# Supporting information for

# Synthesis and characterization of modified nucleotides in the 970 hairpin loop of *Escherichia coli* 16S ribosomal RNA

# N. Dinuka Abeydeera, Christine S. Chow\*

#### Contents

| S1-2   | Contents                                                                                                                                     |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------|
| S3     | Characterization of helix 31 analogues by MALDI-TOF mass spectrometric analysis                                                              |
| S4     | Confirmation of nucleosides present in the synthetic RNAs                                                                                    |
| S5     | The UV melting profiles for helix 31 RNAs                                                                                                    |
| S6     | CD spectra of the ECh31WT RNA construct acquired in $Na^+$ , $K^+$ , and $Mg^{2+}$ containing buffers                                        |
| S7     | Representative normalized UV melting curves of the ECh31WT RNA taken in $\mathrm{Na}^{+}$ and $\mathrm{K}^{+}$ buffers                       |
| S8     | NMR assignments for 2-N-methyl-6-O-(diphenylcarbamoyl)guanosine, 5                                                                           |
| S9-11  | Characterization of 2-N-methyl-6-O-(diphenylcarbamoyl)guanosine, 5                                                                           |
| S12    | Scheme for the synthesis of 5'-O-DMT-2'-O-TOM-6-O-DPC-2-N-<br>methylguanosine phosphoramidite                                                |
| S13    | NMR assignments for 5'-O-(4,4'-dimethoxytrityl)-2-N-methyl-6-O-<br>(diphenylcarbamoyl)guanosine, <b>6</b>                                    |
| S14-16 | Characterization of 5'-O-(4,4'-dimethoxytrityl)-2-N-methyl-6-O-<br>(diphenylcarbamoyl)guanosine, <b>6</b>                                    |
| S17    | NMR assignments for 5'-O-(4,4'-dimethoxytrityl)-2'-O-[[(triisopropylsilyl)oxy]-methyl]-2-N-methyl-6-O-(diphenylcarbamoyl)guanosine, <b>7</b> |
| S18-19 | Characterization of 5'-O-(4,4'-dimethoxytrityl)-2'-O-[[(triisopropylsilyl)oxy]-methyl]-2-N-methyl-6-O-(diphenylcarbamoyl)guanosine, 7        |

S20-24 Characterization of 5'-O-(4,4'-dimethoxytrityl)-2'-O-[[(triisopropylsilyl)oxy]methyl]-2-N-methyl-6-O-(diphenylcarbamoyl) guanosine 3'-(2-cyanoethyl diisopropylphosphoramidite), **8** 



Figure S1. Characterization of helix 31 analogues by MALDI-TOF mass spectrometric analysis.



**Figure S2.** Confirmation of nucleosides present in the synthetic oligos obtained by digestion of ECh31UNMOD (**A**), ECh31WT (**B**) and ECh31M2G (**C**) RNAs with P1 nuclease and treatment of resulting nucleotides with calf intestinal phosphatase were analyzed by reverse-phase HPLC on a Supelco C18 column. Approximately 0.5 OD of RNA were digested and 0.25 OD were injected for each analysis. A linear gradient in 0.1 M TEAA buffer, pH 6.0 from 0 to 30% methanol over 17 min at a flow rate of 1 mL/min was employed. The retention times of the nucleosides were confirmed by injection of authentic standards (D) with a deviation of <0.5% (C = 6.71 min, U = 9.62 min, m<sup>5</sup>C = 12.77, G = 16.19 min, m<sup>2</sup>G = 19.42 min, A = 19.95 min).



**Figure S3.** The UV melting profiles representing the melting transitions of four RNAs are shown. AU0-AU4 represent profiles corresponding to different dilutions of each RNA taken in 15 mM NaCl, 20 mM sodium cacodylate, 0.5 mM Na<sub>2</sub>EDTA at pH 7.0.



NaCl buffer = 15 mM NaCl, 20 mM sodium cacodylate, 0.5 mM Na<sub>2</sub>EDTA at pH 7.0

KCl buffer = 15 mM KCl, 20 mM cacodylic acid, 20 mM Tris [basic form], 0.5 mM Na<sub>2</sub>EDTA at pH 7.0

Mg buffer = 25 mM cacodylic acid, 25 mM Tris [basic form], 30 mM KCl, 70 mM  $NH_4Cl$ , 3 mM  $MgCl_2$  at pH 7.0

Figure S4. CD spectra of the ECh31WT RNA construct acquired in Na<sup>+</sup>, K<sup>+</sup>, and Mg<sup>2+</sup> containing buffers.



**Figure S5.** Representative normalized UV melting curves of the ECh31WT RNA taken in Na<sup>+</sup> (15 mM NaCl, 20 mM sodium cacodylate, 0.5 mM Na<sub>2</sub>EDTA at pH 7.0) and K<sup>+</sup> (15 mM KCl, 20 mM cacodylic acid, 20 mM Tris [basic form], 0.5 mM Na<sub>2</sub>EDTA, pH 7.0) buffers (A), AU0-AU4 representing the profiles corresponding to different dilutions of ECh31WT RNA taken in K<sup>+</sup> buffer (B), Thermodynamics of the ECh31WT RNA in Na<sup>+</sup> and K<sup>+</sup> buffers (C).

NMR characterization for 2-N-Methyl-6-O-(diphenylcarbamoyl)guanosine [5].

<sup>1</sup>H NMR (DMSO- $d^6$ , 400 MHz) 2.81 (d, 3H), 3.51-3.56 (m, 1H), 3.61-3.66 (m, 1H), 3.90 (m, 1H), 4.02 (q, 1H), 4.15 (br.d, 1H), 4.62 (br.s, 1H), 4.99 (br.s, 1H), 5.21 (d, J = 4.8 Hz, 1H), 5.48 (d, J = 5.6 Hz, 1H), 5.82 (d, J = 5.6 Hz, 1H), 7.28-7.32 (m, 4H), 7.4-7.44 (m, 6H), 8.19 (s, 1H); <sup>13</sup>C NMR (DMSO- $d^6$ , 400 MHz) 28.3, 61.5, 70.5, 73.1, 85.5, 116.4, 127.1, 129.4, 140.9, 141.8, 150.4, 155.6, 155.9, 159.6







#### 0505040548 35 (1.834) Cm (33:39-8:15x1.500)

100<sub>7</sub>

%-

493.2

Scan ES+ 9.76e4

2-N-Methyl-6-O-(diphenylcarbamoyl)guanosine [5].









**Supplementary scheme.** Synthesis of 5'-O-DMT-2'-O-TOM-6-O-DPC-2-N-methylguanosine phosphoramidite **8**: (i) DMTCl, DMAP, pyridine, room temperature, 24 h; (ii) a) *tert*-Bu<sub>2</sub>SnCl<sub>2</sub>, *i*Pr<sub>2</sub>NEt, dichloroethane, 70 °C, 15 min; b) TOMCl, room temperature, 3 h; (iii) 2-cyanoethyldiisopropylphosphoramidochloridite, *i*Pr<sub>2</sub>NEt, dichloromethane, room temperature, 2 h.

NMR characterization for 5'-O-(4,4'-Dimethoxytrityl)-2-*N*-methyl-6-O-(diphenylcarbamoyl)guanosine [**6**].

<sup>1</sup>H NMR (CD<sub>3</sub>OD, 400 MHz) 2.71 (br.s, 1H), 2.98-3.03 (q, 1H), 3.21 (d, *J* = 3.2 Hz, 3H), 3.25-3.27 (m, 1H), 3.29-3.32 (m, 1H), 3.60 (d, *J* = 4.8 Hz, 6H), 3.66 (m, 1H), 4.07-4.10 (m, 1H), 4.45 (m, 1H), 4.83 (m, 1H), 5.87 (d, *J* = 4.8 Hz, 1H), 6.64-6.69 (m, 5H), 7.05-7.38 (m, 18H), 8.0 (s, 1H); <sup>13</sup>C NMR ((CD<sub>3</sub>)<sub>2</sub>SO, 500 MHz) 28.8, 55.6, 72.2, 74.9, 82.3, 85.3, 87.7, 113.8, 114.0, 126.3, 127.8, 128.5, 128.7, 129.1, 129.2, 129.3, 129.9, 130.2, 130.4, 131.2, 141.2, 149.2, 159.9







100<sub>\]</sub>

%-

Scan ES+ 1.45e4



5'-O-(4,4'-Dimethoxytrityl)-2-N-methyl-6-O-(diphenylcarbamoyl)guanosine [6]



795.7

NMR characterization for 5'-O-(4,4'-Dimethoxytrityl)-2'-O-[[(triisopropylsilyl)oxy]methyl]-2-*N*-methyl-6-O-(diphenylcarbamoyl)guanosine [**7**].

<sup>1</sup>H NMR (CD<sub>3</sub>OD, 400 MHz) 0.89-1.05 (m, 18H), 1.25-1.3 (m, 3H), 2.79-2.8 (m, 7H), 3.1 (s, 1H), 3.3-3.5 (m, 2H), 3.70 (d, *J* = 4.8 Hz, 3H), 4.15-4.25 (m, 1H), 4.65-4.7 (m, 1H), 4.85 (s, 2H), 5.05-5.15 (m, 1H), 6.1 (d, *J* = 5 Hz, 1H), 6.79-6.83 (m, 5H), 7.17-7.5 (m, 18H), 8.05 (s, 1H)

proton spectrum

Pulse Sequence: s2pul

5'-O-(4,4'-Dimethoxytrityl)-2'-O-[[(triisopropylsilyl)oxy]methyl]-2-N-methyl-6-O-(diphenylcarbamoyl) guanosine [7].











5'-O-(4,4'-Dimethoxytrityl)-2'-O-[[(triisopropylsilyl)oxy]methyl]-2-N-methyl-6-O-(diphenylcarbamoyl) guanosine 3'-(2-cyanoethyl diisopropylphosphoramidite) [8].





Pulse Sequence: s2pul

W

151.138

5'-O-(4,4'-Dimethoxytrityl)-2'-O-[[(triisopropylsilyl)oxy]methyl]-2-N-methyl-6-O-(diphenylcarbamoyl) guanosine 3'-(2-cyanoethyl diisopropylphosphoramidite) [8].



8

| hannar an | WHIMMAN   | h hiring him | handanin | uniteritation and the second and the second | 1       |         | hanningana | landa landa katalahan ka | <b>n</b> un antaritati | n an an ann an an an an an an an an an a | mandan and a start to |
|-----------------------------------------------|-----------|--------------|----------|-------------------------------------------------------------------------------------------------------------------|---------|---------|------------|--------------------------|------------------------|------------------------------------------|-----------------------|
|                                               | 1 1 1 1 1 |              |          |                                                                                                                   | 1 1 1 1 |         |            |                          | 1 1 1 1 1              |                                          | 1 1 1                 |
| 155                                           | 150       | 145          | 140      | 135                                                                                                               | 130     | S22 125 | 120        | 115                      | 110                    | 105                                      | ppm                   |

0609272559 108 (1.996) Cm (108:124-13:57x1.500)



## **Elemental Composition Report**

### Single Mass Analysis

Tolerance = 8.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions

1096 formula(e) evaluated with 3 results within limits (up to 50 best isotopic matches for each mass) Elements Used:

C: 0-66 H: 0-1000 N: 0-8 O: 0-10 23Na: 0-1 Si: 0-1 P: 0-1

Chow- Dinuka Abeydeera DA-i-244 LCT0246 mw1180 4uL meoh Shay 2008-07b.pro

2008\_1212\_0246b 14 (0.301) Cm (11:20-(1:6+26:36)x3.000)

LCT Premier 12-Dec-2008 14:48:58 1: TOF MS ES+ 4.25e+004

| 100-7                                          |            | 120       | 3,5439 |              |           |          |        |                   |           |     |       |
|------------------------------------------------|------------|-----------|--------|--------------|-----------|----------|--------|-------------------|-----------|-----|-------|
|                                                |            |           | 1204   | .5477        |           |          |        |                   |           |     |       |
| %-<br>1181.5634<br>0 (1) - 1184.5687 1197.5634 |            | 1205.5508 |        |              |           |          |        |                   |           |     |       |
|                                                |            | 1206.5515 |        | 206.5515     | 1219.5358 | 221.5438 | 1233   | 55441235.55       | 1246.5406 |     |       |
| 0                                              | 1190.0     | 1200.0    |        | 1210.0       | 1220.0    |          | 1230.0 | 124               | 0.0       |     | - m/z |
| Minimum:<br>Maximum:                           |            | 5.0       | 8.0    | -1.5<br>50.0 |           |          |        |                   |           |     |       |
| Mass                                           | Calc. Mass | mDa       | PPM    | DBE          | i⊢FIT     | i-FIT    | (Norm) | Formula           |           |     |       |
| 1181.5634                                      | 1181.5637  | -0.3      | -0.3   | 26.5         | 25.0      | 0.5      |        | C62 H83           | N8<br>P   | 010 |       |
|                                                | 1181.5661  | -2.7      | -2.3   | 29.5         | 25.7      | 1.2      |        | C64 H82           | N8        | 010 | Si    |
|                                                | 1181.5605  | 2.9       | 2.5    | 31.5<br>S24  | 26.6      | 2.2      |        | C66 H79<br>23Na P | N8        | 09  |       |

5'-O-(4,4'-Dimethoxytrityl)-2'-O-[[(triisopropylsilyl)oxy]methyl]-2-N-methyl-6-O-(diphenylcarbamoyl) guanosine 3'-(2-cyanoethyl diisopropylphosphoramidite) [8].

C-NPh2

CH3

ĊN