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Fig. S1. A T-DNA insertional mutation in Arabidopsis CRT3 suppresses the bri7-9 mutant phenotype. (A) RT-PCR analysis of EBS2 gene expression in WT and
ebs2-8. Total RNAs isolated 3-week-old seedlings were converted into cDNA by using the Invitrogen SuperScript first-strand synthesis system for RT-PCR. The
first-strand cDNA (0.5 uL) was used for templates to amplify transcripts of EBS2 and B-TUBULIN (as a control) using the primer set listed in Table S1. EBS2 transcripts

were amplified for 30 cycles, whereas B-TUBULIN transcripts were amplified for 19 cycles. (B) Four-week-old soil-grown plants of bri1-9, ebs2-8 bri1-9, and
PpPZP222-gCRT3:cCRT3 ebs2-8 bri1-9.
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Fig. S2. Genes co-expressed with CRT1 (A) or CRT3 (B). Both figures were generated by the Arabidopsis thaliana trans-factor and cis-element prediction
database, version 5.2 (http:/atted.jp/), through its search tool. Black lines link co-expressed genes. Orange line indicates genes that are also co-expressed in at

least one of 3 other organisms: human, mouse, and rat; dotted red lines indicate direct protein-protein interaction.
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Fig. S3. Phylogeny analysis of CRT homologues in plants. Plant CRT protein sequences and the human CRT sequence were aligned with ClustalW. The
neighbor-joining method of the Phylogeny Inference Package (version 3.68) was used to construct the tree with 100 bootstrap replicates. The numbers above
the branches are bootstrap values derived from neighbor-joining analysis. The HsCRT sequence was used as the out group to root the tree, and 4 CRT3
homologues from lower plant species were boxed in red. Names and accession numbers of the analyzed CRT proteins used for analyses are as follows: PaCRT1
(AAD32207, Pa: Prunus armeniaca), BvCRT1 (081919.1, Bv: Beta vulgaris), RcCRT1 (AAB71419, Rc: Ricinus communis), GmCRT1 (BAF36056, Gm: Glycine max),
MtCRT1 [obtained from Legume genome scanner (http://www.kazusa.or.jp/LGS/index.html), AC149080.6, Mt: Medicago truncatula], NpCRT1 (CAA95999, Np:
Nicotiana plumbaginifolia), AtCRT2 (NP_172392, At: Arabidopsis thaliana), BnCRT1 (AF019376.1, Bn: Brassica napus), AtCRT1 (NP_176030), HvCRT1 (AAA32949,
Hv: Hordeum vulgare), TaCRT1 (AAW02798, Ta: Triticum aestivum), ZmCRT2 (AAF01470, Zm: Zea mays), ZmCRT1 (CAA86728), OsCRT1 (BAC82933, Os: Oryza
sativa), BsCRT1 (AAD 17490, Bs: Berberis stolonifera), PitCRT1 (AAG01147, Pit: Pinus taeda), PsCRT1 (ABK24327, Ps: Picea sitchensis), PsCRT2 (ABK23433), SmCRT1
(translated from nucleotide sequence FE455037.1, FE466672.1, and FE453208.1, Sm: Selaginella moellendorffii), VvCRT3 (translated from nucleotide sequence
XM_002276397.1, Vv: Vitis vinifera), MtCRT3 (translated from nucleotide sequence BT052978.1), AfCRT3 (translated from nucleotide sequences DR940519.1 and
DT750168.1, Af: Aquilegia formosax Aquilegia pubescens), PotCRT3 (EEE90236.1, Pot: Populus trichocarpa), BrCRT3 (translated from nucleotide sequences
EX116073.1, EX026998.1, and EX117522.1, Br: Brassica rapa), AtCRT3 (NP_563816), HVCRT3 (translated from nucleotide sequence AK248906.1), TaCRT3
(EF452301.1), OsCRT3 (BAC06263), ZMCRT3 (translated from nucleotide sequence AY105822), PitCRT3 (translated from nucleotide sequences BF777977.1,
C0O198952.1, and CO158387.1), PsCRT3 (translated from nucleotide sequence EF678532.1), MpCRT3 (translated from nucleotide sequence BJ858135.1 and
BJ850397.1, Mp: Marchantia polymorpha), SmCRT3 (translated from nucleotide sequence FE490612.1 and FE490611.1), PpCRT3a and PpCRT3b [deduced from
contig sequence scaffolds 65 and 34, respectively, from the Joint Genome Institute (http://genome.jgi-psf.org) using Physcomitrella patens subsp. patensv. 1.1,
Pp: Physcomitrella patens], CrCRT (EDP09399.1, Cr: Chlamydomonas reinhardtii), and HsCRT (NP_004334.1, Hs: Homo sapiens).
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Fig. S4. The Mesostigma viride CRT C-terminal fragment is acidic. (A) Amino acid sequence of the C-terminal fragment of a M. viride CRT translated from an
EST (EC729890) identified by tBLASTn using AtCRT1 as query against the EST collection of M. viride in GenBank. The sequence underlined in blue is a part of the
globular domain of the CRT, and the red open box denotes the C-terminal domain. (B) Numbers of basic and acidic residues and the net charge in the C terminus

of the M. viride CRT.
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Fig. S5. The anti-maize CRT antibody fails to detect Arabidopsis CRT3. (A) Schematic illustration of crt1, crt2, cnx1, and cnx2 T-DNA insertional lines. Exons,
introns, and untranslated regions are shown as black boxes, lines, and gray boxes, respectively. Triangles represent T-DNA insertion sites. (B) Western blot analysis
of crude protein extract from 4-week-old seedlings of WT, crt1, crt2, and cnx1 cnx2 and ebs2-8 T-DNA insertional mutants using anti-maize CRT antibody.

Jin et al. jwww.pnas.org/cgi/content/short/0906144106|

50f 8


http://www.pnas.org/cgi/content/short/0906144106

2,9 2.0
3

CAMIIR Y
o 9

AT A
\ (\
,\‘O ,L‘O

180kD—
115kD —

82kD—

64kD —
49kD —

37kD —

SINPAS

26kD—

Fig.S6. The anti-CRT3 antibody specifically detects CRT3. Total protein extracts from WT, ebs2-1 bri1-9, ebs2-2 bri1-9, ebs2-3 bri1-9, and ebs2-4 bri1-9 were
separated by 10% SDS/PAGE and analyzed by immunoblotting with anti-CRT3 antibody. Coomassie blue-stained SDS/PAGE gel is shown to control equal loading.
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Fig. S7. Most CRT3 contains alanine instead of serine at position 333. Thirty-eight sequences from Fig. S3 that correspond to aa 312 through 350 of AtCRT3
were aligned with ClustalW and shaded with BoxShade 3.21 (http://www.ch.embnet.org/software/BOX_form.html). Residues that are identical in 80% of
sequences are shaded red and similar residues are shaded cyan. A black line in the middle separates CRT3 group (Top) and CRT1/CRT2 group (Bottom). Star
indicates the position of Ala-333 in AtCRT3. Most of CRT3 contain Ala at position 333, whereas all CRT1/CRT2 contain Ser at this position.
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Table S1. Oligonucleotides used in this study

Name Sequence Comment

CER4641897 GATCCAAAACAAGTCTCCTGC CAPS
CTCTGTAAACTCGGTGAGCACG Hindlll cuts Col

T23G18.1° GGATGTTGTGATTGCCAAACC CAPs
GTGATCTTCAGCATCCCTAAC Dpnl cuts Ws

T23G18.2b GCACTGCCAAACACAGTCAA dCAPs
ATCCGCCACGTGGCTCACGT HinCll cuts Ws

T27G7-1% GACTTCACCTTGTCATGACCG dCAPs
TCCTGACCTGAATGCAGATAAAGTAC SnaBl cuts Ws

F22013_1b CACACTTTTCGTAATAGATCAAC CAPs
GAGACTCTTTCAAGAAAGGAATC Alul cuts Ws

F22013.2b GCATTCTTTGAGAGGCTCAAGAT dCAPs
CAACTATTTAATCGTCTCCTTAG Bglll cuts Col

JV28/29¢ CACTTGTTCTGAAACGAAATTGA SSLP
GCTTCTCATTGCACTCCTTTG Ws < Col

CRT3_RT GTCTCTGTACTAACTCTTGC On exon 1
CACCAGAACGCTGTAAGAAG On exon 4

TUB2RT TTCCAGGTTTGTCACTCGTTG Control for RT-PCR
ATGAAGAAGTGAAGACGGG

CRT3N GACTCGAGAATCGAAAGCATGTTC Make CRT3N-CRT1C chimeric gene
ATCTTCTCTAGCTTTTCTTTC

CRTIN GAGTCGACTCCTCTTCCGTATTGGGCA Make CRT1N-CRT3C chimeric gene
TTCCTCTTCCTCTCTCTTCTTCTC

CRT3C GCCCGGATAGCACGGGAAGAAGGTGAA Make CRT1N-CRT3C chimeric gene
ATGGATCCAAATGCCCACCACTC

CRT1C GAGGAATCAAAGGATGCTCCT Make CRT3N-CRT1C chimeric gene

AGGGATCCTTTTTAATCCTCCACCTTTGC

2, This primer set was designed according to the Monsanto Arabidopsis SNP/INDEL database (1).

b These primers were designed using the dCAPS Finder program (2) (http://helix.wustl.edu/dcaps/dcaps.html) based on the sequences of PCR products amplified
from the bri1-9 (Ws) mutant and the published genomic sequences of the WT Col-0.
¢, The primer sequences were obtained from the Arabidopsis Information Resource database (http://www.arabidopsis.org/).
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