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A. Hashin-Shtrikman Bounds 
The Hashin-Shtrikman (1963) bounds are the best estimates available for the stiffness of a composite 
containing uniform dispersions of a reinforcing phase.  The equations are reproduced here for 
convenience.  As mentioned in the article, some data from the Monte Carlo simulations fell outside of the 
Hashin-Shtrikman bounds at the very highest and lowest mineral concentrations considered, since the 
requirement of uniformity in the distribution of mineral plaques was most heavily violated at these mineral 
concentrations. 
 
The effective bulk modulus, Ke, of a material containing a volume fraction, f, of collagen (bulk and shear 
moduli Kc and Gc), and (1-f) of a mineralized collagen (bulk and shear moduli KHA and GHA), is bounded 
as follows: 
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The effective bulk modulus, Ge, is bounded by: 
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where 
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The bounds on the effective Young’s moduli can be calculated using Ee = 9KeGe/(3Ke+2Ge). 
 
 
 
B. Assessment of the assumption of material linearity for the tendon 
 
Overview: The tendon-to-bone insertion connects tendon, a nonlinear tissue (e.g. Thomopoulos et al., 
2003), to bone, a nominally linear tissue.  However, the models in this article neglect the nonlinearity of 
tendon.  To assess the impact of this assumption made in the article, we modeled the extreme cases of 
“parallel” and “series” combinations of tendon and bone in this section.  Results indicate that deviations 
due to nonlinearity are minimal. 
 
Rationale: As in many other material systems with a distributed reinforcing phase (e.g. Torquato, 1991; 
Marquez et al., 2005), the behavior of the insertion is expected to be near a lower bound at low mineral 
content (e.g., a Mori-Tanaka (1973) type approximation should be valid), and an upper bound at high 
mineral content.  The Monte Carlo simulations in the current paper show that, within the context of the 
assumptions tested in this section, mineralized fibers behave similarly. 
 
Methods: Tendon was modeled with Kennedi-type nonlinearity (e.g. Fung, 1993), with an instantaneous 
uniaxial constitutive response approximated by: 
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where a = 1.29 MPa and b = 33.6, and σ and ε are linearized stress and strain measures (Thomopoulos 
et al., 2003).  Bone was treated as linear elastic, with a constitutive response approximated by: 
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where Eb= 20 GPa (e.g. Turner, et al., 1999).  Parallel and series (insets, Fig. 7) combinations of bone 
and tendon were considered over a range of bone volume fractions, V, ranging from 0 (tendon) to 1 
(bone), to determine the tangent modulus of the combination, Einsertion, at a strain of εo = 0.025.  For the 
parallel combination, in which the strain carried by the tendinous material equals that carried by the bone-
like material the tangent modulus of the insertion at a strain εo is: 
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and for the series combination, in which the stress carried by the tendinous material equals that carried 
by the bone-like material: 
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in which σ(εo), the stress required to stretch the series combination to εo, is found by solving the equation: 
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The linear bounds (Reuß and Voigt) are found from Eq. (S6) and (S7) by taking F(ε) as a linear 
function, F(ε) = Etendonε, where Etendon= 100 MPa is the tangent modulus of tendon at the prescribed level 
εo = 0.025 (Thomopoulos, 2003.) 
 
 

 
Figure 7. Effect of material nonlinearity on predictions of the tangent 

modulus of the tendon-to-bone insertion. 
 
Results: The parallel bounds are not affected by material nonlinearity, provided, as was the case in this 
example, that Etendon was calibrated at the strain level expected in the model insertion (Fig. 7).  The series 
bound was changed little by material nonlinearity at low levels of V, but rose towards the peak at a much 
lower bone volume fraction when nonlinearity was considered.  At some higher mineral volume fractions, 
the series stiffness prediction exceeded the parallel prediction. 
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Discussion: This rise in the series bound is expected: as the volume fraction of bone increases, the 
relative strain in the tendinous material increases, with the result that the effect of material nonlinearity 
increases.  Due to this phenomenon, the “percolation threshold” for partially mineralized collagen fibers 
would occur at a slightly lower mineral volume fraction had nonlinearity been considered.  The predictions 
made using a linear material model should be accurate at low mineral content, where the solution follows 
the lower bound, and high mineral content, where the solution follows the upper bound. 
 
 
C. A slender beam-column is much stiffer in stretching than in flexure 
 
Overview: A somewhat surprising result in the article was that the stiffness of an “imaginary,” 
unmineralized tendon-to-bone insertion drops abruptly when the angular deviation of the fiber orientation 
distribution exceeds a level of approximately 3° (cf. Fig. 5b).  In this section, we present a simple model 
problem we studied to gain insight into this phenomenon.  Briefly, we show that when the primary mode 
of deformation of a slender object such as a drinking straw or a collagen fiber shifts from extension to 
flexure, the resistance to deformation drops precipitously. 
 
Rationale: Throughout the centerline of the tendon-to-bone insertion, collagen fibers are oriented so that 
the orientation angle θ relative to the direction of muscle force, averaged over all fibers, 0° (Thomopoulos 
et al., 2006).  However, the distribution of fiber orientations is such that the average fiber will likely point 
away from the direction of muscle force.  The distribution of these angles, quantified by the angular 
deviation, is higher in the tendon-to-bone insertion and bone than in tendon.  We studied the stiffness of a 
fiber as a function of its orientation angle relative to the direction of muscle force. 
 
Methods: We considered a collagen fiber of length L and radius R, inclined relative to the direction of 
muscle force at an angle θ, and supported as in Fig. 8.  The fiber was linear with axial elastic modulus Eo. 
We determined the effective modulus of a representative unit cell containing this fiber by considering 
deformations produced by the downward pulling force shown in Fig. 8. 
 
One component of the applied force, F, deforms the fiber in extension (F1 = F cos θ), while the other 
deforms the fiber in flexure (F2 = F sin θ) (Fig. 8). 
 
The effective modulus of elasticity of the fiber was calculated by 
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where Acell is the cross-sectional area of the cell shown in Fig. 8 (area of the cylindrical cell perpendicular 
to the tendon-to-bone insertion centerline θ = 0), hcell = L cos θ is the cell height along the centerline, and 
δ is the elongation of the cell along this centerline produced by the applied force.  Acell was evaluated by 
observing that the volume fraction fc of the cell is given by ( ) ( )cellcellfiberc hALAf = , or, rearranging and 

substituting, ( ) ( )!" cos
2

ccellcfibercell fRhfLAA == .  The elongation of the fiber in extension and flexure 
(in the directions of the forces F1 and F2, respectively) are: 
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respectively, where the second moment of the area about the centerline of the circular fiber is I = πR4/4. 
 
The elongation of the cell is now available after straightforward transformations as 
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Accordingly, Eq. (S9) yields  
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Results: Equation. (S12) was evaluated for a range of angles θ and a fiber aspect ratio L/R = 20 (Fig. 8).  
As follows from this figure, the local stiffness of the insertion site considered without accounting for the 
presence of mineral decreased by more than 80% in a 0.5° shift from the direction of muscle force, and 
another 80% for a 2.5° shift.  This decrease is even more pronounced for larger fiber aspect ratios.  The 
sharpest drop in the stiffness is observed at very small values of the orientation angle; i.e., in the cross 
sections close to the tendon. 
 

 
Figure 8. The stiffness of the unit cell pictured drops dramatically 

as the primary mode of deformation shifts 
from extension to flexure of the collagen fiber. 

 
Discussion: The stiffness of an un-mineralized tendon-to-bone insertion can be expected to drop 
precipitously as the average fiber points at an angle further from the direction of muscle force.  The 
mechanism for this drop is a shift in deformation mode from extension (the cos2 θ term in the denominator 
of Eq. (S12)) to flexure (the 16/9 (L/R)4 sin2 θ term in the denominator of Eq. (S12)).  The magnitude of 
the drop is lower in the imaginary unmineralized tendon-to-bone inertion (Fig. 5) than in this example 
because the unit cells surrounding physiological collagen fibers possess some resistance to deformation 
in the direction transverse to the fiber axis.  
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