Supporting Information

Liubicich et al. 10.1073/pnas.0903105106

Α PhUbx-I CTTTAGTGCGAGTGTCAGAAGAGTGAGGGTGTCGGGAAAGATTCTGCTGTCCGTTTGCTGTGAAACTTGC TAAGCCTGTGCATCTTGTATCGGTGTTTTAGAAGCAAAACGCTTAAGAATCACAGCGGTTTAATAACGTA CGCCGAGCTGCTGCTCTTCTGCTGCAAACGAAGGCGAAAGAACGTTAAACGTTATGAGCTCATCCTCGAC MSSSST GATGGACAATTTTCGAGCCCTTCTCCAGGGCGGGTTTTACGGAGGCGGTTCAGGAGGAGATCAAGCTTAT M D N F R A L L Q G G F Y G G G S G G D Q A Y CGCTTCCCTCCACTTGGACTCAGCGTTGGGCACTACGGGCA<mark>GCCTGCACCACGACAAGATGCTTAT</mark>GACC R F P P L G L S V G H Y G Q P A P R Q D A Y D CCAGTGCTTCATGTAAACTTTACCCGACCCA<mark>CCAAGACCACATGACTCCAAATCCT</mark>TTCAAAGTAGACTG P S A S C K L Y P T H Q D H M T P N P F K V D C CAGTGGCGGCAAAGAC<mark>CAGAATGGATACGGTGCCAAAGATA</mark>TGTCCGTTGGATGGGGCCAGTCAGCACGG S G G K D Q N G Y G A K D M S V G W G Q S A R CCTGTCTGCACTCCGGATCCAATTTCTGGTCGAGGGTATCCTCCAGACCCTAGTACGTCACCCAGAGATA PVCTPDPISGRGYPPDPSTSPRD GGGCCCATGCCGGGGCTGGATGGAATACATGCGGTATGACAGCCGTCCAACACCAACAACACCACCAACA R A H A G A G W N T C G M T A V Q H Q Q H H Q Q ACAACCACAACAAAATCCTGGACAAATGGGACAGGGACAAAATACCACAACTTTCTATCCGTGGATGGCA Q P Q Q N P G Q M G Q G Q N T T F Y P W M A TTAGCAGGTGCAAATGGA<u>TTACGGCGACGAGGACGCCAAACGTATACTCGATATCAGACTTTGGAATTGG</u> L A G A N G L R R R G R Q T Y T R Y Q T L E L AGAAAGAATTCCATACAAATCACTACTTGACCCGTAGGAGAAGAATAGAAATGGCGCACGCTCTTTGTCT E K E F H T N H Y L T R R R R I E M A H A L C L <u>CACTGAGCGACAAATCAAAATCTGGTTCCAGAACAGGCGGATGAAGCTGAAGAAGGAAATTCAAGCAATC</u> TERQIKIWFQNRRMKLKKEIQAI AAAGAATTGAATGAACAGGAAAAGGTAGCTCAAAATCAGAAATTAATGCAGCAACAGCAACAGCAGCAGCAGC K E L N E Q E K V A Q N Q K L M Q Q Q Q Q Q CGCAGCAGCCTGCACCCCAACAGACGCAACAGACTCCCACAGTTCCGCCCAACATGACACCAAGTCAAGC P Q Q P A P Q Q T Q Q T P T V P P N M T P S Q A TGGTGGTGGAGTCCCAGACCATACGGGGCAAAACCCCCGGACAAAACTAACCTCTTCGGCTCATCTTTAAG

G G G V P D H T G Q N P G Q N * TTAGAATAAGGTATGTTGGCTGCTATCTAAGGCTCGATTCCATAGTTTCGGAGTTTGTCGCAGTGAGTATGATATTA

Fig. S1. *PhUbx* sequence and alignments with Ubx proteins from other species. (A) cDNA sequences for all of *PhUbx-1* and for the region unique to *PhUbx-II*; both transcripts are identical following a shared splice junction ("AGG" in blue). The 2 have unique translation start sites ("ATG" in green), but share the same stop codon ("TAA" in red); corresponding amino acids are displayed immediately underneath the nucleotide sequence. Nucleotides that encode the homeodomain are underlined and sequences corresponding to the 3 *PhUbx* siRNA oligos are highlighted in yellow. (*B*) N-termini of *Parhyale* and *Drosophila* Ubx proteins. Amino acids conserved across species are highlighted in black. Sequences shared by both PhUbx-II and PhUbx-II are in red. (C) Alignment of the hexapeptide, homeodomain and UBDA domains of Ubx proteins from *Parhyale hawaiensis* (*Ph*), *Porcellio scaber* (*Ps*), *Artemia franciscana* (*Af*), *Strigamia maritima* (*Sm*), and *Drosophila melanogaster* (*Dm*), along with homologous regions of *D. melanogaster* Antennapedia (*Dm* Antp) and abdominal-A (*Dm* abd-A) proteins. The conserved hexapeptide domain is marked with asterisks and the homeodomain is underlined; the UBDA domain immediately follows the one colomain. Gaps in the alignment are represented by hyphens. Amino acid residues that are identical to PhUbx are shown in black; those that are not identical are in red. (*D*) Alignment of the C-terminal-most regions of Ubx proteins from *P. hawaiensis* (*Ph*), *A. franciscana* (*Af*), *D. melanogaster* (*Dm*) and the Onychophoran species *Akanthokara kaputensis* (*Ak*). C-termini are denoted by asterisks and sequences that match the consensus CK2 phosphorylation site (S/T-X-X-D/E) are underlined.

GGTAATTTTAACCACTATTGCCACTGCTATCAAATCTAAAGGTCTTTTGGGACCTTTGTGTCTGACAACAATTTGTT ATCATAACCTAAAATTTCTATTTAGCACATCTCCATTAACCCATATTATCTTCGTGCACTGATGTATTCCTACTCTA CAATTCGTACGTTGCACAGAGTGAGTAAAAAATTTCGGTTGATATATGACCTGACTGCTCAGTGCAAAGATTCTTAC ACTTGAATTGCTCATTGTGTCGGCCTGTTCGATGCACAACATTTTTAAACCGCTACTCTATTCGTGGCAGACGTGGA CGATGATTTAGTGGGGATGATGCTATCGCGTTGGTAGGTCTTGTGCCTCATGATGACAACTTCAAAACTTTGCCAGG TCCCGAAGAAGCTTTCTTGGTGTCCCGAACAAAAACAGAAACGATTGCAATCATAACGCGTGGTGACGCTTTTTGAT AAATGTCGCCTGGAGTTATCCGCTGCATATATGGGCTAAAATCAAAAAGTAAACCATTACATCATTATTTTTAGGG GAAAAGGTGATATTAGCGTTAGGAGTCAACGTATTCTATGATGCTTTATTTTAGGATCCGTAAAAAACCTAACTTGC TAGTGATATTGCTTATTGGACCAGCACATTCTTTTCCCATCTCAAAGGGACTATGTACTCCCCGTTGAAAGGTATGA TATATTTCTATATATTTTCGTACCAAGATTAAAAAAAATCACACTTCTATACACTTACCCTTTCTGCACATTCAAGAC GATCGCCAAAAATCTAATAAGTTTTATCGTAGAGAATCGAACAAAGCCAACTGAAGTTTTATCTGAGAAACTAATTA TGTGCATCAGCGTATGCAGCAAATGCTCCAGTAATGTGAAGACTTTTCTATCATATTCTAGACGCCTACAAACGCTT CCAATTAGAACTGAATGGTTTTCTGAGAATTATTTTTGTATGAGCAGCTTACGATGAAACTTATGGCTAGTAAAGTG ACGCATCTTGTAGCTACGTACCCATAACTAAAAAAAAA

PhUbx-II

M N S Y F E Q

В

Ph	Ubx-I	MSSSSTMDNFRALL <mark>QG-<mark>GFYG</mark>GGSGG</mark>
Ph	Ubx-II	MNSYFE <mark>QG-</mark> GFYG <mark>GGSGG</mark>
Dm	Ubx	MNSYFEQ <mark>AS</mark> GFYGHPHQA

С

Dm Antp Dm abd-A

Ph	Ubx	TFYPWMALAGANGLRRRGRQTYTRYQTLELEKEFHTNHYL
Ps	Ubx	TFYPWMAIAGANGLRRRGRQTYTRYQTLELEKEFHTNHYL
Af	Ubx	AFYPWMAIAGANGLRRRGRQTYTRYQTLELEKEFHTNHYL
Sm	Ubx	TFYPWMAIAGANGLRRRGRQTYTRYQTLELEKEFHTNHYL
Dm	Ubx	TFYPWMAIAGTNGLRRRGRQTYTRYQTLELEKEFHTNHYL
Dm	Antp	PLYPWMRSQFGKCQERKRGRQTYTRYQTLELEKEFHFNRYL
Dm	abd-A	PRYPWMTLTDWMGSPFERVVCGDFNGPNGCPRRRGRQTYTRFQTLELEKEFHF NHYL

Ph	Ubx	TRRRRIEMAHALCLTERQIKIWFQNRRMKLKKEIQAIKELNEQEKVAQNQKL
Ps	Ubx	TRRRRIEMAHALCLTERQIKIWFQNRRMKLKKEIQAIKELNEQEK <mark>Q</mark> AQNQK <mark>I</mark>
Af	Ubx	TRRRRIEMAH <mark>S</mark> LCLTERQIKIWFQNRRMKLKKEIQAIKELNEQDK <mark>RITPS</mark> KL
Sm	Ubx	TRRRRIEMAHALCLTERQIKIWFQNRRMKLKKEIQAIKELNEQEK <mark>Q</mark> AQ <mark>TAKT</mark>
Dm	Ubx	TRRRRIEMAHALCLTEROIKIWFONRRMKLKKEIOAIKELNEOEK <mark>O</mark> AOAOKA

Fig. S1. Continued.

TRRRRIEIAHALCLTERQIKIWFQNRRMKWKKENKTKGEPGSGGEGDEITPP

TRRRRIEIAHALCLTERQIKIWFQNRRMKLKKELRAVKEINEQARRDREEQE

D	
<i>Ph</i> Ubx	AIKELNEQEKVAQNQKLMQQQQQQQQQQQQQQQTQQTPTVPPNMTPSQAGGGVPDHTGQNPGQN*
<i>Af</i> Ubx	AIKELNEQDKRITPSKLHSNCSSPTGDI <u>SDDE</u> KDEKL*
Dm Ubx	AIKELNEQEKQAQAQKAAAAAAAAAAAVQGGHLDQ*
Ak Ubx	<u>TIKD</u> LNEQEKKQRDTSLTV*

Fig. S1. Continued.

PNAS PNAS

Α

PhDll-e

CGGCTTGGGTGATGTCCAACAGCCACCGCCTCACCTCGCCTCCTATTCACAGTTCCAACAGTACCAACAGACTATGG G L G D V Q Q P P P H L A S Y S Q F Q Q Y Q Q T M CGGGGTACAGTAACATGGGGTACGGCTTCCCCGCCGCCATGTACGGACAGAACGGTTACGGGTACTCCTTGGCAGGG A G Y S N M G Y G F P A A M Y G Q N G Y G Y S L A G TACCCTCACGCTCCCAGTCCGTCATCTGATGTCACAGAGAAGCCGGAGGGCGGAGAAGTCCGCGTAACAGCGAAGGG Y P H A P S P S S D V T E K P E G G E V R V T A K G CAAGAAGATCCGCAAGCCCCGCACCATATACTCGAGTCTGCAGCTGCAGCAGCTCAACAAAATGTTCCAACGGACGC K K I R K P R T I Y S S L O L O O L N K M F O R T AATATTTGGCGCTACCAGAGCGAGCCGAGCTCGCGGCTAAGCTGGGCCTCACGCAGACGCAGGTGAAGATTTGGTTT O Y L A L P E R A E L A A K L G L T O T O V K I W F <u>CAGAACAAGCGGTCCAAGTTCAAGAAGATATACAAG</u>ACACAGGGTGCCGGAGCACAGCTGGCGGTGGACGCAGAACT Q N K R S K F K K I Y K T Q G A G A Q L A V D A E L TGCCGGCGAGATGCAGAACAATCTTGCGCTGATGGTGAACGGGCCGGAGTCTCCTGCCTCGCCAGCGTCCACCATTG A G E M Q N N L A L M V N G P E S P A S P A S T I ACCACAGCATAGACTCCCACCCGACCTCAGGTCATGCAGGGTCCTCCTCTTCCAGAGGTCCTCCTCCAGCTCCCACCT D H S I D S H P T S G H A G S S S S R G P P A P T CCAGAGCCCCACGGTCACTCCTCCCACTCTTCCCCTGCAGCCTCTGGGTCCAGTTCAACCTCTCGGTCGTCAGGCTC E P H G H S S H S S P A A S G S S S T S R S S G S ACAGCAACACATGCACCACCGCAGCACCCACAGCACCACAGCAGCAACAGCACCAGACAGACCGCACTCCC Q Q H M H H P Q H P Q H P Q Q Q Q H Q T D R P H S ACCAGTCACCCGCGCTACACCCCGACCTACAACAGCCCATGAAGTGTGAAGTCATGAATTCACCCGGAGACCTCATG H Q S P A L H P D L Q Q P M K C E V M N S P G D L M GCTCATCAACAGAGGGATCACATGGCTTCACCCAGAGACATGATGACATCTCCACCCATGCCGTCACCCAAGGATAT

Fig. S2. *PhDII* sequences and alignments with DII proteins from other species. (*A*) cDNA sequence for *PhDII*-e; the start codon is green and the stop codon is red. Corresponding amino acids are displayed immediately underneath the nucleotide sequence. Nucleotides that encode the homeodomain are underlined and the sequence corresponding to the *PhDII*-e siRNA is highlighted in yellow. (*B*) Alignment of the homeodomain of DII proteins from *Parhyale hawaiensis* (*Ph*), *Drosophila melanogaster* (*Dm*), *Apis mellifera* (*Am*), *Manduca sexta* (*Ms*), *Cupiennius salei* (*Cs*), and *Homo sapiens* (*Hs*). Amino acid residues that are identical to PhDII-e are shown in black; those that are not identical are in red.

A H O O R D H M A S P R D M M T S P P M P S P K D M

G/	٩TT	CC	٩GC	CAG	CCA	ATG(GCA	GCG	iaat	CC	TGC	CG	TGC	AAC	GGA	GG	4CC	AA ⁻	TGC	GACO	CCC	CGC	CAG	GAT	ſGG	CA	ATG	GAT	GCGG
	Ι	Ρ	A	۹.	Α	М	А	Α	Ν	Ρ	Α	. I	V	Q	G	G	Ρ	,	М	D	Ρ	R	R	Ν	1	Α	М	D	Α
C٦	ГGG	GC	4CA	١TG	GCT	GG (CTA	тсс	GAT	CC(стс	AT(CCA	CAT	GC	GG	GAC	CAC(CCC	GGGA	ACA.	ТСС	CC	AGT	ſGG	GA	ГСС	TGC	GTCT
Α	G	H	ł	М	Α	G	Y	Р	' I	: F	C	Н	Ρ	Н	Α	. (G	Н	Ρ	G	Н	P		Q	W	D	Р	A	S
AC	ССТ	AC	ATC	δTA	сте	GGA	ACC.	АСТ	ACC	GGG	GAC	AT	GGC	GGC	CAG	CG	САТ	CAG	GAT	CA	ЧΤС	4AC	CAG.	ΑΤΊ	ΓAΤ	GA	CGT	AAG	ACGG
٦	Г	Y	М	Y	V	V N	N	Н	Y	G	D	М	Α	ļ	1	Α	Н	Q]	E N	1 (Ç	Q	Ι	М	-	Г	*	
																		-				-	-						
GC	^ <u>\</u> C	тб	τсΔ	<u>۸۸</u>	сбі	۲۵۵۵	GΔC	сбт	тас	°C G (стς	ΔΔ	САТ	тат	ΔТ	ΔΔ-	гат	ТΔ	۸۸۵	^Т	TAC.	ΔΤΔ		GТИ	۸۵	ΔΟ	ດດດ	CGC	татт

GCACTGTCAAACGTAAGACCGTTGCCGCTGAACATTATATATGTTAAACATTACATAACGTAAGACGGGCGCGCTGTT AAACTACATACCTCGAACGTAGGACGGGCGCCAATAAACATAATATGACGTAAAATTGTTAACGTGGGTACCACGCC ACGGTATTCCTTCCTTCCTGCCGAGCAGGCGTACAACACAGGGGCAGCTTCCCTATATGCTTTGGAGGACGATGTCT ACCTTAGGCATATGGCTGCTGACGCCATGTCACAGCCCCAATGCTAGACTTGATGCTTTAGGTAACAACCGTCAGCC GCTAGCTCTAGCCCCAGCC

В

Ph Dll	-e IRKPR	TIYSSLQLQQLNKMFQRTQ	YLALPERAELAAKLG	LTQTQVKIWFQNKF	SKFKKIYK
Ph Dll	-l1 <mark>M</mark> RKPR	TIYSSLQLQQLNK <mark>I</mark> FQRTQ	YL <mark>S</mark> LPERAELAAKLG	LTQTQVKIWFQNRF	RSK <mark>Y</mark> KKLVK
Ph Dll	-12 <mark>M</mark> RKPR	TIYSSLQLQ <mark>H</mark> LNK <mark>I</mark> FQRTQ	YL <mark>S</mark> LPERAELAA <mark>S</mark> LG	LTQTQIKIWFQNRF	RSK <mark>Y</mark> KKLMK
Dm Dll	MRKPR	TIYSSLQLQQLN <mark>RR</mark> FQRTQ	YLALPERAELAA <mark>S</mark> LG	LTQTQVKIWFQNRF	RSK <mark>Y</mark> KK <mark>MM</mark> K
Am Dll	MRKPR	TIYSSLQLQQLN <mark>RR</mark> FQRTQ	YLALPERAELAA <mark>S</mark> LG	LTQTQVKIWFQNRF	RSK <mark>Y</mark> KK <mark>MM</mark> K
<i>Ms</i> Dll	MRKPR	TIYSSLQLQQLN <mark>RR</mark> FQRTQ	YLALPERAELAA <mark>S</mark> LG	LTQTQVKIWFQNRF	RSK <mark>Y</mark> KK <mark>MM</mark> K
<i>Cs</i> Dll	MRKPR	TIYSSLQLQQLN <mark>RR</mark> FQRTQ	YLALPERAELAA <mark>S</mark> LG	LTQTQVKIWFQNRF	RSK <mark>Y</mark> KK <mark>ML</mark> K
<i>Hs</i> Dlx	2 VRKPR	TIYSS <mark>F</mark> QL <mark>AA</mark> LQ <mark>RR</mark> FQ <mark>K</mark> TQ	YLALPERAELAA <mark>S</mark> LG	LTQTQVKIWFQNR	RSKFKK <mark>MW</mark> K

Fig. S2. Continued.

Fig. S3. Morphology of *Parhyale* thoracic appendages. (*A*) Darkfield images of hatchling thoracic appendages. (*B*) Schematics illustrating appendage segments in each of the appendages shown in (*A*). Appendage images and corresponding schematics are oriented with proximal (animal midline) to the left, distal to the right, anterior to the top. The segments are labeled in both (*A*) and (*B*) using the same abbreviations: c, coxa; cp, coxal plate; g, gill; b, basis; i, ischium; m, merus; r, carpus; p, propodus; and d, dactyl. Legs are labeled by their thoracic segment (i.e., T1 is the appendage on the first thoracic segment). T1 is the maxilliped, T2–T3 are gnathopods, and T4 is a walking appendage. Insets are SEM images that show the distinction between the straight bristle on T1 (long arrow) versus the comb-like bristle on T2 (short arrow, comb-like bristle is also on T3). (Scale bar, 100 μ m.)

Fig. S4. siRNAs reduce *Parhyale* Ubx protein expression during development. (*A*) Uninjected embryos show wild-type levels of staining. Note the especially intense staining for Ubx protein in the thoracic segments. (*B*) *PhUbx* siRNA injected embryos that were stained in parallel with the controls in *A*. The embryos show a prominent reduction in staining intensity, but while thoracic expression of PhUbx protein is significantly diminished, it is certainly still present. (Scale bar, 200 μm.)

Table S1. PhUbx siRNA injections

Conc., μM	No. inj.	No. hatch.	No. phenotype (% of hatchlings)
PhUbx siRNA mix			
20	n.a.	56	14 (25%)
67	95	54	13 (24.1%)
PhUbx-A siRNA			
67	52	11	3 (27.3%)
200	76	55	11 (20%)
PhUbx-B siRNA			
67	81	53	25 (47.2%)
200	52	19	5 (26.3%)
PhUbx-C siRNA			
67	47	26	2 (7.7%)
200	35	18	1 (5.6%)
DsRed siRNA mix			
67	110	85	0 (0%)

Injection of *PhUbx* siRNAs creates homeotic transformations of T2 and T3 towards T1. Embryos were injected at the 1-cell stage, or in both cells at the 2-cell stage. See *Methods* and Fig. S1 for the siRNA sequences. "Conc." refers to the siRNA concentration; for *PhUbx* mix and *DsRed* mix, the value represents the concentration of each individual siRNA present in the mix. "No. inj." indicates the number of embryos injected (n.a., not recorded for the 20 μ M *PhUbx* mix experiment); "No. hatch." indicates the number of injected embryos that hatched; "No. phenotype" indicates the number of injected embryos that hatched; "S0 and T3 were observed. Approximately an additional 50 animals were generated with limb transformations from *PhUbx* knockdown with *PhUbx*-B siRNA by other lab members, but were not included in the table because they were not part of experiments where hatching and phenotype precentages were recorded.