

The balance in β -cell number in WT (left panel) and HIP (right panel) rats, aged 0.07-10 months. Striped grey bars represent the net change in β -cell number (ΔN) from age 0.07 to 10 months. The grey and light-grey bars show, respectively, the overall contributions to β -cell number from replication of existing β -cells (AUC_{RRN}) and from other sources of β -cells (AUC_{OSBN}); the black bars the loss due to β -cell apoptosis (AUC_{RAN}).

Figure 2 – supplemental data. β-cell number turnover: time-profiles

Time profiles of rate of change in β -cell number dN/dt (dashed thin line), rate of β -cell replication referred to number RR_N (data: circles; smoothed profile: continuous thin line), other sources of β -cells OSB_N (continuous line), and rate of β -cell apoptosis referred to number RA_N (data: rhombuses; smoothed profile: dashed line) in WT (left panel) and HIP rats (right panel), aged 0.07-10 months.

The pairs of values for the conversion factors for β -cell replication α_R and β -cell apoptosis α_A lying on each line represent possible values for α_R and α_A which allow to conclude that OSB is zero. In this figure are depicted those linear relations in WT (left panel) and HIP rats (right panel) for each analyzed age: 0.07 (continuous line), 2 (point-dashed line), 5 (dashed thin line), and 10 months (dashed line). In details, linear relations are obtained from equation 1 (experimental procedures) assuming OSB equal to zero for each time (age) point where the rate of change in β -cell mass, β -cell mass, and frequency of β -cell replication and apoptosis are known.

The required conversion factors that would satisfy the mass balance described by equation 1 (experimental procedures) assuming OSB equal to zero are not in the plausible range (grey rectangle) based on the published literature (1-6): 0.02-0.1 h⁻¹ for replication (corresponding to period of 10-50h for replication), 0.25-2 h⁻¹ for apoptosis (corresponding to an execution period of apoptosis of 0.5-4h).

Therefore, this analysis suggests that OSB does exist.

The black square represents the conversion factors measured in β -cells and applied in the present turnover model (7).

Table 1 – supplemental data. Differences between β -cell mass and β -cell number turnovers in WT and HIP rats over the period 0.07-10 months

AUC_{mass turnover} and AUC_{number turnover} represent respectively the overall contributions (from either replication or OSB or apoptosis) to ΔM (net change in β -cell mass) and ΔN (net change in β -cell number). ΔAUC is the percent relative difference between AUC_{mass turnover} and AUC_{number turnover}. The first four columns report the total contributions from replication, other sources of β -cells, and apoptosis to β -cell mass (number) over the period 0.07-10 months in WT and HIP rats. These quantities are expressed as percentage of the net change in β -cell mass (or number) over the same period in order to make possible the comparisons. The last two columns contain the values of this comparison, i.e. percent relative difference.

	AUC _{mass} turnover		AUCnumber turnover		ΔAUC	
	[% of <i>∆M</i>]		[% of <i>∆N</i>]		[%]	
	WT	HIP	WT	HIP	WΤ	HIP
replication	22	98	24	110	9	12
OSB	185	1369	189	1467	2	7
apoptosis	-107	-1367	-113	-1477	6	8

1. **AI-Rubeai M, and Fussenegger M**. *Cell Engineering: Apoptosis*. Dordrecht, The Netherlands: Kluwer Academic Publishers, 2004.

2. Baker AJ, Mooney A, Hughes J, Lombardi D, Johnson RJ, and Savill J. Mesangial cell apoptosis: the major mechanism for resolution of glomerular hypercellularity in experimental mesangial proliferative nephritis. *J Clin Invest* 94: 2105-2116, 1994.

3. Kalashnik L, Bridgeman CJ, King AR, Francis SE, Mikhalovsky S, Wallis C, Denyer SP, Crossman D, and Faragher RG. A cell kinetic analysis of human umbilical vein endothelial cells. *Mechanisms of ageing and development* 120: 23-32, 2000.

4. **Meier JJ, Ritzel RA, Maedler K, Gurlo T, and Butler PC**. Increased vulnerability of newly forming beta cells to cytokine-induced cell death. *Diabetologia* 49: 83-89, 2006.

5. **Potten C, and Wilson J**. *Apoptosis: The Life and Death of Cells*. New York, NY: Cambridge University Press, 2004.

6. **Ritzel RA, and Butler PC**. Replication increases beta-cell vulnerability to human islet amyloid polypeptide-induced apoptosis. *Diabetes* 52: 1701-1708, 2003.

7. Saisho Y, Manesso E, Gurlo T, Huang CJ, Toffolo GM, Cobelli C, and Butler PC. Development of factors to convert frequency to rate for beta-cell replication and apoptosis quantified by time-lapse video microscopy and immunohistochemistry. *Am J Physiol Endocrinol Metab* 296: E89-96, 2009.