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Appendix 1A 

Thermodynamics of quenching and unfolding in LHC II  

    Theory. Upon incubation of LHC II (monomer or trimer) at different temperatures, 

two possible process need to be considered: the transition from the unquenched, folded, 

state of the complex to the quenched, folded, state and the transition either from 

unquenched or quenched form to an unfolded form of the protein. Previous 

investigations (s1, s2) suggested that, at least in LHC II trimers, the two transitions 

occur virtually independently, i.e. a complete transition to the quenched state is 

observed before any significant accumulation of the unfolded complex is detected. 

However, if transitions to the quenched and to the unfolded states of the complex are 

considered as independent it would appear that the quenched form of the complex is 

thermodynamically stable, irrespectively of the temperature. This scenario is obviously 

physically unsound. Therefore, a reaction scheme which considers at least one possible 

metastable intermediate needs to be taken into account.  

In principle, several reaction mechanisms can describe overlapping temperature 

dependences between the transition to the quenched and unfolded form of the complex 

(Scheme 1). The conceptually simpler reaction scheme is defined by a linear three-stage 

model, in which the quenched state represents a meta-stable (folded) intermediate 
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between the unquenched (folded) form of the complex and the unfolded conformer(s) 

(Scheme 1A). A variation of this simple scheme involves considering off-pathway 

intermediates: in this scheme, unfolding and quenching occur from the native 

(unquenched) state of the complex and compete with each other (Scheme 1B). Both 

schemes require considering two equilibria only: the one between the unquenched and 

the quenched form of the complex and the other between the quenched and unfolded 

(Scheme 1A) or the unquenched and unfolded conformers (Scheme 1B). The most 

general case is a complete “triangular” reaction scheme (Scheme 1C), according to 

which protein denaturation occurs from both, the quenched and the unquenched states. 

It is difficult to distinguish a priori amongst these possibilities. However, at least in the 

trimeric form of LHC II, the transition to the quenched state has been reported to be 

nearly completed before a sizable amount of unfolded complexes is detected (refs. s1, 

s2 and Figure 1). In this case, the transitions to the quenched form and to the unfolded 

form of the complex are almost sequential, making the off-pathway intermediate 

hypothesis less plausible. Though, we can not exclude the existence of parallel 

unfolding pathways from the quenched and unquenched folded forms of LHC II. 

However, the analysis of such reaction scheme would require considering three reaction 

equilibria, rather than two, which significantly increases the number of fit parameters 

and the uncertainty of the outcome. 

Based on this rationale, the analysis of the thermodynamic properties of 

quenching and unfolding of LHC II was performed assuming a simple three-state 

process, involving two native, unquenched and quenched, states and the denatured one 

(this assumption is further discussed in the Results and Discussion). Extending the 

observations made for LHC II trimers to the monomers it is possible to write a 

following linear kinetic scheme: 

 

q m
eq eq

u q mK K
LHC LHC LHC←⎯⎯→ ←⎯⎯→   .                                                          [1] 

 

At steady state, the concentration of each form of the complex is proportional to 

their corresponding molar fraction being in unquenched, quenched or denatured state. 

Provided that steady-state conditions are attained, at a given temperature, the respective 
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molar fractions can be expressed as a function of the quenching ( q
eqK ) and melting 

( m
eqK ) equilibrium constants: 
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The equilibrium constants q
eqK  and m

eqK  are defined by the mass action law: 
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where R is the universal gas constant, T is the absolute temperature, ( )qG T∅Δ  and 

( )mG T∅Δ  are the difference in the Gibbs free energies between the quenched and 

unquenched and the unfolded and quenched form of the complex, respectively, under 

standard conditions, i.e. equal molar fractions of products and reagents and 0.1 MPa (1 

bar) atmosphere. The temperature dependence of ( )qG T∅Δ  (and ( )mG T∅Δ ) with respect 

to a reference temperature Tr is described by the Gibbs-Helmholtz equation (Derivation 

is given in Appendix 1B):  

 

, ,( ) ( ) ( ) ( ) ( ln )q q r q r p q r p q
r

TG T H T T S T C T T C T
T

∅ ∅ ∅Δ = Δ − Δ + Δ − −Δ ,                        [4] 

 

where ( )q rH T∅Δ  and ( )q rS T∅Δ  are the standard quenching enthalpy and entropy 

differences at the reference temperature, respectively. ,p qCΔ  is the difference in 

specific heat capacity between the unquenched (relaxed) and the quenched form of the 

LHC II complex. As previously mentioned, in general, the temperature dependence of 

,p qCΔ  is weak, so that it can be considered as a constant value within a certain 

temperature range. It is convenient to set the reference temperature to the value of the 

characteristic quenching temperature, Tq, which is defined as the temperature at which 

the molar fractions of the quenched and unquenched complexes are equal (at 
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equilibrium), so that ( ) ( ) ( ) 0q q q q q q qG T H T T S T∅ ∅ ∅Δ = Δ − Δ = . Defining ( )q q qH H T∅ ∅Δ ≡ Δ  

and ( ) q
q q q

q

H
S S T

T

∅
∅ ∅ Δ

Δ ≡ Δ = , and further substituting these terms into Equation 4 when 

Tr=Tq, the following expressions are obtained: 
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                                     [5] 

 

Cleary an expression analogous to Equation 5 can be written for the transition to 

the unfolded state of the complex, upon definition of a characteristic melting 

temperature Tm. 

Analysis of the activation barrier. The activation energy of an endergonic 

reaction, *( )qG TΔ , can be expressed as the sum of † ( )qG TΔ , the free energies of 

activation of the reverse, exergonic reaction, and ( )qG TΔ . The free energy of activation 

of the spontaneous reaction (the relaxation of quenching in this case) is also described 

by the Gibbs-Helmholtz equation. Expressing † ( )qG TΔ  for the same reference 

temperature Tq used to define ( )qG TΔ  we obtain: 

 

† † † † †
, ,( ) ( ) ( ln )q q q p q q p q

q

TG T H T S C T T C T
T

Δ = Δ − Δ + Δ − −Δ ,                                  [6] 

where †
qHΔ  is the activation enthalpy, †

,p qCΔ  is the differential heat capacity 

between the quenched form of the complex and the transition state and †
qSΔ  is the 

activation entropy. Similar treatments for the activation energy barrier have been 

discussed in protein folding and unfolding studies (e.g. s3-s5). It has been suggested 

that it is possible to describe discontinuous Arrhenius plots by simply taking into 

account the temperature dependence of ( )qG TΔ (s6). However, for the transition to 

quenched state of LHC II the omission of a differential heat capacity between the 

quenched and the transition state led to a less satisfactory fit of the experimental results. 
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The temperature dependencies of the quenching kinetics were fitted using the Eyring-

Evans equation: 

 
* ( )

( )
G T

b RTk Tk T e
h

κ
Δ

−
= ⋅  ,                                                                                    [7] 

 

where, κ  is the transmission coefficient (i.e. the probability that the reaction takes 

place from the transition state), h is the Plank constant, bk  is the Boltzmann constant, 

and *( )qG TΔ , is a linear combination of † ( )qG TΔ  (Equation 6) and ( )qG T∅Δ  (Equation 

5).  
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Scheme 1. Possible kinetic models of the transition to the quenched and unfolded 

forms of LHC II. A: Linear three-stage reaction. B: Off-pathway reaction. C: 

Triangular reaction.  
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Appendix 1B. 

Derivation of the Gibbs-Helmholtz Equation 

Temperature dependence of the Enthalpy Difference, ( )H TΔ . Enthalpy is related to the 

heath capacity at constant pressure, Cp, by the relationship: 

 

                                                              p
HC
T

∂
=
∂

.                                                 [8] 

 

For an infinitesimal increment in the surrounging of the tempertaure Ti it is 

possible to write, p idH C dT= . Hence the enthalpy at a given temperature T can be 

described with respect of the  temperature Tr as:  

 

                                                    ( ) ( )
r

T

r p
T

H T H T C dT= + ∫ .                                     [9] 

 

Assuming that Cp is independent from temperature, which is generally true for 

small temperature differences, then the integral in equation [4] yield:  

 

                                                   ( ) ( ) ( )r p rH T H T C T T= + − .                         [10] 

 

Applying equation [4] for the transition between two states of the given system 

(unquenched/quenched, folded/unfolded, and so on) it is possible to calculate the 

enthalpy difference HΔ . As the case of interest is that of standard conditions, on then 

simply obtains: 

 

                                               ( ) ( ) ( )r p rH T H T C T T∅ ∅Δ = Δ + Δ − .                         [11] 

 

It is worth noticing that if pCΔ , i.e. the difference in heath capacity between the 

final and the initial state, is zero then ( )H T∅Δ  is temperature independent. 
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Temperature dependence of the Entropy Difference, ( )S TΔ . The derivation is 

analogous to those of ( )H T∅Δ . The entropy of system in given state, at constant 

pressure, is related to the heath capacity by the following relation: 

 

                                                                 pCdS
dT T

=  .                                                 [12] 

 

The change in the entropy of the system, by changing the temperature from a 

reference Tr to an arbitrary temperature T, is then given, after separation of the variable, 

and in the assumption that Cp is temperature independent by: 

 

                                                        
r r

T T

pT T

dTdS C
T

=∫ ∫ .                                               [13] 

 

From which: 

 

                                                  ( ) ( ) lnr p
r

TS T S T C
T

= + .                                           [14] 

 

Again, by the taking the difference between two states of the system and 

considering standard conditions, it is possible to write: 

 

                                           . ( ) ( ) lnr p
r

TS T S T C
T

∅ ∅Δ = Δ + Δ                                        [15] 

 

Substituting Equation [11] and Equation [15] into the definition of Gibbs free 

energy difference ( ) ( ) ( )G T H T T S T∅ ∅ ∅Δ = Δ − Δ  yields:  

 

( ) ( ) ( ) ( ) ( ln )r r p r p
r

TG T H T T S T C T T C T
T

∅ ∅ ∅Δ = Δ − Δ + Δ − −Δ .                         [16] 
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Appendix 2 

Fitting procedure 

The circular dichroism signal at a given wavelength and a given temperature can 

be expressed as: 

0

0

( , ) [ ] ( ( ) ( ) ( ) ( ) ( ) ( ))

[ ] ( ( ) ( ) ( ) ( ))
u u q q m m

q uq m um

CD T LHC T T T

LHC T T

λ γ ε λ γ ε λ γ ε λ

γ ε λ γ ε λ

= ⋅Δ + ⋅Δ + ⋅Δ =

⋅ΔΔ + ⋅ΔΔ
 ,               [1] 

where [LHC]0 is the initial concentration (in moles) of the sample (which is 

known and it is a constant), ( )uε λΔ , ( )qε λΔ  and ( )mε λΔ  are the molar ellipticity of 

the unquenched, quenched and unfolded form of LHC II, respectively. The double 

differential extinction coefficient are defined as ( ) ( ) ( )uq u qε λ ε λ ε λΔΔ = Δ −Δ  and 

( ) ( ) ( )um u mε λ ε λ ε λΔ = Δ −Δ . The molar fractions of quenched and unquenched 

complexes, as a function of the temperature, are determined by the equilibrium 

constant, q
eqK  (Equation 2, Supplementary Material Appendix 1) and hence by the 

Gibbs free energy, ( )qG T∅Δ  (Equation [11], Appendix 1). The thermodynamic 

quantities are retrieved from fitting the experimental results to a model function in 

which / ( )uq umε λΔΔ , /q mH ∅Δ , , /p q mCΔ  and /q mT are free running parameters by a non-

linear least square routine, which minimises the reduced sum of χ2. The errors 

associated with each data-point were estimated by standard deviation of 5-8 

independent measurements and therefore describe inter-sample variability.  

The best-fit values of / ( )q mH T∅Δ and , /p q mCΔ  display partial cross correlation, 

based on covariance matrix analysis, as both contribute to determining the value of 

/ ( )q mG T∅Δ  and /q m
eqK . Thus, in order to reduce the number of possible solutions and to 

increase the accuracy in estimation of the model parameters, the temperature 

dependence of the activation energies and steady-state equilibria were simultaneously 

fitted (global analysis). Moreover, in order to reduce the impact of initial guesses on the 

fit estimate, the minimisation has been conducted by using initially the more robust 

simplex algorithm followed by the more accurate, but more prone to entry-guess-biases, 

Levenberg-Marquardt algorithm.  

Estimation of the confidence on the best fit parameters. The stability of the fit 

solutions was tested as described by Beechem (s7). To evaluate the error associated 
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with each parameter, the value of a best-fit estimate was altered systematically over a 

certain range, and a series of non-linear least square minimisation was performed from 

this new initial condition. The same procedure was repeated iteratively for the all 

studied parameters. The distribution of values obtained for each parameter, as a result 

of the iterative perturbation, was then compared to the uncertainties calculated using the 

covariance matrix method, within the 2σ confidence level. Typically, a good agreement 

was observed between the different methods used to estimate the errors associated with 

the best-fit. In general, the errors associated with / ( )q mH T∅Δ  and /q mT  were small, i.e. 

within 5-15% and 1-5% of the best-fit value. Somewhat larger errors were associated 

with ,p qCΔ , up to 25-30% of the best-fit estimate, largely due to the small absolute 

value of ,p qCΔ  is small. In order to show the range of possible acceptable solutions the 

levels of confidence associated with the fits are presented. 
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