Supporting Information.

Label-Free DNA Sensor Based on Surface Charge Modulated Ionic Conductance.

Xian Wang and Sergei Smirnov*

Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM 88003

E-mail: snsm@nmsu.edu

Figure A. Two sides of the membrane with deposited gold electrodes before assembly.

Figure B. Concentration dependence of the conductance for solutions of different [KCl] concentrations in air saturated DI water measured in a platinum electrodes cell with the cell constant of 0.3. The insert shows Kohlrausch plot of $|Z_{mem}[KCl]|^{-1}$ vs $[KCl]^{1/2}$

Figure C. FTIR spectra of membranes modified with 1:7 ratio of amine:ester and activated with gluteraldehyde. Different stages of manipulation with DNA and morpholino are shown: **A**. Activated by gluteraldehyde (before) and after immobilization of aminated ss-DNA. The difference between the two, shown in **B**, exemplifies the net effect of DNA. **C**. The morpholino signal is weak and overlaps with that of ester and Schiff base near 1600 cm⁻¹ so that it is barely recognizable. The hybridized target ss-DNA has a blue shifted peak near 1650cm⁻¹ and is better viewed when the morpholino spectrum is subtracted (**D**). Its amplitude is smaller than with covalently attached DNA (**B**) and denaturing in urea does not appear to fully eliminate it even after two cycles of 2 hour treatment.

Figure D. The Nyiquist and the full Bode plots (with phase) for the membranes with optimized Amine:Ester = 1:7 ratio before and after attachment of ss-DNA. Measurements were performed in 10 μ M KCl.

Time of Au layer deposition	R_1, Ω	R ₂ , Ω
$3 \text{ nm Cr} + 77 \text{ nm Au at } 7.5^{\circ}$	110	>2×10 ⁶
$3 \text{ nm Cr} + 77 \text{ nm Au at } 15^{\circ}$	80	>2×10 ⁶
$3 \text{ nm Cr} + 77 \text{ nm Au at } 20^{\circ}$	65	>2×10 ⁶
$3 \text{ nm Cr} + 147 \text{ nm Au at } 15^{\circ}$	22	150
$3 \text{ nm Cr} + 197 \text{ nm Au at } 15^{\circ}$	21	25

Table A. Variation of the electrode resistance for different thicknesses of deposited gold.