Supporting Information for: Cu₃(BTC)₂ for the Removal of Ammonia from Contaminated Air Streams and Its Characterization by MAS NMR

Table S1.	Raw nitrogen	isotherm of	data	collected	for	fresh	Cu ₃ ()	BTC) ₂ .
1 4010 51.	num muogon	150therm v	uuuu	concerca	101	110011	Cust	$\mathbf{D} \mathbf{I} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C}$

	Valuma				
P/Po	(cc/g @ STP)	P/Po	Volume (cc/g @ STP)	P/Po	Volume (cc/g @ STP)
7.40E-06	131.5973333	8.23E-03	331.2526667	7.49E-01	409.658
1.57E-05	156.8873333	9.08E-03	332.1113333	8.02E-01	416.4306667
2.52E-05	170.5893333	1.27E-02	334.8726667	8.51E-01	428.3453333
3.49E-05	185.67	2.11E-02	340.0786667	9.02E-01	435.0033333
4.48E-05	203.4286667	3.14E-02	344.6293333	9.50E-01	436.262
5.48E-05	221.4473333	4.15E-02	347.8806667	9.93E-01	438.438
6.50E-05	238.1533333	5.18E-02	351.1833333	9.46E-01	438.6906667
7.52E-05	250.8346667	6.20E-02	353.2093333	8.98E-01	437.1193333
8.53E-05	259.518	7.15E-02	355.522	8.49E-01	434.9973333
9.46E-05	265.1073333	8.21E-02	357.5853333	7.98E-01	432.2026667
1.97E-04	287.442	9.22E-02	359.4126667	7.49E-01	427.9493333
2.97E-04	295.6933333	1.02E-01	361.2446667	6.99E-01	424.612
3.99E-04	300.5186667	1.50E-01	367.6473333	6.46E-01	423.442
5.03E-04	304.02	2.00E-01	372.6713333	5.98E-01	422.422
6.05E-04	306.5846667	2.50E-01	377.1646667	5.48E-01	419.8686667
7.07E-04	308.556	3.01E-01	380.7493333	4.98E-01	416.6246667
8.13E-04	310.228	3.51E-01	383.8613333	4.49E-01	390.7173333
9.07E-04	311.7653333	4.01E-01	386.6053333	3.98E-01	386.8566667
1.01E-03	312.8886667	4.51E-01	389.0866667	3.48E-01	383.2366667
2.05E-03	319.5493333	4.99E-01	392.3793333	2.98E-01	379.29
3.07E-03	322.9653333	5.50E-01	396.8306667	2.48E-01	375.13
4.08E-03	325.3213333	6.00E-01	399.7253333	1.98E-01	370.3893333
5.04E-03	327.0473333	6.50E-01	402.71	1.48E-01	365.5686667
6.08E-03	328.6513333	7.00E-01	405.8366667	9.83E-02	358.4426667
7.13E-03	330.0133333	7.49E-01	409.658	4.94E-02	347.6233333

Table S2.	Raw	nitrogen	isotherm	data	collected	for	ammonia-exhausted	$Cu_3(BTC)_2$	under	dry
conditions.										

P/Po	Volume (cc/g @ STP)	P/Po	Volume (cc/g @ STP)	P/Po	Volume (cc/g @ STP)
2.22E-05	0.111683168	8.35E-03	0.87480198	8.01E-01	17.95490099
3.45E-05	0.130643564	9.41E-03	0.915346535	8.50E-01	19.32163366
4.57E-05	0.144950495	1.04E-02	0.99029703	9.00E-01	20.58920792
5.58E-05	0.15539604	2.29E-02	1.396237624	9.49E-01	22.85178218
6.47E-05	0.163217822	3.29E-02	1.811881188	9.96E-01	31.54118812
7.21E-05	0.168910891	4.27E-02	2.067970297	9.49E-01	25.1839604
7.84E-05	0.172920792	5.27E-02	2.312623762	8.98E-01	22.33806931
8.36E-05	0.175544554	6.27E-02	2.478168317	8.48E-01	20.3539604
1.08E-04	0.190792079	7.25E-02	2.946633663	7.96E-01	21.24836634
1.08E-04	0.19019802	8.19E-02	4.363267327	7.48E-01	19.87831683
2.07E-04	0.237376238	9.25E-02	3.252277228	6.98E-01	18.41193069
3.16E-04	0.271287129	1.02E-01	3.953564356	6.47E-01	17.11475248
4.20E-04	0.29509901	1.52E-01	5.523762376	5.97E-01	15.61465347
5.23E-04	0.313514851	2.02E-01	6.982524752	5.48E-01	14.06212871
6.25E-04	0.328613861	2.52E-01	7.947772277	4.97E-01	14.07811881
7.29E-04	0.341435644	3.02E-01	8.209752475	4.47E-01	12.88207921
8.30E-04	0.352128713	3.51E-01	9.567673267	3.97E-01	9.84009901
9.34E-04	0.364554455	4.01E-01	9.684455446	3.47E-01	9.316782178
1.01E-03	0.406039604	4.51E-01	11.57851485	2.97E-01	8.659059406
2.08E-03	0.515445545	5.01E-01	12.10529703	2.47E-01	7.361138614
3.17E-03	0.59509901	5.51E-01	13.06212871	1.97E-01	6.510148515
4.21E-03	0.656386139	6.01E-01	13.93490099	1.47E-01	4.928762376
5.25E-03	0.71	6.51E-01	14.5879703	9.72E-02	3.080940594
6.28E-03	0.78039604	7.01E-01	15.19019802	4.73E-02	1.151386139
7.32E-03	0.832277228	7.50E-01	17.15465347	8.01E-01	17.95490099
		I	L		

Table S3. Raw nitrogen isotherm data collected for ammonia-exhausted $Cu_3(BTC)_2$ under wet conditions.

P/Po	Volume (cc/g @ STP)	P/Po	Volume (cc/g @ STP)	P/Po	Volume (cc/g @ STP)
1.39E-05	2.986909091	8.17E-03	24.42672727	8.00E-01	137.5743636
2.08E-05	3.620727273	9.59E-03	21.55381818	8.52E-01	159.7570909
3.51E-05	4.562363636	1.02E-02	21.89018182	9.01E-01	266.4618182
4.26E-05	4.981454545	2.21E-02	24.32127273	9.52E-01	369.3545455
5.44E-05	5.496	3.27E-02	27.53490909	9.95E-01	440.0254545
6.00E-05	5.728909091	4.23E-02	32.42254545	9.47E-01	410.0854545
7.44E-05	6.226545455	5.27E-02	33.64054545	9.01E-01	361.3054545
8.07E-05	6.429090909	6.27E-02	31.52054545	8.50E-01	307.8127273
9.76E-05	6.889818182	7.27E-02	33.28527273	8.00E-01	197.9527273
1.04E-04	7.057090909	8.27E-02	35.40872727	7.49E-01	131.3129091
2.28E-04	9.108909091	9.26E-02	34.99618182	7.00E-01	104.7838182
3.00E-04	9.923636364	1.02E-01	32.36163636	6.49E-01	88.32090909
4.02E-04	10.83963636	1.52E-01	39.65454545	5.98E-01	79.06127273
5.11E-04	11.65690909	2.02E-01	48.22818182	5.48E-01	69.51545455
6.20E-04	12.33272727	2.51E-01	57.16581818	4.98E-01	60.31090909
7.28E-04	12.91654545	3.02E-01	59.64636364	4.47E-01	55.48327273
8.02E-04	13.28527273	3.51E-01	67.33872727	3.98E-01	48.38327273
9.29E-04	13.84963636	4.01E-01	72.82727273	3.48E-01	40.35472727
1.00E-03	14.37890909	4.51E-01	76.46181818	2.98E-01	31.83036364
2.03E-03	17.40981818	5.00E-01	86.48127273	2.48E-01	22.66090909
3.09E-03	19.394	5.50E-01	93.54818182	1.98E-01	14.836
4.05E-03	20.70854545	6.00E-01	99.996	1.48E-01	2.489818182
5.08E-03	21.84545455	6.50E-01	102.3325455	9.73E-02	-8.130909091
6.13E-03	22.80545455	7.00E-01	110.3447273	4.77E-02	-15.92727273
7.16E-03	23.67109091	7.49E-01	126.1750909		

Figure S1. ¹H MAS NMR spectrum obtained for Soxhlet-Extracted (MeOH) Cu₃(BTC)₂.

Figure S2. ¹H MAS (left) and ¹³C CP-MAS (right) NMR spectra (9.4 T, $v_R = 7000$ Hz) obtained for (NH₄)₃BTC. Inset shows splittings of CO₂⁻ (173.0, $J_{CON} = 103$ Hz) and =C< (134.8, $J_{CCON} = 85$ Hz) resonances attributed to ¹⁴N (I = 1) J-couplings, which are smaller for the more distant =C< carbon. The methine (CH) carbon (131.0 ppm; furthest removed from the NH₄-groups) does not exhibit detectable splittings.

ACS Paragon Plus Environment

Figure S3. ¹³C–¹H CP-MAS NMR dipolar recoupling spectra (9.4 T, $v_R = 7000$ Hz) obtained for (NH₄)₃BTC. The top spectrum is the "S_o" spectrum obtained in the absence of ¹H recoupling pulses. The bottom spectrum, "S", shows the reduced signal intensity resulting from the applied ¹H recoupling pulses.

2

3

4

5

6

7 8

9 10

11 12

13 14

15

16 17 18

19

20 21

26 27

28 29

30

31

32

33

34

35

36

37 38

39 40

41

42

43 44

45

46 47 48

49 50

51

52 53

```
Figure S4. MAS NMR <sup>13</sup>C-<sup>1</sup>H dipolar recoupling pulse sequence for Varian NMR
spectrometers.
 /* Modification of Varian XPOLAR1 sequence to
   * 13C-1H Dipolar Recoupling Pulse Sequence
  * Ishii et al. JACS 125 (2003) 3438-3439
  * George W. Wagner, U.S. Army ECBC
  */
 /* xpol = 'y' gives cross polarization
             'n' gives direct polarization
    pw -
              the observe 90 degree pulse
              proton 90 degree recoupling pulse
    pw2 -
     cntct - hartmann-hahn contact time
     dipolr - controls fine decoupler power during acquisition time.
  */
 #include <standard.h>
 static int table1[4] = {0, 1, 2, 3};
static int table2[4] = {1, 1, 3, 3};
static int table3[4] = {3, 0, 3, 0};
static int table4[4] = {1, 2, 1, 2};
 pulsesequence()
 {
 /* declare new variables */
                        dutycycle,
     double
                        pw2,
                        cntct,
                        srate,
                        crossp,
                        dipolr;
     char
                       xpol [MAXSTR] ;
 /* set variables */
    cntct = getval("cntct");
    at = getval("at");
    pw2 = getval("pw2");
    crossp = getval("crossp");
dipolr = getval("dipolr");
     srate = getval("srate");
    getstr("xpol", xpol);
  /*check dutycycle -
        do not accept dm=y or decoupler duty cycles in excess of 20% */
    dutycycle = (d1 + d2) / (cntct + pw + d1 + d2 + at);
    fprintf(stdout, "Duty cycle is %5.2f%%. Doing ", (1.0 - dutycycle) * 100);
    if ((dutycycle < 0.8) || (dm[0] == 'y'))
```

2

3

4

5 6 7

8

9

10

11

12

13

14 15

16

17

18

19

20

21

22 23

24 25

26 27

28

29

30

31 32

33

34

35

36 37

38

39

40

41

42

43 44

45 46

47 48

49

50

51

52

53 54

55 56

57 58

59

```
{
      fprintf(stdout, "ABORT! The duty cycle must be less than 20%%.\nPlease adj
      abort(1);
   }
/*begin pulse sequence*/
   if (xpol[0] == 'n')
                                 /*direct polarization (dp)*/
   {
      fprintf(stdout, "Bloch decay");
      settable(t1,4,table1);
      settable(t3,4,table3);
      settable(t4,4,table4);
      setreceiver(t1);
      status(A);
      decpwrf(dipolr);
      delay(d1);
      rcvroff();
      delay(rof1);
      rgpulse(pw, t1, 0.0 , 0.0);
      status(B);
   }
   else
                                 /* cross-polarization (cp)*/
      fprintf(stdout, "Cross polarization");
      settable(t1,4,table1);
      settable(t2,4,table2);
      settable(t3,4,table3);
      settable(t4,4,table4);
      setreceiver(t1);
      status(A);
      decpwrf(crossp);
      delay(d1);
      rcvroff();
      delay(rof1);
      decpulse(pw, t2);
      status(C);
      decphase(zero);
      rgpulse(cntct, t3, 0.0, 0.0);
      status(B);
      decpwrf(dipolr);
   }
/* Begin Dipolar Rephasing Pulses */
      delay(0.5 / srate - pw2);
      decpulse(2.0 * pw2, t1);
delay(0.5 / srate - pw - pw2);
      rgpulse(2.0 * pw, t1, 0.0, 0.0);
      delay(0.5 / srate - pw - pw2);
      decpulse(2.0 * pw2, t1);
      delay(0.5 / srate - pw2);
      status(C);
   fprintf(stdout, ".\n");
/*begin acquisition*/
   rcvron();
}
```


Figure S5. Comparison of X-ray patterns of different $Cu_3(BTC)_2$ starting materials. Sample (a) is a powder from well-formed framework $Cu_3(BTC)_2$ material whereas sample (b) indicates some differences from the well-formed framework $Cu_3(BTC)_2$ material.

Figure S6. Comparison of X-ray patterns of different $Cu_3(BTC)_2$ materials exposed to humid ammonia vapors. Sample (a) is a powder from well-formed framework $Cu_3(BTC)_2$ material whereas sample (b) indicates some differences from the well-formed framework $Cu_3(BTC)_2$ material.

Figure S7. Comparison of PXRD pattern of experimental and Mercury simulation¹ of $Cu_3(BTC)_2$ material.

Page 45 of 45

This	paper	Mercury* simulation (Chiu data)			
2-Theta	2-Theta Relative		Relative intensity ^a		
6.5685245	0.2772	6.71554	0.9740		
9.3212668	0.3360	9.48925	0.6613		
11.44361	1.0000	11.6326	1.0000		
13.208727	0.3507	13.4397	0.4039		
14.826751	0.1117	14.6374	0.2884		
17.285308	0.1872	17.4742	0.3719		
18.861305	0.2653	19.0502	0.2761		
19.996023	0.1181	20.2059	0.2274		
25.753667	0.2240	25.9634	0.2088		
29.136809	0.1783	29.3465	0.2433		
38.95002	0.1219	39.0966	0.2189		

Table S4. Comparison of PXRD peak values of experimental and Mercury simulation of $Cu_3(BTC)_2$ material.

*Mercury simulation conditions:

- 1-50° 2 theta

- 0.02101° (2 theta) Step size (exact experimental step size was 0.021013° (2 theta))

- FWHM 0.5 (2 theta)

^a Relative intensity above.1 are only listed for peak PXRD values

References

¹ http://www.ccdc.cam.ac.uk/free_services/mercury/.