Supporting Information

¹H NMR study of the effect of variable ligand on heme oxygenase electronic and molecular

structure

Li-Hua Ma^a, Yangzhong Liu^{a†}, Xuhong Zhang^b, Tadashi Yoshida^b and Gerd N. La Mar^{a*}

Two tables of chemical shifts for all assigned residues and six Figures (TOCSY spectra for aromatic and upfield residues, NOESY spectra for the H-bond network, for His $C_{\beta}Hs$ in $^{2}H_{2}O$ and Curie plot comparison with *Nm*HO-PH-CN). Total 16 Pages

Table S1. Substrate chemical shifts for NmHO-PH-X^{*}

	$\mathbf{X} = \mathbf{N}_3^-$	$\mathbf{X}^{\dagger} = \mathbf{C}\mathbf{N}^{-}$
1CH ₃	18.83	7.90
$2H_{\alpha}$	9.50	14.48
$2H_{\beta}s$		-5.58, -6.62
3CH ₃	8.05	21.40
$4H_{\alpha}$	11.95	8.06
$4H_{\beta}s$	-6.42, -6.81	-2.80, -3.38
5CH ₃	18.33	9.62
$6H_{\alpha}s$	10.00, 2.51	16.92, 1.14
$6H_{\beta}s$		-1.02, -3.38
$7H_{\alpha}s$	9.95, 6.12	13.06, 5.73
$7H_{\beta}s$		-1.10, -2.17
8CH ₃	20.25	10.33

*In ppm, referenced to DSS via the solvent resonance; ${}^{1}H_{2}O$ 50(100) mM in phosphate for azide (cyanide), pH 7.1 at 25°C.

[†]Taken from Ref.: Y. Liu, X. Zhang, T. Yoshida, G. N. La Mar, Biochemistry 43 (2004) 10112-10126.

		$X = N_3^-$		$X = CN^{-}$	Shift diff	erences
		$\overline{\delta_{DSS}(obs)^{\dagger}}$	$\delta_{dip}(calc)^{\pm}$	$\delta_{\text{DSS}}(\text{obs})^{\P}$	$\Delta \delta_{\rm DSS}({\rm obs})^{\$}$	$\Delta \delta_{ m dip}(m calc)^{\parallel}$
Phe 11	NH	7.60	-0.09	7.50	0.10	0.03
	$C_{\alpha}H$		-0.07	4.37	0.03	-0.02
	C _δ Hs	7.05	-0.11	7.03	0.02	0.00
	C _e Hs	6.88	-0.13	6.90	-0.02	-0.03
	$C_{\zeta}H$	6.67	-0.15	6.76	-0.09	-0.04
Ala12	NH	9.04	-0.16	8.96	0.08	0.05
	$C_{\alpha}H$	3.38	-0.26	3.30	0.08	0.06
	$C_{\beta}H_3$	1.17	-0.29	1.02	0.15	0.11
Leu15	$C_{\gamma}H$	0.54	-0.12	0.57	-0.03	-0.03
	$C_{\delta 1}H_3$	-0.65	-0.28	-0.65	0.00	-0.03
	$C_{\delta 2}H_3$	0.11	-0.14	0.21	-0.10	-0.10
Asp18	NH	8.60	0.34	8.64	-0.04	-0.02
	$C_{\alpha}H$	4.91	0.43	4.97	-0.06	-0.05
	$C_{\beta 1}H$	2.87	0.29	2.95	-0.08	-0.09
	$C_{\beta 2}H$	2.78	0.26	2.85	-0.07	-0.03
Thr19	NH	7.98	0.75	8.04	-0.06	-0.10
	$C_{\alpha}H$	5.28	0.93	5.52	-0.24	-0.20
	$C_{\beta}H$	5.23	1.03	5.75	-0.52	-0.50
	$C_{\gamma}H_{3}$	1.41	0.43	1.70	-0.29	-0.20
	$O_{\eta}H$	5.60	0.36	5.90	-0.28	-0.30
Thr20	NH	8.38	1.30	8.37	0.01	-0.09
	$C_{\alpha}H$	6.38	3.45	6.30	0.08	-0.15
	$C_{\beta}H$	5.25	1.37	5.14	0.11	0.01

Table S2. Chemical shift data for assigned residues in NmHO-PH-X.^{*}

	$C_{\gamma}H_3$	2.41	2.11	2.27	0.14	0.10
Ala21	NH	9.27	1.36	9.36	-0.09	-0.12
	$C_{\alpha}H$	5.23	1.43	5.31	-0.08	-0.11
	$C_{\beta}H_3$	1.97	0.89	2.04	-0.07	-0.09
Val22	NH	9.14	1.40	9.44	-0.30	-0.24
	$C_{\alpha}H$	4.60	1.11	4.87	-0.27	-0.21
	$C_{\beta}H$	2.44	0.79	2.72	-0.28	-0.23
	$C_{\gamma 1}H_3$	1.04	1.15	1.56	-0.52	-0.44
	$C_{\gamma 2}H_3$	1.17	0.60	1.40	-0.23	-0.20
His23	NH	10.54	3.10	11.08	-0.54	-0.57
	$C_{\alpha}H$	6.25	4.82	7.37	-1.12	-1.38
	$C_{\beta 1}H$	12.50		11.53	**	
	$C_{\beta 2}H$	9.54		10.75	**	
Asp24	NH	11.07	4.13	11.41	-0.34	-0.27
	$C_{\alpha}H$	6.44	3.65	6.80	-0.36	-0.20
	$C_{\beta 1}H$	3.52	1.59	3.65	-0.13	-0.10
	$C_{\beta 2}H$	4.14	2.02	4.30	-0.16	-0.13
Ser25	NH	8.60	1.85	8.77	-0.17	-0.17
Val26	NH	8.28	1.42	8.33	-0.05	-0.08
	$C_{\alpha}H$	3.12	-0.27	2.80	0.32	0.27
	$C_{\beta}H$	1.57	0.64	1.60	-0.03	0.05
	$C_{\gamma 1}H_3$	-0.98	-2.41	-1.96	0.98	0.94
	$C_{\gamma 2}H_3$	0.43	-0.09	0.51	-0.08	-0.13
Val30	NH	8.38	-0.87	7.87	0.51	0.52
	$C_{\alpha}H$	2.92	-0.70	2.46	0.46	0.42
	$C_{\beta}H$	1.40	-1.64	0.40	1.00	0.90
	$C_{\gamma 1}H_3$	0.40	-0.97	-0.68	1.04	0.67

	$C_{\gamma 2}H_3$	0.44	-1.49	-0.21	0.65	0.93
Val33	NH	6.84	-0.34	6.54	0.30	0.18
	$C_{\alpha}H$	4.18	-0.19	4.05	0.13	0.11
	$C_{\beta}H$	1.78	-0.21	1.62	0.16	0.13
	$C_{\gamma 1}H_3$	0.45	-0.23	0.29	0.16	0.13
	$C_{\gamma 2}H_3$	-0.34	-0.34	-0.55	0.21	0.20
Tyr42	C _e Hs	6.94	0.20	6.79	0.15	0.08
	$O_{\eta}H$	9.20	0.32	9.16	0.04	0.07
Phe45	C _δ Hs	7.12	-0.09	6.77	0.35	0.27
	C _e Hs	7.83	-0.03	7.23	0.60	0.48
	$C_{\zeta}Hs$	8.15	0.37	7.34	0.79	0.61
Leu48	$C_{\alpha}H$	3.65	-0.20	3.50	0.15	0.12
	$C_{\gamma}H$	1.15	-0.42	0.80	0.35	0.19
	$C_{\delta 1}H_3$	-0.25	-0.42	-0.50	0.25	0.28
Gln49	$N_{\epsilon 1}H$	10.97	0.55	10.14	0.83	0.35
	$N_{\epsilon 2}H$	7.76	0.75	7.35	0.41	0.56
Phe52	C _δ Hs	6.53	-0.52	6.55	-0.02	-0.03
	C _e Hs	6.50	-0.81	6.71	-0.21	-0.20
	$C_{\zeta}H$	6.08	-1.02	6.41	-0.33	-0.32
His53	$C_{\delta 1}H$	7.66	0.18	7.44	0.22	0.09
	$C_{\epsilon 2}H$	8.08	0.38	7.97	0.11	-0.02
	$N_{\epsilon 1}H$	12.22	0.33	12.13	0.09	0.14
Tyr60	C _e Hs	6.60	-0.12	6.65	-0.05	-0.08
	$O_{\eta}H$	10.36	-0.05	10.43	-0.07	-0.08
Trp110	$C_{\delta 1}H$	7.14	-0.23	7.27	-0.13	-0.12
	$N_{\epsilon 1}H$	11.40	-0.19	11.52	-0.12	-0.11
	$C_{\epsilon 3}H$	6.80	-0.38	6.48	-0.15	-0.13

	$C_{\zeta 2}H$	7.17	-0.20	7.27	-0.10	-0.09
	$C_{\zeta 3}H$	6.40	-0.33	6.48	-0.08	-0.08
	$C_{\eta 2} H$	6.30	-0.25	6.38	-0.08	-0.08
Leu111	$C_{\gamma}H$	1.32	-0.34	1.43	-0.11	-0.12
	$C_{\delta 1} \mathrm{H}_3$	0.68	-0.24	0.68	0.00	-0.08
	$C_{\delta 2}H_3$	0.05	-0.24	0.13	-0.08	-0.05
Tyr112	C _δ Hs	6.46	-0.84	6.57	-0.11	0.12
	C _e Hs	6.37	-0.45	6.62	-0.24	-0.37
	$O_{\eta}H$	12.0	-0.83	11.68	0.32	0.38
Cys113	NH	7.2	-0.89	7.40	-0.20	-0.36
	$C_{\alpha}H$	1.46	-2.16	2.60	-1.14	-0.98
	$C_{\beta 1}H$	1.75	-1.08	2.32	-0.57	-0.47
	$C_{\beta 2}H$	1.15	-1.00	2.02	-0.87	-0.67
	$S_{\gamma}H$	-0.90	-2.52	-0.19	-0.71	-0.58
Ala114	NH	7.56	-1.02	8.04	-0.48	-0.37
	$C_{\alpha}H$	3.30	-1.09	3.71	-0.41	-0.40
	$C_{\beta}H_{3}$	1.45	-0.50	1.60	-0.15	-0.19
Glu115	NH	8.73	-0.80	9.07	-0.34	-0.24
	$C_{\alpha}H$	3.70	-0.12	3.97	-0.27	-0.13
Gly116	NH	7.63	-1.72	7.9	-0.32	-0.30
	$C_{\alpha 1}H$	0.76	-3.86	0.49	0.27	-0.03
	$C_{\alpha 2}H$	-0.08	-2.04	0.55	-0.63	-0.40
Asn118	NH	8.30	-1.29	8.46	-0.16	-0.24
Leu119	$C_{\alpha}H$	4.35	1.05	4.72	-0.37	0.09
	$C_{\beta 1}H$	-1.55	-0.98	-1.1	-0.4	0.96
	$C_{\beta 2}H$	-0.7	-0.26	-0.95	0.25	-0.42
	$C_{\gamma}H$	0.06	-1.01	-0.40	0.46	0.72

	$C_{\delta 1}H_3$	-0.86	-0.30	-1.69	-0.83	0.30
	$C_{\delta 2}H_3$	-0.08	-1.89	-0.63	0.55	1.01
Ala120	NH		6.08	13.0		0.49
Ala121	NH	15.53	8.28	15.32	0.21	-1.01
	$C_{\alpha}H$	8.55	8.90	8.52	0.03	-1.04
	$C_{\beta}H_3$	4.95	4.85	5.44	-0.49	-0.33
Ala122	NH		3.25	9.73		-1.07
	$C_{\alpha}H$		1.30	4.93		-0.45
	$C_{\beta}H_3$		0.69	1.98		-0.55
Phe123	NH	7.75	1.05	8.83	-1.58	-1.30
	$C_{\alpha}H$	3.93	-0.03	4.51	-0.58	-0.58
	$C_{\beta 1}H$	2.22	-0.77	3.46	-1.23	-1.24
	$C_{\beta 2}H$	2.13	-1.11	3.27	-1.16	-1.00
	C _δ Hs	6.22	-0.83	7.07	-0.85	-0.42
	C _e Hs	6.47	-0.71	6.94	-0.47	-0.18
	$C_{\zeta}H$		-0.61	7.15		-0.11
Leu124	NH	8.05	2.15	8.09	-0.04	-0.65
Phe125	NH	10.10	1.38	10.00	0.10	-0.28
	$C_{\alpha}H$	4.40	0.77	4.47	-0.07	-0.09
	C _ð Hs	7.42	0.66	7.50	-0.08	-0.12
Tyr133	NH	6.96	0.14	6.97	0.01	-0.01
	$C_{\alpha}H$	5.36	0.16	5.34	0.02	0.00
	$C_{\beta}H$	2.36	0.21	2.32	0.04	0.01
	$C_{\beta}H'$	3.54	0.20	3.50	0.04	0.00
	C _ð Hs	6.68	0.13	6.64	0.04	0.01
	C _e Hs	6.53	0.08	6.57	-0.04	0.03
His137	NH	7.57	0.21	7.54	0.03	-0.01

	$C_{\alpha}H$	4.95	0.16	4.92	0.03	0.00
	$C_{\beta}H$	3.07	0.14	3.05	0.02	-0.01
	$C_{\beta}H'$	3.32	0.14	3.25	0.08	0.00
	$C_{\delta}H$	7.16	0.11	7.12	0.04	0.00
Gly138	NH	10.45	0.18	10.43	0.02	0.02
	$C_{\alpha 1}H$	3.92	0.18	3.87	0.05	0.02
	$C_{\alpha 2}H$	3.49	0.18	3.5	-0.05	0.03
Ala139	NH	7.86	0.28	7.82	0.04	0.00
	$C_{\alpha}H$	4.92	0.44	4.82	0.10	0.03
	$C_{\beta}H_{3}$	1.42	0.44	1.36	0.06	0.00
Arg140	NH	12.50	0.34	12.34	0.16	0.01
	$C_{\alpha}H$	4.21	0.40	4.18	0.03	-0.01
	$C_{\beta 2}H$	1.87	0.33	1.84	0.03	0.00
	N _ε H	10.10	-0.15	9.93	0.17	0.01
His141	NH	11.00	0.48	10.91	0.09	0.02
	$C_{\alpha}H$	4.57	0.60	4.46	0.09	0.00
	$C_{\epsilon 1}H$	7.97	0.45	7.78	0.19	0.12
	$C_{\delta 2}H$	6.98	0.90	6.75	0.23	0.12
	$N_{\delta 1}H$	13.75	0.46	13.56	0.19	0.06
Leu142	NH	7.38	0.78	7.23	0.15	-0.01
	$C_{\alpha}H$	5.42	1.70	5.30	0.12	-0.00
Ala143	NH	6.38	0.78			-0.06
	$C_{\alpha}H$	4.30	0.73			-0.09
	$C_{\beta}H_3$	1.32	0.52			-0.04
Asp147	NH	11.05	0.18	11.04	0.01	-0.01
	$C_{\beta 1}H$	2.78	0.07	2.74	0.04	0.03
	$C_{\beta 2}H$	2.97	0.11	2.94	0.03	0.00

Trp153	$C_{\alpha}H$	4.52	-0.20	4.34	0.18	0.13
	$C_{\delta 1}H$	6.77	-0.55	6.37	0.40	0.33
	$N_{\epsilon 1}H$	9.45	-0.85	8.67	0.78	0.48
	$C_{\epsilon 3}H$	7.20	-0.42	7.09	0.11	0.17
	$C_{\zeta 2}H$	6.92	-1.13	6.43	0.49	0.45
	$C_{\zeta 3}H$	5.86	-0.85	5.87	-0.01	0.10
	$C_{\eta 2}H$	6.24	-1.25	6.09	0.15	0.19
Val157	NH	8.39	-0.25	8.28	0.11	0.10
	$C_{\alpha}H$	2.70	-0.30	2.65	0.05	0.09
	$C_{\beta}H$	1.40	-0.27	1.28	0.12	0.12
	$C_{\gamma 1}H_3$	0.24	-0.27	0.05	0.19	0.12
	$C_{\gamma 2}H_{3}$	-0.35	-0.44	-0.42	0.07	0.19
Asn161	$N_{\delta 1}H$	7.25	-0.14	7.22	0.03	0.04
	$N_{\delta 2}H$	6.24	-0.16	6.16	0.08	0.06
Ala180	NH	8.08	-0.24	8.28	-0.20	-0.22
	$C_{\alpha}H$	2.12	-0.38	2.28	-0.16	-0.17
	$C_{\beta}H_{3}$	-0.08	-0.56	0.26	-0.34	-0.30
Phe181	NH	7.45	-0.32	7.82	-0.37	-0.36
	$C_{\delta}Hs$	6.39	-0.30	7.25	-0.86	-0.71
	C _e H	5.85	-0.88	7.72	-2.42	-2.43
	$C_{\zeta}H$		0.21	8.87		-2.85
Phe183	NH	8.27	-0.25	8.39	-0.12	-0.12
	$C_{\beta}H$	3.04	0.34	3.09	-0.05	-0.11
	$C_{\beta}H'$	3.43	0.23	3.48	-0.05	-0.06
	$C_{\delta}Hs$	7.32	-0.27	7.36	-0.04	-0.04
	C _e Hs	7.13	-0.21	7.11	0.02	-0.01
	C _ζ H	6.75	-0.18	6.77	-0.02	0.00

Tyr184	NH	7.93	-0.49	7.97	-0.04	-0.10
	$C_{\beta}H$	2.40	-0.87	2.44	-0.04	0.01
	$C_{\beta}H$	1.96	-0.97	1.92	0.03	0.07
	$C_{\delta}Hs$	5.65	-1.01	5.20	0.45	0.21
	C _e Hs	5.98	-1.08	5.35	0.63	0.52
	$O_{\eta}H$	8.23	-0.73	7.44	0.79	0.69
Val187	NH	7.79	-0.26	7.73	0.06	0.04
	$C_{\alpha}H$	3.24	-0.19	3.13	0.11	0.05
	$C_{\beta}H$	1.23	-0.33	1.11	0.12	0.08
	$C_{\gamma 1} \mathrm{H}_3$	0.54	-0.22	0.45	0.09	0.08
	$C_{\gamma 2}H_{3}$	-0.12	-0.23	-0.18	0.06	0.03
His207	$C_{\alpha}H$	3.80		4.04		
	$C_{\beta}H$	1.64		2.22		
	$C_{\beta}H'$	1.89		2.43		
	$C_{\delta}H$	6.16		6.81		
Arg208	$C_{\alpha}H$	3.83		3.84		

*In ${}^{1}\text{H}_{2}\text{O}$ 50 mM in phosphate, pH 7.1 at 25°C.

[†]Chemical shifts, in ppm, referenced to DSS via the solvent resonance.

[±]Dipolar shift, in ppm, at 25°C for *Nm*HO-PH-N₃, calculated by the optimized orientation and anisotropies of the paramagnetic susceptibility tensor as described in Figure 6.

[¶]Chemical shift, in ppm, referenced to DSS, as reported previously (Y. Liu, X. Zhang, T. Yoshida, G. N. La Mar, Biochemistry 43 (2004) 10112-10126).

 $^{\$}\Delta\delta_{DSS}(obs)$, as described in Eq. (5).

 $^{\parallel}\Delta\delta_{dip}(calc)$, as described in Eq. (4).

**Possesses large contribution from contact shifts.

Figure S1. Portions of the lowfield 500 MHz ¹H NMR TOCSY spectrum (mixing time 28 ms, repetition rate 1 s⁻¹) for *Nm*HO-PH-N₃ in ¹H₂O, 50 mM phosphate, pH 7.1 at 25°C, illustrating scalar connections: (**A**) within hyperfine shifted proximal helix residues Asp18-Ala21, His137 and Leu142; and (**B**) aromatic rings of Phe45, Phe52, Trp110, Phe123, Trp153, Phe156 and Phe183.

Figure S2. Upfield portions of the 500 MHz ¹H NMR TOCSY spectrum (mixing time 30 ms, repetition rate 1 s⁻¹) of *Nm*HO-PH-N₃ in ¹H₂O, 50 mM in phosphate, pH 7.1 at 34°C, illustrating the scalar contacts for the aliphatic side chains for: Leu15 (**A**, **B**), an unidentified, exchange broadened residue X with peaks marked X (**A**, **B**, **D**), Val33, Leu48, Cys113 and Leu119 (**B**); Ala180 (**C**) and Val30 (**D**); and Val157 and Val187 (**B**,**D**).

Figure S3. (A) Portions of the 600 MHz ¹H NOESY spectrum (mixing time 40 ms, repetition rate 2 s⁻¹) of *Nm*HO-PH-N₃ in ¹H₂O, 50 mM phosphate, pH 7.0 at 25°C, illustrating key contacts for the relaxed resonances (A) Ala121, and (B) the low-field shifted backbone of the axial His23 and its sequential contacts to Asp24 C_{α} H and Thr20.

Figure S4. Portions of the 600 MHz ¹H NMR NOESY spectrum illustrating: (**A**) the intra His141 and the expected Tyr42 to His141 contact; (**B-F**), the sequential N_i - N_{i+1} contacts for Gly138 - Ala143, and (**B**), intra-His53 ring and intra-Gln49 $N_{\epsilon}H_2$ contacts and (**C**) the Phe45 to Gln49 contact.

Figure S5. Portions of the 600 MHz ¹H NMR NOESY spectrum (mixing time 40 ms, repetition rate 1 s⁻¹) for *Nm*HO-PH-N₃ in ²H₂O, 50 mM phosphate, pH 7.1 at 25°C, illustrating sequential helical N_i-N_{i+1} (**A**), α_i -N_i (**C**) and α_i -N_{i+3} (**C**) contacts for slowly exchanging peptide NHs involving residues Phe52-Ala55, Ala114-Gly116, Ala180-Lys185 and Val187, and the contacts between these NHs and aromatic rings (**B**, **D**). The sequential N_i-N_{i+1} for the three helical fragments are indicated by arrows.

Figure S6 Plot of $\delta_{DSS}(obs)$ versus reciprocal absolute temperature (Curie-plot) for the heme methyls, His23 C_βHs and N_δH, and non-ligated residue Thr20 and Asp24 protons for *Nm*HO-PH-N₃.