Supporting Information

Kim et al. 10.1073/pnas.0903938106

SI Text

SANG SA

Proton Pumping Against a pH Gradient. A pH gradient across the membrane provides a driving force for a proton. The proton motive force (PMF) $\Delta\mu$ across the membrane is then given by

$$\Delta \mu = V_{\rm m} - 2.303 k_{\rm B} T \Delta \rm pH,$$

where V_m is the membrane potential while $\Delta pH = pH_P - pH_N$ is the pH gradient between the P and N sides of the membrane. To explore the effect of the pH gradient on the pumping efficiency in the absence of the membrane potential ($V_m = 0$), ΔpH is incorporated into the rate coefficients involving the proton uptake/release. We assume, for simplicity, that the ΔpH is uniformly distributed among the rates of proton uptake/release for both sides of the membrane. Explicitly, these rates are written as

$$\begin{split} k_{\mathrm{N}\rightarrow1}(\Delta\mathrm{pH}) &= k_{\mathrm{N}\rightarrow1}^{0}\mathrm{exp}(\Delta\mu/4k_{\mathrm{B}}T), \quad k_{1\rightarrow\mathrm{N}} = k_{1\rightarrow\mathrm{N}}^{0}\mathrm{exp}(-\Delta\mu/4k_{\mathrm{B}}T) \\ k_{\mathrm{P}\rightarrow2}(\Delta\mathrm{pH}) &= k_{p\rightarrow2}^{0}\mathrm{exp}(-\Delta\mu/4k_{\mathrm{B}}T), \quad k_{2\rightarrow\mathrm{P}} = k_{2\rightarrow\mathrm{P}}^{0}\mathrm{exp}(\Delta\mu/4k_{\mathrm{B}}T), \end{split}$$

where, for example, $k_{\text{Narrow 1}}$ is the rate coefficient of the proton uptake from the N side to site, and superscripts 0 denote the rates at zero pH gradient. By using the optimized solutions of the three-site model (Fig. 3 in the main text), we find that protons are pumped against pH gradients $\Delta pH \approx -2.5$, as shown in Fig. S2. The lower limit of ΔpH is thermodynamically equivalent to a proton motive force of $\approx 150 \text{ mV}$ across the membrane. This value is similar to the maximum membrane potential, V_m , against which protons are pumped in the absence of a pH gradient.

Protonation Equilibria and Calculation of pK_a. Proton populations (Fig. 4 of the main text) are obtained by calculating the probability of a proton site μ to be occupied. The thermodynamic average of the proton population, $\langle x_{\mu} \rangle$, at equilibrium (without product formation) is given by

$$\langle x_{\mu} \rangle = \frac{1}{Z} \sum_{i=1}^{2^{N}} X_{\mu}^{(i)} \exp(-G_{i}/k_{\mathrm{B}}T),$$

where the partition function is

$$Z = \sum_{i=1}^{2^N} \exp(-G_i/k_{\rm B}T).$$

Note that $X^{(i)}_{\mu}$ is 0 when site μ is empty in state *i* and 1 when it is occupied, while G_i is the free energy of state *i*. For a given pH, the free energy G_i can be written as

$$G_{i}(\mathbf{pH}) = \sum_{\mu=1}^{N} X_{\mu}^{(i)} 2.3k_{B}T(\mathbf{pH} - \mathbf{pK}_{a,\mu}^{int}) + \sum_{\mu=1}^{N-1} \sum_{\nu=\mu+1}^{N} X_{\mu}^{(i)} X_{\nu}^{(i)} \boldsymbol{\epsilon}_{\mu\nu},$$

where $pK_{a,\mu}^{int}$ is the intrinsic pK_a of the site μ , which is related to G^0_{μ} via $G^0_{\mu} = 2.3 k_B T (7 - pK_{a,\mu}^{int})$, and $\varepsilon_{\mu\nu}$ is the electrostatic interaction between sites μ and ν . The apparent pK_a of the proton site μ then corresponds to the pH value that yields $< x_{\mu} > = \frac{1}{2}$.

Midpoint Potential of the Electron Site. The midpoint potential of the electron site of the kinetic model is equivalent to the experimentally measured midpoint potential of the heme a relative to either cytochrome c or Cu_A. In the presence of a proton in Glu-242 (i.e., the proton site 1) and the absence of a proton in the pump site, the relative midpoint potential of the electron site is given by

$$\Delta E_m = -25.6(G_3^0 + \epsilon_{13})$$
 [mV],

where G_3^0 is the intrinsic free energy of the site 3, and ε_{13} is the electrostatic coupling between sites 1 and 3. Results are shown in Fig. S3.

Fig. S1. Coordinates of the proton and electron sites obtained from Monte Carlo optimization of the three-site kinetic models.

Fig. 52. Pumping efficiency as a function of a pH gradient ($\Delta pH = pH_P - pH_N$) across the membrane at zero membrane potential ($V_m = 0$) for the optimized proton pumping solutions of the three-site model.

DNA C

<

Fig. S3. Distribution of the relative midpoint potentials for the electron site 3 with site 1 (Glu-242) protonated and site 2 (pump site) empty.

<