 0.1 M ion, pH 6.6.  Normalized integrated 
emission intensity, 530 – 560 nm; λex = 278 nm. 

0.0

0.2

0.4

0.6

0.8

1.0

Con
tro

l

M
ag

ne
siu

m

Calc
iu

m

Li
th

iu
m

Sod
ium

Pot
as

siu
m

Am
m

on
ium

Ces
ium

Ace
ta

te

Nitr
ate

Flu
or

id
e

Bro
m

ide

Io
did

e

Car
bo

na
te

Sul
fa

te

Pho
sp

hat
e

Citr
ate

N
or

m
al

iz
ed

 E
m

is
si

on
 In

te
ns

ity



S14 

 

 

Figure S13.  Emission intensity variation of 0.1 μM Tb(DO2A)(DPA)- complex (gray bars) or 
Tb(DPA)+ complex (white bars) with the addition of 0.1 mM ion, pH 5.0.  Normalized integrated 
emission intensity, 530 – 560 nm; λex = 278 nm. 
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Figure S12.  Emission intensity variation of 0.1 μM Tb(DO2A)(DPA)- complex (gray bars) or 
Tb(DPA)+ complex (white bars) with the addition of 1.0 mM ion, pH 5.3.  Normalized integrated 
emission intensity, 530 – 560 nm; λex = 278 nm. 
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Figure S14.  Ion competition experiment of 0.1 μM Tb(DO2A)(DPA)- titrated with phosphate (♦), 
sulfate (■), potassium (▲) or carbonate (●) over a concentration range from 1.0 nM to 100 mM, 
pH 7.5 (0.1 M MOPS).  Carbonate appears to be the only ion that competes, and only at very 
high concentrations (1:105 [Tb(DO2A)(DPA)-] : [CO3

2-]). 
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Figure S15.  Plot of ln Ka’ versus 1/T for Tb(DO2A)(DPA)- (blue) and Eu(DO2A)(DPA)- (green), 
200mM NaAc, pH 7.4.  Calculations of enthalpy and entropy for each complex give the following: 
ΔHTb = -1960 J, ΔSTb = 108 J·K-1. ΔHEu = -2480 J, ΔSEu = 76 J·K-1. 
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Figure S16.  Time course of addition of 1.0 μM DPA to 1.0 μM Tb(DO2A)+ in 0.1 M MOPS buffer 
(pH 7.4) and 0.1 M CAPS buffer (pH 10.4).  Emission intensity was monitored at 544 nm (λex = 
278 nm) before, during and after DPA addition (T = 0).  Complete Tb(DO2A)(DPA)- formation was 
observed after approx. 3 sec at pH 7.4, 15 sec at pH 10.4. 
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Calculation of Signal-to-Noise Ratio for Bacterial Spore Detection Study. 
 
In spectroscopy, the signal-to-noise (S/N) ratio is defined as the ratio of the amplitude of 
the desired signal to the amplitude of noise signals.  To calculate the S/N ratio for our 
bacterial spore detection experiment, we use the most intense peak of the Tb emission 
spectrum (λem = 544 nm).  Signal amplitude was calculated by subtracting the maximum 
observed intensity in the range of 530 – 560 nm from the minimum observed intensity. 
 

 
 
This was performed both for the sample, which contained the lysed bacterial spores and 
either the Tb3+ or Tb(DO2A)+ complex, and for the analogous control, containing either 
Tb3+ or Tb(DO2A)+ alone.  The ratio of these two amplitudes produced the S/N ratio: 
 

ControlControl

SampleSample

MinMax

MinMax
N

S



  

 
The calculated S/N ratios for each of the five trials were averaged to produce the final 
values for the Tb3+ and Tb(DO2A)+ complexes (see Table S3). 
 
 
 

Figure S17.  Example of signal and noise amplitude measurements from emission 
spectrum, 530 – 560 nm. 
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Table S3.  Calculated S/N ratios for the bacterial spore detection study 
 

Trial Tb3+ Tb(DO2A)+ 

1 12.8 41.1 

2 14.2 38.8 

3 11.6 57.8 

4 15.8 37.1 

5 15.9 51.2 

Avg 14.1 ± 1.9 45.2 ± 8.9 
 
 
 
 
 


