Supporting Information

Jin et al. 10.1073/pnas.0906144106

Fig. S1. A T-DNA insertional mutation in Arabidopsis CRT3 suppresses the *bri1–9* mutant phenotype. (*A*) *RT-PCR* analysis of *EBS2* gene expression in WT and *ebs2–8*. Total RNAs isolated 3-week-old seedlings were converted into cDNA by using the Invitrogen SuperScript first-strand synthesis system for RT-PCR. The first-strand cDNA (0.5μ L) was used for templates to amplify transcripts of *EBS2* and β -*TUBULIN* (as a control) using the primer set listed in Table S1. *EBS2* transcripts were amplified for 30 cycles, whereas β -*TUBULIN* transcripts were amplified for 19 cycles. (*B*) Four-week-old soil-grown plants of *bri1–9*, *ebs2–8 bri1–9*, and *pPZP222-gCRT3:cCRT3 ebs2–8 bri1–9*.

Fig. S2. Genes co-expressed with CRT1 (A) or CRT3 (B). Both figures were generated by the Arabidopsis thaliana trans-factor and cis-element prediction database, version 5.2 (http://atted.jp/), through its search tool. Black lines link co-expressed genes. Orange line indicates genes that are also co-expressed in at least one of 3 other organisms: human, mouse, and rat; dotted red lines indicate direct protein-protein interaction.

PNAS PNAS

Fig. S3. Phylogeny analysis of CRT homologues in plants. Plant CRT protein sequences and the human CRT sequence were aligned with ClustalW. The neighbor-joining method of the Phylogeny Inference Package (version 3.68) was used to construct the tree with 100 bootstrap replicates. The numbers above the branches are bootstrap values derived from neighbor-joining analysis. The HsCRT sequence was used as the out group to root the tree, and 4 CRT3 homologues from lower plant species were boxed in red. Names and accession numbers of the analyzed CRT proteins used for analyses are as follows: PaCRT1 (AAD32207, Pa: Prunus armeniaca), BvCRT1 (O81919.1, Bv: Beta vulgaris), RcCRT1 (AAB71419, Rc: Ricinus communis), GmCRT1 (BAF36056, Gm: Glycine max), MtCRT1 [obtained from Legume genome scanner (http://www.kazusa.or.jp/LGS/index.html), AC149080.6, Mt: Medicago truncatula], NpCRT1 (CAA95999, Np: Nicotiana plumbaginifolia), AtCRT2 (NP_172392, At: Arabidopsis thaliana), BnCRT1 (AF019376.1, Bn: Brassica napus), AtCRT1 (NP_176030), HvCRT1 (AAA32949, Hv: Hordeum vulgare), TaCRT1 (AAW02798, Ta: Triticum aestivum), ZmCRT2 (AAF01470, Zm: Zea mays), ZmCRT1 (CAA86728), OsCRT1 (BAC82933, Os: Oryza sativa), BsCRT1 (AAD17490, Bs: Berberis stolonifera), PitCRT1 (AAG01147, Pit: Pinus taeda), PsCRT1 (ABK24327, Ps: Picea sitchensis), PsCRT2 (ABK23433), SmCRT1 (translated from nucleotide sequence FE455037.1, FE466672.1, and FE453208.1, Sm: Selaginella moellendorffii), VvCRT3 (translated from nucleotide sequence XM_002276397.1, Vv: Vitis vinifera), MtCRT3 (translated from nucleotide sequence BT052978.1), AfCRT3 (translated from nucleotide sequences DR940519.1 and DT750168.1, Af: Aquilegia formosa× Aquilegia pubescens), PotCRT3 (EEE90236.1, Pot: Populus trichocarpa), BrCRT3 (translated from nucleotide sequences EX116073.1, EX026998.1, and EX117522.1, Br: Brassica rapa), AtCRT3 (NP_563816), HvCRT3 (translated from nucleotide sequence AK248906.1), TaCRT3 (EF452301.1), OsCRT3 (BAC06263), ZmCRT3 (translated from nucleotide sequence AY105822), PitCRT3 (translated from nucleotide sequences BF777977.1, CO198952.1, and CO158387.1), PsCRT3 (translated from nucleotide sequence EF678532.1), MpCRT3 (translated from nucleotide sequence BJ858135.1 and BJ850397.1, Mp: Marchantia polymorpha), SmCRT3 (translated from nucleotide sequence FE490612.1 and FE490611.1), PpCRT3a and PpCRT3b [deduced from contig sequence scaffolds 65 and 34, respectively, from the Joint Genome Institute (http://genome.jgi-psf.org) using Physcomitrella patens subsp. patens v. 1.1, Pp: Physcomitrella patens], CrCRT (EDP09399.1, Cr: Chlamydomonas reinhardtii), and HsCRT (NP_004334.1, Hs: Homo sapiens).

A GSIFDNIMVTDDAAVAKKFAEDTWGKTKAGEKAMMDA EEEEERKKREEEMKRMDEERAKLGEDEDEDEDEDED FDDEEEDEEEDYNAKDEL

B	R	К	Н	D	E	Total	Net Charge
MvCRT	4	6	0	12	24	62	-26

Fig. S4. The Mesostigma viride CRT C-terminal fragment is acidic. (A) Amino acid sequence of the C-terminal fragment of a M. viride CRT translated from an EST (EC729890) identified by tBLASTn using AtCRT1 as query against the EST collection of M. viride in GenBank. The sequence underlined in blue is a part of the globular domain of the CRT, and the red open box denotes the C-terminal domain. (B) Numbers of basic and acidic residues and the net charge in the C terminus of the M. viride CRT.

Fig. S5. The anti-maize CRT antibody fails to detect Arabidopsis CRT3. (*A*) Schematic illustration of *crt1*, *crt2*, *cnx1*, and *cnx2* T-DNA insertional lines. Exons, introns, and untranslated regions are shown as black boxes, lines, and gray boxes, respectively. Triangles represent T-DNA insertion sites. (*B*) Western blot analysis of crude protein extract from 4-week-old seedlings of WT, *crt1*, *crt2*, and *cnx1 cnx2* and *ebs2–8* T-DNA insertional mutants using anti-maize CRT antibody.

<

Fig. S6. The anti-CRT3 antibody specifically detects CRT3. Total protein extracts from WT, *ebs2–1 bri1–9*, *ebs2–2 bri1–9*, *ebs2–3 bri1–9*, and *ebs2–4 bri1–9* were separated by 10% SDS/PAGE and analyzed by immunoblotting with anti-CRT3 antibody. Coomassie blue-stained SDS/PAGE gel is shown to control equal loading.

SANG SAL

	*
At CRT3	DPDLYVLKS KYAGI EVWQVKAGSI FDNI LI CDDPAYAR
Br CRT 3	DP DL YVL KPI KYI GI EVWQVKAGSI F DNI LI T DDP QYAR
VvCRT3	DP DL YVL KPI KYVGI EVWQVKAGAI YDNI LI CDDPEYAK
Mt CRT 3	DP DL YVL KPI KYVGI EV WQVKGGSVFDNI LI CDDPEYAK
Pot CRT 3	DP DL YVL KPI KYVGI EVWQVKAGSI FDNI LI CDDPQYAR
Af CRT 3	DP DLYVL KPI KYVGI EVWQVKAGSVF DNVLI CDDP GYAK
Hv CRT 3	DP DLYVL KP EKYI GI EV WQVKAGSVF DNI LI CDDP EYAK
Ta CRT 3	DP DLYVL KP L KY I GI EV WQVK A GSVF DNI LI CDDP EYAK
Os CRT 3	DP DLYVL KP L KY I GIEV WQVKAGSVFDNILICDDPEYAR
ZmCRT3	DP DLYVL KP L KY I GI EV WQVK A GSVF DNI LI CDDP EYAR
PitCRT3	DP DL Y V F K P L K Y V GI E V WQ V K A G S V Y D NI L V C D D P Q Y A R
PsCRT3	DP NLY VF KP L KY VGI EV WQV KAGS VY DNV L VCDDP E Y AQ
MpCRT3	DP DLY VF AP L QY F GIEL WQV K A GSL F DNILI T DDP DY AK
SmCRT3	DP DLY VF P NLKY I GIEL WQVKS GTLF DNILVCDDP EYAR
PpCRT3a	DP DLYVL PPLKYF GWELWQVK AGSVF DNILVT DDPEYAK
<u>PpCRT3b</u>	DP DVY VL P P L K F F GT E L WQV K A GSI F DNI L VT DDP A Y A K
At CRT1	DPELYVFPKLKYVGVELWQVKSG <mark>SLFDNVL</mark> VSDDPEYAK
At CRT2	DPELYVFPKLKYVGLELWQVKSGSLFDNVLICDDPDYAK
BnCRT1	DPELYVFPKLKY <mark>V</mark> GTELWQVKSG <mark>SLFDNVLI</mark> CDDPDYA <mark>K</mark>
MtCRT1	DP DI YVFPKLKYVGI ELWQVKSGTLFDNVVI TDDPEYAK
GmCRT1	DP DLYVFPNLKYVGIELWQVKSGTLFDNVLITDDPEYAK
RcCRT1	DPEIYVYPNLKYVGIELWQVKSGTLFDNVLICNDPEYAK
PaCRT1	DPELYVYPNLKYVGI ELWQVKSGTLFDNI LITDEPEYAK
NpCRT1	DP DLYVF P KLKYVGVELWQVKSGTLFDNIVICDDP EYAK
BvCRT1	DPELYVYPKLRYVGVELWQVKSGTLFDNVLVCDDPEYAK
Bs CRT 1	DP DI YVFPKLKYVGTELWQVKSGTNFDNVLICDDPDYAK
ZmCRT 2	DPYIYAFDSLKYIGIELWQVKSGTLFDNITITDDPALAK
ZmCRT1	DPYIYAFDSLKYIGIELWQVKSGTLFDNIIITDDPALAK
Ta CRT 1	DPYIYAFDSLKYIGIELWQVKSGTLFDNILITDDAALAK
Hv CRT 1	DPYIYAFDSLKYIGIELWQVKSGTLFDNILITDDAALAK
Os CRT 1	DPYIYAFDSLKYIGIELWQVKSGTLFDNFLITDDPELAK
PsCRT1	DPELYVFPNLKYLGIELWQVKSGTLFDNILICDDPEYAG
PitCRT1	DPELYVFPNLKYLGIELWQVKSGTLFDNILISDDPEYAK
PsCRT2	DPELYVFPSLKYLGIELWQVKSGTLFDNILVSDDPEYAK
SmCRT1	DPELYVFPSLKYVGIELWQVKSG <mark>SLFDNIL</mark> VSDDVDYAK
Cr CRT	DDKLYNFKDLKFVGFELWQVKSGSIFDNILVTDDLEAAK
Hs CRT	DP SIYAYDNFGVLGLDLWQVKSGTIFDNFLITNDEAYAE

Fig. 57. Most CRT3 contains alanine instead of serine at position 333. Thirty-eight sequences from Fig. S3 that correspond to aa 312 through 350 of AtCRT3 were aligned with ClustalW and shaded with BoxShade 3.21 (http://www.ch.embnet.org/software/BOX_form.html). Residues that are identical in 80% of sequences are shaded red and similar residues are shaded cyan. A black line in the middle separates CRT3 group (*Top*) and CRT1/CRT2 group (*Bottom*). Star indicates the position of Ala-333 in AtCRT3. Most of CRT3 contain Ala at position 333, whereas all CRT1/CRT2 contain Ser at this position.

VAS PNAS

Table S1. Oligonucleotides used in this study

PNAS PNAS

Name	Sequence	Comment	
CER464189 ^a	GATCCAAAACAAGTCTCCTGC	CAPS	
	CTCTGTAAACTCGGTGAGCACG	HindIII cuts Col	
T23G18_1 ^b	GGATGTTGTGATTGCCAAACC	CAPs	
	GTGATCTTCAGCATCCCTAAC	DpnI cuts Ws	
T23G18_2 ^b	GCACTGCCAAACACAGTCAA	dCAPs	
	ATCCGCCACGTGGCTCACGT	HinCII cuts Ws	
T27G7_1 ^b	GACTTCACCTTGTCATGACCG	dCAPs	
	TCCTGACCTGAATGCAGATAAAGTAC	SnaBI cuts Ws	
F22O13_1 ^b	CACACTTTTCGTAATAGATCAAC	CAPs	
	GAGACTCTTTCAAGAAAGGAATC	Alul cuts Ws	
F22O13_2 ^b	GCATTCTTTGAGAGGCTCAAGAT	dCAPs	
	CAACTATTTAATCGTCTCCTTAG	BgIII cuts Col	
JV28/29 ^c	CACTTGTTCTGAAACGAAATTGA	SSLP	
	GCTTCTCATTGCACTCCTTTG	Ws < Col	
CRT3_RT	GTCTCTGTACTAACTCTTGC	On exon 1	
	CACCAGAACGCTGTAAGAAG	On exon 4	
TUB2RT	TTCCAGGTTTGTCACTCGTTG	Control for RT-PCR	
	ATGAAGAAGTGAAGACGGG		
CRT3N	GACTCGAGAATCGAAAGCATGTTC	Make CRT3N-CRT1C chimeric gene	
	ATCTTCTCTAGCTTTTCTTTC		
CRT1N	GAGTCGACTCCTCTTCCGTATTGGGCA	Make CRT1N-CRT3C chimeric gene	
	ттестеттестететтете		
CRT3C	GCCCGGATAGCACGGGAAGAAGGTGAA	Make CRT1N-CRT3C chimeric gene	
	ATGGATCCAAATGCCCACCACTC		
CRT1C	GAGGAATCAAAGGATGCTCCT	Make CRT3N-CRT1C chimeric gene	
	AGGGATCCTTTTTAATCCTCCACCTTTGC	-	

^a, This primer set was designed according to the Monsanto Arabidopsis SNP/INDEL database (1). ^b, These primers were designed using the dCAPS Finder program (2) (http://helix.wustl.edu/dcaps/dcaps.html) based on the sequences of PCR products amplified from the bri1-9 (Ws) mutant and the published genomic sequences of the WT Col-0.

^c, The primer sequences were obtained from the Arabidopsis Information Resource database (http://www.arabidopsis.org/).

 Jander G, et al. (2002) Arabidopsis map-based cloning in the post-genome era. Plant Physiol 129:440–450.
Neff MM, Neff JD, Chory J, Pepper AE (1998) dCAPS, a simple technique for the genetic analysis of single nucleotide polymorphisms: experimental applications in Arabidopsis thaliana genetics. Plant J 14:387-392.