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Sample preparation

Supercoiled pPGM1 plasmid DNA (2981 bp) was purified using Qiagen kits
(Hilden, Germany) as described in (36). Linear DNA fragments were ob-
tained after digestion with either EcoRI (2981 bp fragment), EcoRI/ ScaI
(1444 bp and 1837 bp fragment) or PvuII (474 bp and 2507 bp fragments)
and purified using gel filtration chromatography on a Superose 6 column
(SMART system, Amersham Biosciences). A 474 bp fragment was obtained
by additional purification through an anion exchange Waters Gen-Pak FAX
column. All samples were stored in a buffer of 10 mM Tris-HCl, pH 7.5, 10
mM NaCl, 0.1 mM Na3EDTA at a concentration of 200 - 400 µg/ml.

Electron microscopy

Two different procedures were used for the deposition of DNA molecules:
adsorption to glow-discharged carbon film and to polylysine film (36). In
the first procedure, a stock solution of DNA was 100-200 fold diluted either
in buffer (A) containing 1 mM Tris-HCl, pH 7.5, 0-100 mM NaCl or in buffer
(B) containing 5 mM Hepes, pH 7.5, 5 mM MgAc2, 10 mM KCl. The final
DNA concentration was 0.2-1 µg/ml. A drop of this solution (6-8 µl) was
placed onto the surface of carbon film mounted on an EM grid. Carbon
films, 3-4 nm thick, were glow-discharged in the presence of pentylamine
vapor (residual pressure 150 mTorr, discharge current 2-3 mA, duration
of discharge 30 seconds) as described elsewhere (36). The adsorption was
continued for one to two minutes, then the grids were rinsed with a few
drops of 2% (w/v) aqueous uranyl acetate, blotted with filter paper and
air-dried.

In the second procedure, adsorption to polylysine film was carried out
as described in (36). In summary, carbon-coated EM grids were glow dis-
charged in air (residual pressure (200 mTorr, discharge current 8-9 mA,
duration of discharge 30 seconds, Bal-Tec MED 020 coater) and immedi-
ately coated with poly-L-lysine (molecular mass 2000, Sigma) by adding 8
µl of its aqueous solution at a concentration 3 µg/ml for one minute. The
grids were then drained with a long tip connected to a vacuum-connected
aspirator and air dried. A drop of DNA solution (6-8 µl) buffer (A) was
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placed onto the polylysine film and DNA was allowed to adsorb for 1.5-2
minutes. The grid was rinsed with a few drops of 2% (w/v) aqueous uranyl
acetate, blotted with filter paper and air-dried.

The samples were analyzed with a Philips CM12 electron microscope in
a dark-field mode at a magnification of 28,000-35,000. The negatives were
scanned with a DuoScan T2500 scanner (Agfa, Germany) at 600 - 1200 dpi.
The sampling density of the digital images was 1.21 nm/pixel or 1.51 nm/px
(See Fig. S.1 and 1). The absolute value for DNA rise was found to be 0.32
- 0.33 nm. In Fig. S.1 we show a panel of images of various DNA fragments
mounted under different conditions. For printing, images were flattened
using a high-pass filter with a radius of 250 pixels and subsequently adjusted
for contrast/brightness with inverted grayscale using Adobe PhotoshopTM.

Atomic force microscopy

For AFM imaging samples were prepared as described (36). Briefly, a drop
of DNA solution (10 µl) at a concentration of 2 µg/ml from buffer (B) was
placed onto the surface of freshly cleaved mica (Muscovite, Plano GmbH,
Germany) for two minutes, then rinsed with 1 ml of water, blotted with
filter paper; the remaining water was blown away by the flow of compressed
air. Samples were scanned using a Digital Instruments MultiMode scanning
probe microscope Nanoscope IIIa (Veeco) operating in Tapping Mode. Scan
rates varied from 3 to 5 Hz. Commercial silicon probes TESP-100 (Veeco)
with a typical resonant frequency of around 300 kHz or ultrasharp NSC15
cantilevers (Mikromash, USA) were used throughout the experiments. The
sampling density of the digital images was 7.81 nm/pixel (See Fig. S.1 and
1). The absolute value for DNA rise was 0.31 nm in accordance with
previously published data (11).

Image analysis

The image analysis software was custom developed using in the Matlab tool-
box DIPimage (40). The software is provided as Matlab (The Mathworks,
USA) scripts which can be freely downloaded from
www.diplib.org/home22266. It provides the possibility to analyze images
obtained from either EM or AFM imaging given sufficient image quality. A
brief user manual and a few test images together with presegmented DNA
strands are provided to make the software easily accessible to the field of
experimental polymer studies on flat support.

Although the detection and tracing of the molecules was done fully au-
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Figure S.1: Examples of EM (a-h) and AFM (i) images of DNA fragments
deposited under various conditions and used for measurements. a) 474 bp
fragment, 2.5 mM NaCl, carbon film, b) 474 bp fragment, 10 mM NaCl,
carbon film, c) 474 bp fragment, 50 mM NaCl, carbon film, d) 474 bp
fragment, 100 mM NaCl, carbon film, e) 474 bp fragment, 2.5 mM NaCl,
polylysine, f) 2981 bp fragment, 50 mM NaCl, carbon, g) 2981 bp fragment,
5 mM MgAc2, 10 mM KCl, carbon, h) mixture of 474 bp and 2507 bp
fragments, 5 mM MgAc2, 10 mM KCl, carbon, i) mixture of 474 bp and
2507 bp fragments, 5 mM MgAc2, 10 mM KCl, mica. Scale bars, 100 nm.
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tomated, a human supervisor could reject erroneously segmented or traced
molecules in an interactive step. After automated detection of DNA strands,
a path through its centerline is extracted by an improved Fast Marching al-
gorithm (28) resulting in x, y coordinate pairs tracing the molecule. They
are resampled such that consecutive pairs are separated by 1 nm along the
centerline of the molecule. The actual processing is divided into i) back-
ground subtraction, ii) coarse segmentation of the DNA molecules, iii) end
point refinement and iv) tracing the centerline of the molecules.
First, a gradually changing background is removed by the subtraction of
a low pass filtered version of the original image with a large filter kernel
(Gaussian filter with σ = 25 nm). This is equivalent to high-pass filtering
and results in a background corrected image I. See Fig. 1a) for an example
before pre-processing.
The segmentation of the DNA strands is difficult due to the grainy struc-
ture caused by uranyl staining in combination with the high-resolution of
the EM. As a result, the contrast along the molecules is far from constant
and resembles a string of beads. To reduce the intensity variation along the
contour the images are smoothed in by coherency enhancing diffusion step
(41), resulting in ICED. A single threshold is still not sufficient, therefore
we use an anchor skeleton (42) to segment the molecules, i.e. a thinning
operation in which the ”anchors” are not allowed to be removed. The an-
chors are obtained by a relative low threshold, i.e. Ianchor = ICED < tlow

and the image to be thinned by Ihigh = ICED < thigh with tlow < thigh.
From this skeleton all branches, bifurcations and loops are removed such
that the end points remain. In the following we obtain a better estimate
of the end-points of the strand. First a region growing algorithm is applied
to the pruned skeleton, i.e. the skeleton is allowed to grow into regions for
which I < tedge, where tedge is halfway between fore- and background value
of the flattened image I. From this generated mask we determine the cen-
ter point by a skeleton operation which removes loose ends. The point in
the mask with the largest distance, measured through the mask, from the
mask center is the first end point E1. The second end point E2 is given by
the point in the mask with the largest distance to E1. Now a new anchor
skeleton is made of the mask with E1 and E2 as the only anchors and the
outcome is pruned. This skeleton is dilated to serve as the final mask for
the tracking algorithm. In cases where the dilation would merge two regions
or parts of one strand it is terminated at those specific positions.
The centerline of the DNA molecules is found using an improved Fast March-
ing algorithm (28). The centerline is the minimum-cost path between the
two end points E1 and E2. The minimum arrival time T along all possible
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paths P connecting the two points within a single mask is given by

T = min
∀PE1→E2

∫

Icost(P (s)) ds (S.1)

where Icost is the cost map which is given by the inverse of the local travel
speed. Here the cost map is derived directly from the flattened images by
Icost = ( I−min(I)

max(I)−min(I))
α + 1, with α = 3. The minimum cost path from E1

to E2 is found by solving the Eikonal equation

|∇U | = Icost (S.2)

with U the arrival time map and initial condition U(E1) = 0. We use a fast
marching algorithm (43) for solving Eq.(S.2). From the arrival time map
the estimated centerline can be extracted by descending along the opposite
gradient direction starting at point E2. Due to the smoothness of the in-
tegrated cost images one can obtain sub-pixel accuracy in the location of
the minimum-cost path. At this point we have a sequence of points P (at
spacing 1/3 of a pixel) tracing the DNA centerline from E1 to E2. Normal
fast marching algorithms will always result in a path that is shorter and
stiffer than the centerline of the underlying one-dimensional structure un-
less the structure is straight. To eliminate this problem the iterative scheme
as presented in (28) is used. This scheme basically deforms the image space
such that in the deformed space the underlying structure becomes straight
(see Fig. 1c where red indicates the initial path and blue the path after 25
iterations upon convergence).
Finally, the endpoints are refined from the anchor skeleton with subpixel
accuracy by extending the strand along the tangent of the path and finding
the closest point with the value tedge. Fitting a b-spline through this new
path gives a smooth piecewise polynomial description of the DNA strand
which is used in the actual data analysis. Note that the end parts, i.e. the
first/last 3 pixels, of the estimated centerline are only used for the deter-
mination of the length of the DNA strands, for all other measurements the
data from these parts is ignored.

Image analysis validation

The image analysis algorithm was validated on images generated by Monte
Carlo simulations of the 2D WLC, i.e a homopolymer model with angle
distribution according to Eq.(S.5). The evaluation was performed on noise
free images and on images with added Gaussian and (correlated) Poisson
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Figure S.2: Monte-Carlo simulation of a 474 bp long DNA homopolymer
with P = 55 bp (18.7 nm) and added Gaussian and Poisson noise to match
visually the experimental data. Scale bar, 100 nm.

noise to match visually the experimental data (see Fig. S.2). A DNA strand
was generated by adding Gaussian blobs of σ = 1 nm at the simulated
locations to a test image at spacings of 1 bp (image sampling pitch 1 pixel =
1 nm). In Fig. S.3 we depict the result of an analysis applied to 500 simulated
images containing DNA molecules of 474 bp length with and without noise
(only the non-self intersection molecules were processed). The algorithm
permitted estimation of the underlying persistence length, the kurtosis and
the bend angle histogram. We validated the image processing method for
polymers with persistence lengths ranging from 18.7 nm to 52.7 nm (55
bp to 159 bp). The bias in the found persistence length values was about
∼ 5%, if the fit was performed in the range L ∈ [0, 2P ]. The bias was
always positive, i.e. the persistence length was too high. The kurtosis
was found to be constant with value 3. The bending potential G(θ, L) was
verified for L = 4, 6 and 8 nm and also here the fitted persistence length was
within 5% of the ground truth. Generally, the method performed better on
molecules with larger persistence length (stiffer), e.g. for P = 52.7 nm the
error was <2%. Given the spread in the estimate of the persistence length
from the true simulated coordinates of ∼ 2% for 500 molecules and ∼ 4% if
only the non-self-intersecting molecules are considered, we conclude that the
image processing retrieves the correct coordinates of the DNA centerline. In
Fig. S.4 we show the extracted centerlines for simulated images. The red
line connects simulated DNA positions, the blue line is the initial centerline
found by the fast marching and the green line shows the centerline by the
iterative procedure (28). The latter resembles the ground truth (red) very
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Figure S.3: Result for 500 Monte-Carlo simulated images of homopolymer
474 bp DNA with P = 159 bp (52.7 nm) with (red) and without noise (blue).
Only non self-intersecting molecules are processed; a-c) show estimates of
the persistence length based on 〈cos θ(L)〉 Eq. 5 and

〈
θ2(L)

〉
Eq. 6 and

〈
R2(L)

〉
Eq. 4 respectively; d) shows the negative logarithm − lnG Eq. S.5

of the occurrence of the deflection angle θ for L = 2, 4, 6 and 8 nm.
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(a) (b)

Figure S.4: Part of an image generated with Monte-Carlo simulation of 474
bp DNA with P = 55 bp (18.7 nm). The red line connects the simulated
coordinates spaced at one bp of the DNA strand. In blue is depicted the
initial found centerline and in green the finally used centerline; a) for the
noise free case, b) for added Gaussian and Poisson noise to visually match
the experimental data. Scale: 1 pixel corresponds to 1 nm.

well in the noise free case and even for the noisy case the correspondence is
good.

We observed that the apparent length distribution of the imaged 474
bp DNA as shown in Fig. 2d) is narrow. Traditionally, the length of all
molecules found is set to the a-priori know length of the fragments for the
analysis (11, 12). However, the narrow distribution stimulated us to cali-
brate the magnification once for all images and keep the apparent length dif-
ferences for the imaged ensemble of polymer. A comparison of both methods
showed excellent agreement (found persistence length within 0.2 nm which
equals the fitting error). Therefore we used a magnification calibration for
all analysis. We emphasize that once the procedure is established, we can
use segments of the molecules for the measurements instead of full-length.
This greatly enhances the total scoreable length of DNA molecules in each
data sets as overlapping molecules can be analyzed in parts.

Data analysis

Given a set of coordinates that trace the DNA backbone we compute the sta-
tistical quantities such as

〈
R2
〉

as a function of the contour length l. Extra
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precaution was taken in sampling the strands to avoid correlation between
points in the graph. Reusing all data for computing the quantities for each
length along the DNA yields highly correlated points, hence a smooth curve.
To avoid this, we divided each DNA strand into length segments randomly
drawn from a predefined set of lengths, `i, such that no piece of strand is
used twice and the whole strand is used. The set is given by `i = `max

n i with
0 < i ≤ n, `max the maximum segment length and n the number of different
segments lengths; here n = 20 and `max ≈ 120 nm. This yields a loga-
rithmic length distribution of the segment lengths. In Fig. 2d) we show the
number of segments for the different lengths. The same procedure is applied
to compute the kurtosis (Figs. 2 and 4) and the bending angle histograms
(Fig. 5). For the latter we used n = 3 and `max = L. Furthermore, we inves-
tigated the influence of pre-selecting non self-intersecting molecules only for
the analysis. For a persistence length of P = 18.7 nm less than 4% of 474
bp long molecules are expected to be self intersecting (for P = 52.7 nm less
than 1%). That is why we restrict the fitting to L ∈ [0, 2P ]. Without this
restriction, i.e. fitting

〈
θ2
〉

and < cos θ > over the entire range, would yield
a slight overestimation of P . The error bars given in the Figs.2 and 5 show
one standard deviation which is computed from 20 different random draws
`i from the same set of molecules. Thus the error bars are an indication for
the statistical reliability of that measurement point. For the kurtosis and
〈
D4
〉

we applied error propagation to determine the standard deviation. For
the bending angle distribution − lnG(θ, l) we include the cumulative proba-
bility by evaluation of the error function for the bins in the deflection angle.
The offset of the distribution is not neglected, see Eq. 12. Here a remark
has to be made regarding the estimation of the bending angle. The DNA
molecules are not imaged infinitely sharp but blurred due to the inherent
width of DNA of ∼ 2 nm and the point spread function of the imaging sys-
tem. This effective blurring introduces correlation in the estimated tangents
and thus angles over short separation (L ≈ σ). From the evaluation on test
images we found that this correlation introduces an apparent shorting of
the strand when evaluating θ(L). The amount of apparent shorting was
found to be equal to the standard deviation of the Gaussian spot placed at
the simulated coordinate. As a consequence, a correction transformation of
L → L + σ in the evaluation of θ(L) was applied. Obviously, this effect
is strongest for small L ≈ σ and negligible for L � σ. From EM data we
estimated the effective blurring to correspond to a Gaussian of σ = 1 nm.
The evaluation of R(L) does not suffer from this as the center point is not
influenced by blurring.

The experimentally found kurtosis as a function of contour length (see
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Fig. 2) was compared to Monte Carlo simulations with static bending θ0

on a comparable number of molecules as presented in the experiments (see
Fig. 4). Also for this simulations a non-overlapping logarithmic sampling
of the polymers segments is essential to judge the statistical spread in the
result. Non-uniform probability, i.e. p 6= 0.5, for left and right static bending
was inspected in the same way, as well as an alternative hypothesis p = 0, θ =
0.

Derivation of the expression for the forth order moments of

the end-to-end distance in 2D

The energy required to bend a polymer molecule in two dimensions, i.e. a
flexible rod, is given by (2, §17-18):

E =
Υ I θ2

2L
(S.3)

where θ is the angle between the tangent vectors to the rod separated by a
distance l along the polymer. The macroscopic quantities Young’s modulus
Υ and area moment of inertia I of the molecule are related to the persistence
length P ≡ P3D (2) by Υ I = kBTP where kB is the Boltzmann constant
and T is the absolute temperature. The Boltzmann distribution of states is
given by:

P(E) =
g(E) e

− E
kBT

∫∞

0 g(E′) e
− E′

kBT dE′
. (S.4)

In our case the density of states g(E) is constant and as such can be dropped
from the equation. Combining the above equations gives the normalized
probability distribution function for the bend angle θ:

G(θ, L) =
e−

θ2P
2L

∫∞

−∞
e−

s2P
2L ds

=

√

P

2π L
e−

P θ2

2 L . (S.5)

We must apply binning to calculate the histogram − lnG(θ, L) from the
measurements. For a bin size of ∆θ around a bin center θ we obtain

G(θ, L) = erf

(√

P

2L

(

θ +
∆θ

2

))

− erf

(√

P

2L

(

θ − ∆θ

2

))

. (S.6)

As we investigate the magnitude of θ a factor of 2 enters the above equation.
Neglecting the binning effect simplifies the formula to − lnG(θ, L) ∝ P

L θ2
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Figure S.5: Example of the data analysis of a Monte-Carlo simulation of 500
heteropolymer DNA molecules (474 bp long) with P = 150 bp (51.0 nm),
θstat = 5.3◦ and p = 0.5. Data are shown for i) all simulated strands (×)
and ii) only the non self-intersecting strands (◦). a)-b) show estimates of
the persistence length based on 〈cos θ(L)〉 Eq. 2 and

〈
R2(L)

〉
Eq. 1 respec-

tively; c) shows the negative logarithm − lnG Eq. S.5 of the occurrence of
the deflection angle θ for L = 4 and L = 6 nm; d) shows the normalized

difference (
〈
R4
〉
−
〈
R2
〉2

)/L4 Eq. 9 with fits for the 2D Eq. 8 and 3D Eq. 7

case; e) shows the kurtosis
〈
θ4
〉
/
〈
θ2
〉2

(which is equal to 3 for θ Gaussian
distributed around zero).
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which is most often seen in literature. However, such a plot cannot be used
to judge the quality of the persistence length fit.

The Euclidean distance between points s and t on the curve separated
by a distance L is given by ~R =

∫ L
0 ~u(s) ds with ~u(s) = [cos(θs), sin(θs)]

T the
tangent vector to the curve at contour position s. Now the average second
order moment 〈R2〉 is given by:

〈R2〉 =

∫ L

0

∫ L

0
〈~u(s) · ~u(t)〉 dt ds

=

∫ L

0

∫ L

0
〈cos θs cos θt + sin θs sin θt〉 dt ds

= 2

∫ L

0

∫ t

0
〈cos (θs − θt)〉 ds dt = 2

∫ L

0

∫ t

0
e−

t−s
2P ds dt

= 4PL− 8 P 2 + 8 P 2e−
L
2P .

(S.7)

Note that the argument of the average cosine is always positive, as the
length is always positive. With the average operator defined as 〈·〉 =
∫∞

−∞
·G(θ, L)dθ the average fourth order moment 〈R4〉 can be derived in
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a similar fashion:

〈R4〉 =〈
∫ L

0
~u(s) ds ·

∫ L

0
~u(t) dt

∫ L

0
~u(p) dp ·

∫ L

0
~u(q) dq〉

=

∫ L

0

∫ L

0

∫ L

0

∫ L

0
〈~u(s) · ~u(t) ~u(p) · ~u(q)〉 ds dt dp dq

=

∫ L

0

∫ L

0

∫ L

0

∫ L

0
〈cos(θs − θt) cos(θp − θq)〉 ds dt dp dq

=4
(∫ L

0

∫ t

0

∫ s

0

∫ q

0
〈·〉A1 dp dq ds dt + 0 Lp q s t

∫ L

0

∫ L

s

∫ L

t

∫ L

p
〈·〉A2 dq dp dt ds + 0 Lp qs t

∫ L

0

∫ t

0

∫ t

s

∫ s

0
〈·〉B1 dp dq ds dt + 0 Lp qs t

∫ L

0

∫ t

0

∫ t

s

∫ L

t
〈·〉B2 dq dp ds dt + 0 Lp qs t

∫ L

0

∫ t

0

∫ L

t

∫ s

0
〈·〉C1 dp dq ds dt + 0 Lp qs t

∫ L

0

∫ t

0

∫ t

s

∫ q

s
〈·〉C2 dp dq ds dt

)

0 Lp qs t

=8
(∫ L

0

∫ t

0

∫ s

0

∫ q

0
〈·〉A1 dp dq ds dt+

∫ L

0

∫ t

0

∫ t

s

∫ s

0
〈·〉B1 dp dq ds dt+

∫ L

0

∫ t

0

∫ L

t

∫ s

0
〈·〉C1 dp dq ds dt

)

(S.8)
To handle the correlation between the different integration variables, the
integration is separated in to six parts (see above). In case A we have
non overlapping segments pq and st whereas in respectively case B these
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segments are partially overlapping.

〈·〉A1 = 〈cos (θs − θt) cos (θp − θq)〉
= 〈cos (θs − θt)〉〈cos (θp − θq)〉
= e−

t−s
2P e−

q−p

2P

(S.9)

〈·〉B1 = 〈cos (θs − θt) cos (θp − θq)〉
= 〈cos (θs − θp)〉〈cos (θq − θs) cos (θq − θs)〉〈cos (θt − θq)〉
= 〈cos (θs − θp)〉〈cos2 (θq − θs)〉〈cos (θt − θq)〉

= e−
s−p

2P e−
t−q

2P
1

2

(

1 + e−
2(q−s)

P

)

(S.10)

〈·〉C1 = 〈cos (θs − θt) cos (θp − θq)〉
= 〈cos (θs − θp) cos (θt − θs) cos (θt − θs)〉〈cos (θq − θt)〉
= 〈cos (θs − θp)〉〈cos2 (θt − θs)〉〈cos (θq − θt)〉

= e−
s−p

P e−
q−t

P
1

2

(

1 + e−
2(t−s)

P

)

(S.11)

Combining these equations we obtain

〈R4〉 = 32L2P 2−240 LP 3+696P 4−320

3
LP 3e−

L
2P −6272

9
P 4e−

L
2P +

8

9
P 4e−

2L
P .

(S.12)

Derivation of the kurtosis for the heteropolymer model

For the purposes of analysis we make the following assumptions. First, we
used the Schellman (3) approach for the description of a DNA chain. Second,
Schellman also suggested that a bending potential can still be quadratic for
the non-zero value of static bend. This idea was later used by Cognet,
leading to the following formula of the bending potential

p(θi) = N−1/2e−
g′′i θ2

i
2RT =

1√
2πσ2

e−
(θi−θi,stat)

2

2σ2 . (S.13)

Third, Schellman showed that a good approximation to the shape of real
polymers can be achieved by using the following formula for the persistence
length P ∼ 1/(1 − 〈cos θi,dyn〉 〈cos θi,stat〉) (5), where 〈cos θi,dyn〉 accounts
for the dynamic behavior of polymer chains and 〈cos θi,stat〉 for local static
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bending. The latter means averaging of all static bending angles, i.e. along
DNA position. In another words, it requires double averaging. First, over
an ensemble of molecules and second along the length of the molecules. In
view of small values for both 〈θi,dyn〉 and 〈θi,stat〉 (usually less than about 5
degrees) we use the following formula (13)

P ≈ 2/
〈
θ2
〉

, (S.14)

where
〈
θ2
〉

=
〈

θ2
dyn

〉

+
〈
θ2
stat

〉
(5). Next, we have to keep in mind that

according to the measurement procedure all values for 〈cos θ〉 etc. are ob-
tained using double averaging, i.e. configurational and positional. To start
the analysis let us consider a segment of polymer chain with fixed first and
last points (fixed length along the DNA). This is configurational averaging
similar to (10) with the difference that static bending angles in plane are
included. In the following we use short θ0 ≡ θstat and σ ≡ θdyn. The angel
θn over a length along the DNA n is

θn =

n∑

1

θi =

n∑

1

(θi − θ0
i + θ0

i ) =

n∑

1

(θi − θ0
i ) +

n∑

1

θ0
i =

n∑

1

∆i +

n∑

1

θ0
i ,

(S.15)

with ∆i = θi − θ0
i and since

(
n∑

1
∆i

)2

=
n∑

1
∆2

i +
∑

i6=j

∆i∆j . Using the

harmonic potential of (θi − θ0
i ) as in eq.(S.13) we have

〈
∆2

i

〉
= σ2 and

〈
∆4

i

〉
= 3σ4. From that follows

〈(
n∑

1

∆i

)2〉

=
n∑

1

〈
∆2

i

〉
+
∑

i6=j

〈∆i〉 〈∆j〉 = nσ2 , (S.16)

〈(
n∑

1

∆i

)4〉

=

n∑

1

〈
∆4

i

〉
+ 3

∑

i6=j

〈
∆2

i

〉 〈
∆2

j

〉
+ 4

∑

i6=j

〈∆i〉
〈
∆3

j

〉

︸ ︷︷ ︸

=0

(S.17)

= 3nσ4 + 6
n(n− 1)

2
σ4 = 3n2σ4 . (S.18)

Let us introduce A0
n =

n∑

1
θ0
i for the intrinsic bending over length n. Note

that this is identical for all molecules for a fixed length along the DNA. Thus
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we can write for the moments

(θn)2 =

(
n∑

1

∆i

)2

+
(
A0

n

)2
+ 2A0

n

n∑

1

∆i (S.19)

(θn)4 =

(
n∑

1

∆i + A0
n

)4

(S.20)

and finally

〈

(θn)2
〉

= nσ4 +
(
A0

n

)2
(S.21)

〈

(θn)4
〉

= 3n2σ4 + 6
(
A0

n

)2
nσ2 +

(
A0

n

)4
. (S.22)

It means for a fixed length along the DNA we get for the kurtosis

k = 3− 2(A0
n)4

(nσ2 + (An
0 )2)2

. (S.23)

It is clear that the kurtosis is always smaller than 3 for any sequence ex-
hibiting static bending with A0

n 6= 0.
For our purposes we have to make the second averaging over the position,

which means that we have to average the higher moments of static angles,
this leads to the following formulas

k =

〈〈
θ4
n

〉〉

〈〈θ2
n〉〉2

(S.24)

〈〈
θ2
n

〉〉
= nσ4 +

〈
(A0

n)2
〉

(S.25)
〈〈

θ4
n

〉〉
= 3n2σ4 + 6

〈
(A0

n)2
〉
nσ2 +

〈
(A0

n)4
〉

. (S.26)

To simplify the calculations let us make the assumption that all static bends
occur in plane and behave independent of each other. Moreover, we con-
sider that all static bends are equal in value, i.e. |θ0

i | = |θ0|. Let us also
assume that the choice of sign is random (plus or minus direction have equal
probability of p = 0.5), implying that the behavior of a ”frozen” polymer
chain (no dynamic fluctuations) resembles a one dimensional walk in terms
of angles. From this it follows that

〈
(A0

n)2
〉

= n(θ0)2 (S.27)
〈
(A0

n)4
〉

= (θ0)4(3n2 − 2n) . (S.28)
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Inserting eqs.(S.27,S.28) into eqs.(S.25,S.26) yields

〈〈
θ2
n

〉〉
= nσ2 + n(θ0)2 (S.29)

〈〈
θ4
n

〉〉
= 3n2σ4 + 6n(θ0)2nσ2 + (θ0)4(3n2 − 2n) (S.30)

and finally for the kurtosis k

k = 3− 2

n

(θ0)
4

(σ2 + (θ0)2)2
. (S.31)
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