Supplementary Table 1. Yeast strains

Strain	Relevant genotype
SJR2571	apn1∆::TRP1
SJR2712	ntg1 <i>∆::loxP-TRP1-loxP ntg2∆::loxP-hyg-loxP</i>
SJR2653	apn1Δ::TRP1 mag1Δ:: hyg
SJR2752	apn1∆::TRP1 ogg1∆::loxP-URA3KI-loxP
SJR2750	apn1Δ::TRP1 ung1Δ::loxP-hyg-loxP
SJR2726	apn1∆::loxP-URA3KI-loxP ntg1∆::loxP-TRP1-loxP ntg2∆::loxP-hyg-loxP
SJR2651	apn1 <u></u> <i>∆::TRP1 rev3</i> <u></u> <i>∆::hyg</i> ^R
SJR2794	apn1∆::loxP-URA3KI-loxP ntg1∆::loxP ntg2∆::loxP-hyg-loxP
	ung1 <i>∆::loxP-TRP1-loxP</i>
SJR2780	apn1∆::loxP-URA3KI-loxP ntg1∆::loxP ntg2∆::loxP-hyg-loxP
	rev3Δ::TRP1
SJR2817	apn1∆::loxP-TRP1-loxP ntg1∆::loxP ntg2∆::loxP-hyg-loxP

All strains were derived from SJR2391 [$MAT\alpha$ ura3-52 ade2-101_{oc} trp1 Δ 1 lys2 Δ ::nat leu2-K:TetR'-Ssn6:LEU2 his4 Δ ::TET-lys2 Δ A746F (kan^R)]¹. Deletion of DNA repair/bypass genes was accomplished by one-step disruption with PCR-generated fragments. These fragments contained one of the following individual selective sequences flanked by appropriate locusspecific targeting sequences: hyg², TRP1³, loxP-URAKI-loxP⁴, loxP-hyg-loxP (pSR955), or loxP-TRP1-loxP (pSR954). pSR955 or pSR954 were derived by replacing the kan marker of pUG6⁵ with a Bg/II/SacI fragment containing a hyg marker (from hphMX4²) or a TRP1 marker (from pFA6-TRP1 ³), respectively. When applicable, subsequent Cre/LoxP-mediated deletion of the selective marker was carried out according to described protocols ⁴.

- Kim, N., Abdulovic, A. L., Gealy, R., Lippert, M. J., and Jinks-Robertson, S. Transcription-associated mutagenesis in yeast is directly proportional to the level of gene expression and influenced by the direction of DNA replication. *DNA Repair* 6, 1285 (2007).
- 2. Goldstein, A. L. and McCusker, J. H. Three new dominant drug resistance cassettes for gene disruption in *Saccharomyces cerevisiae*. Yeast **15**, 1541 (1999).
- 3. Longtine, M.S. et al. Additional modules for versatile and economical PCR-based gene deletion and modification in *Saccharomyces cerevisiae*. *Yeast* **14**, 953 (1998).
- Gueldener, U., Heinisch, J., Koehler, G. J., Voss, D., and Hegemann, J. H. A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast. *Nucleic Acids Res.* **30**, e23 (2002).
- Guldener, U., Heck, S., Fielder, T., Beinhauer, J., and Hegemann, J. H. A new efficient gene disruption cassette for repeated use in budding yeast. *Nucleic Acids Res.* 24, 2519 (1996).

	<i>TET-lys2∆A746</i> reversion rate x 10 ⁻⁸		CAN1 forward mutation rate x 10 ⁻⁸	
Genotype	(95% CI)		(95% CI)	
	pRS426	pRS426-GAL1-DUT1	pRS426	pRS426-GAL1-DUT1
apn1	23.0	15.1	99.2	106
	(14.1-28.0)	(5.69-29.7)	(95.1-122)	(55.7-171)
apn1 ntg1 ntg2	171	17.1	224	159
	(143-281)	(16.3-21.4)	(199-308)	(106-287)

Supplementary Table 2. Effect of Dut1 overexpression on mutation rates

Approximately five primary Ura⁺ transformants were inoculated directly into SC-Ura liquid medium supplemented with 2% glycerol, 2% ethanol, and 2% galactose. The following day, parallel 1 ml cultures were started in the same medium using ~500,000 cells of the overnight culture. After 4 days growth at 30°, appropriate dilutions were plated on SCD-Ura to determine the number of plasmid-containing cells, on SCD-Ura-Lys to select Lys⁺ revertants, or on SCD-Ura-Arg supplemented with 60 μ g/ml L-canavanine sulfate (Sigma) to select *can1* mutants. CI = confidence interval.

Supplementary	Table 3. Complex mutations at the 5T2G hotspot

Strain gapatupa	Lys⁺ rate x 10 ⁻⁸	Complex mutations at the 5T2G hotspot	
Strain genotype	(95% CI)	Number/total	Rate (x 10⁻ ⁸)
WT	4.28 (3.35-6.74)	0/117	<0.037*
apn1	14.5 (12.4-18.1)	8/127	0.91
apn1 ntg1 ntg2	150 (125-192)	21/94	34
apn1 ntg1 ntg2 + Dox	1.19 (0.949-1.32)	0/89	<0.013*
apn1 ntg1 ntg2 rev3	5.14 (2.65-10.2)	0/92	<0.057*
apn1 ntg1 ntg2 ung1	8.15 (6.52-14.8)	0/89	<0.092*

Dox = doxycycline; CI = confidence interval

* rate calculated assuming 1 event

Supplementary Figure 1. Model for complex insertions at the 5T2G hotspot. Black lines and letters correspond to newly-synthesized DNA. O = AP site.