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Genome wide microarray technology and array datasets 
The proposed methodology has been applied to public and proprietary copy number and gene 
expression data obtained using Affymetrix Human Mapping 100K or 250K and HG-U133 
Plus 2.0 arrays, respectively. The Affymetrix Human Mapping 100K set comprises a set of 
two arrays using Xba and Hind GeneChip® Mapping assays and provides the genotyping 
analysis of 116,204 SNPs, designed to map a total of 9,899 unique Entrez Gene IDs. The 
Human Mapping 250K Nsp array is part of the 500K set and allows monitoring 
approximately 262,000 SNPs mapped to a total of 10,514 unique Entrez Gene IDs. 
Affymetrix Human Genome U133 Plus 2.0 array allows the gene expression profiling of 
47,401 human transcripts and variants, corresponding to 19,872 unique Entrez Gene IDs. 
The computational procedure was tested using data derived from four major datasets:  
 Caki-1 (a tumor cell line); 
 Astro (a collection of astrocytoma samples); 
 RCC (renal carcinoma samples); 
 reference DNA (normal individuals), 

comprising a total of 263 Human Mapping arrays and 66 HG-U133 Plus 2.0 gene chips. 

Caki-1: tumor cell line dataset 
The Caki-1 dataset represents the genomic and gene expression profiling of a tumor cell line 
and includes 2 mapping arrays (i.e. a complete 100K set) and 6 HG-U133 Plus 2.0 chips. The 
Caki-1 cell line is derived from the skin metastasis of a clear cell renal carcinoma, is included 
in the NCI-60 cell line collection, and is characterized by a nearly triploid chromosomal 
complement and a very complex karyotype (1,2). Gene expression profiling was carried out 
in triplicate hybridizing a commercial human reference RNA (HRR; Stratagene Universal 
Human Reference RNA) and the RNA extracted from Caki-1. Both genotyping and gene 
expression raw data are available on Array Express (E-MEXP-902 and E-MEXP-448). 
Additionally, Caki-1 DNA was also profiled using a Human Mapping 250K Nsp array (raw 
data are available upon request). 

Astro: astrocytoma dataset 
The Astro dataset comprises paired genotyping and gene expression data derived from 12 
astrocytoma samples (HF0017, HF0108, HF0152, HF0491, HF0608, HF1139, HF1232, 
HF1269, HF1344, HF1442, HF1469, and HF1511) selected from the collection of (3). The 
dataset accounts for 24 mapping arrays (Human Mapping 100K) and 12 HG-U133 Plus 2.0 
gene chips. In the gene expression analysis, the non-tumor population is represented by a set 
of 34 brain samples derived from epileptic (NT Brain: HF0088, HF0120, HF0131, HF0137, 
HF0151, HF0163, HF0171, HF0211, HF0232, HF0295, HF0303, HF0377, HF0383, HF0467, 
HF0512, HF0523, HF0526, HF0533, HF0593, and HF0616) and normal individuals (NT 
Brain: NT1, NT2, NT3, NT4, NT5, NT6, and NT7). All raw data have been downloaded 
from the Repository of Molecular Brain Neoplasia Data 
(https://caintegrator.nci.nih.gov/rembrandt/) and from GEO (GSE6109 and GSE4290). 

RCC: clear cell renal carcinoma dataset 
The RCC dataset is described in (4) and comprises genotyping and gene expression data of 12 
clear cell renal carcinoma patients (28RA, 33BV, 36MML, 37BA, 27CG, 40RR, 45DM, 
46SA, 47CA, 49CA, 50PC, and 51MI). The genomic DNA of the 12 RCC tissues and of the 
corresponding blood samples (Blood) were analyzed using 48 Human Mapping 100K arrays. 
Gene expression profiling was performed on the RNA samples obtained from the 12 RCC 
tissues and from 11 renal cortex samples (Cortex: 28RA, 32GM, 33BV, 35PA, 36MMl, 
37BA, 40RR, 41SG, 44DE, 50PC, and 51MI) using 23 HG-U133 Plus 2.0 arrays. Patient 
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descriptions and raw data are available at Array Express (E-TABM-284/E-TABM-283 and E-
TABM-282). 

Reference DNA dataset 
The genotyping data of two sets of normal individuals have been downloaded from the 
Affymetrix Data Resource Center (http://www.affymetrix.com/support/datasets.affx) and 
used as a common reference for copy number analysis and SODEGIR tuning. Specifically, 
the first reference set comprises 10 samples (AffyRef: NA17201, NA17202, NA17203, 
NA17204, NA17205, NA17206, NA17207, NA17208, NA17210, NA17211), randomly 
selected from the Mapping 100K CCNT Reference Data, while the second is a subset of the 
Mapping 100K HapMap Trio Dataset (HapMap: 30 male and 30 female CEU founders). The 
HapMap samples were also used as the reference set in all un-paired genotyping analyses. 
Additionally, a subset of the Mapping 250K HapMap Trio Dataset (HapMap250, 48 samples, 
Affymetrix Data Resource Center) was used as reference in the analysis of Caki-1 with the 
Human Mapping 250K Nsp array. 
 
Copy number and LOH analysis 
Chromosome Copy Number Analysis Tool 4.01 (CNAT 4.01, Affymetrix, 2007) and Copy 
Number Analyzer for GeneChip 2.0 (CNAG 2.0, (5)) were used to calculate SNP copy 
number (CN) and loss of heterozygosity (LOH) from mapping arrays genotyping data. 
Specifically, in all dataset, CN and LOH were determined through an un-paired analysis 
using HapMap samples as normal genotype reference. In addition, a paired analysis was 
carried out to quantify CN and LOH for the RCC dataset where tumor tissue and blood pairs 
were available (RCCp). 
In details, CNAT 4.01 was applied to quantify the log2 copy number (Log2Ratio), using 
Gaussian smoothing at a fix bandwidth of 2 Mb, and the copy number state (CNState), using 
the Hidden Markov Model (HMM) Transition Decay at 1 Mb. The Astro dataset could not be 
processed using CNAT 4.01 because DTT (or CAB) files were not available. CNAG 2.0 was 
applied to all datasets to calculate the raw total log2 copy number (Log2Ratio_AB), selecting 
the averaging mode performed over 10 SNPs, with the exclusion of min and max values. The 
total copy number N_AB (i.e., the SNP copy number state) was determined through an HMM 
estimation and LOH events were described by the LOH likelihood. In the case of the Caki-1 
dataset, the Log2Ratio_AB values have been calculated for the 50K Xba, the 50K Hind, the 
combined 100K array set and the 250K Nsp. All CNAT and CNAG plots were visually 
inspected to identify regions affected by copy number gain and loss and regions of inferred 
LOH. Table 1_SI highlights the different data input, data output, and settings of CNAT 4.01 
and CNAG 2.0. 
Table 1_SI: Different data input and settings of CNAT 4.01 and CNAG 2.0 software. 

 CNAT 4.01 CNAG 2.0 
Data input .CAB or .DTT/.CHP .CEL and .CHP 

Data output 

Probe set, Chromosome, 
Position, Log2Ratio, 
HmmMedianLog2Ratio, 
CNState, NegLog10PValue 

AffymetrixSNPsID, rsID, 
Chromosome, Position, 
Log2Ratio_AB, N_AB, 
Call_test, LOH_likelihood 

Paired/un-paired analysis yes/yes yes/yes 
CN analysis Gaussian smoothing Average best fit 
LOH analysis LOH likelihood LOH likelihood 
CN state HMM Transition Decay HMM 
Annotation NCBIv36.1 (March 2006) NCBIv35 (May 2004) 
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The SODEGIR method  
Overview 
SODEGIR is a bioinformatics procedure that allows: 

i) identifying genome-wide, concomitant alterations of copy number (CN) and gene 
expression (GE) in single samples; 

ii) extending the integrative analysis to entire datasets. 
These two issues are addressed in three steps composing the method (Figure 1_SI):  

1. statistical estimation of copy number and transcriptional scores at common genomic 
positions; 

2. identification of significant overlap of differentially expressed and genomic 
imbalanced regions (SODEGIR) on a single-sample basis; 

3. aggregation of SODEGIRs from different samples to obtain global signatures of 
tumor types. 

Step 1 stems from the Locally Adaptive Statistical procedure (LAP), a statistical approach for 
the identification of imbalances in regional gene expression (6). LAP is based on a kernel 
regression analysis which allows integrating high-throughput data with the structural 
information of a genome without assuming any particular gene distribution. This 
methodology is here extended to SNP copy number data, with the aim to estimate CN values 
at gene positions and detect alterations of regional copy number. 
Step 2 statistically assesses the CN and GE statuses on common genomic positions (e.g., 
Entrez Gene IDs) and identifies the SODEGIRs, i.e. those chromosomal regions where the 
gene CN and GE statuses are concordant at a given statistical threshold, in a single sample. In 
particular, we define a SODEGIR as deleted (status 1) when the CN status is loss and the GE 
one is down-regulation, as amplified (status 3) when the CN is gain and the GE is up-
regulation, and as unchanged (status 2) when either CN or GE are neutral. 
Step 3 elevates the analysis from the single to the multiple-sample level, statistically 
combining the various single-sample SODEGIRs to assess a unique SODEGIR signature of 
the entire dataset. 
The entire procedure is coded in several R functions which depend on R and Bioconductor 
packages and are available at the companion web site (http://www.xlab.unimo.it/SODEGIR/). 

Input and output data 
The inputs to the SODEGIR methods are as follows: 
− a .cn file for each sample containing CN data either in terms of absolute values or log2 

ratios for SNP probe sets. The .cn file is normally a data table in tab-delimited format, 
containing different columns depending on the output settings of the originating software. 
As an example, a CN data matrix obtained from CNAT 4.01 contains the Log2Ratio 
column while a .cn file derived from CNAG 2.0 has Log2Ratio_AB column as identifiers 
of the CN values for each SNP (Table 1_SI); 

− a .ge file for each sample representing the gene expression data in terms of absolute 
values for transcript probe sets. Specifically, for Affymetrix arrays the .ge file is a .CEL 
file whose probe level data are converted to expression values using robust multi-array 
average procedure (RMA) (7); 

− a dna_annotation file with all information about the SNP probes contained in the 
mapping array. The dna_annotation file allows annotating each probe identifier in the 
array in terms of chromosome and chromosomal position (in bp). In the case of multiple 
SNP arrays, the file is constructed merging the information contained in NetAffx single 
array annotation files (e.g., 
http://www.affymetrix.com/support/technical/byproduct.affx?product=100k). 
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Figure 1_SI: The workflow of the SODEGIR procedure. 
 

− an rna_annotation file with all the annotation about probe sets contained in the GE 
array. The rna_annotation file links each probe identifier in the array with Entrez Gene 
ID, gene symbol and description, chromosome, chromosomal position (in bp), strand, and 
cytoband. In the case of Affymetrix arrays, the file has been constructed using the 
Bioconductor annotation data package hgu133plus2. Probe sets without a unique 
chromosomal position and those referring to the X and Y chromosomes were filtered out. 
This re-annotation step resulted in the selection of 41,192 probe set IDs. 

− a sample_info file which contains .cn and .ge filenames, the sample names and the 
sample phenotype (e.g., normal, tumor) to be used along the analysis. The sample_info 
file can be supplemented with any additional information that can be included in the R 
AnnotatedDataFrame class representing the sample; 

− a parameters file containing default values for a series of parameters, as the position of 
the ID column, the position of CN data column, and the number of rows to skip (e.g. rows 
containing comments and/or column labels) in the .cn files, the number B of 
permutations, the type of CN data (absolute or log2ratios), and the threshold limit for the 
genome median (see the section on CN score). 

Four different files for each sample constitute the outputs of the SODEGIR analysis: 
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− a .lscn file, i.e. a data table in .csv format, containing gene CN score, q-value, and 
complete annotations (Entrez Gene ID, chromosome, position, cytoband, strand) for any 
gene of the rna_annotation file; 

− a .lap file, i.e. a data table in .csv format, containing GE scores, q-value, single probe and 
regional fold-changes, and complete annotations (Entrez Gene ID, chromosome, position, 
cytoband, strand) for any gene of the rna_annotation file; 

− a .SDG file that combines all the information contained in the .lscn and .lap files, plus 
reports the CN, GE and SODEGIR statuses at given q-value and score thresholds for any 
gene of the rna_annotation file; 

− a .SDG_table file specifying the characteristics of all CN, GE and SODEGIR clusters 
(i.e. gain and loss, up- and down-regulated, deleted and amplified regions) in terms of 
chromosome, start, end, length, cytoband, number of associated genes and SNPs and 
symbols of genes contained in the region. 

Moreover, the SODEGIR procedure outputs four files for each dataset: 
− a .cnSDGset file, i.e. a data table in tab-delimited format, containing the CN status of all 

samples (as derived from the various .sdg files), the p- and q-values of genes with CN 
status shared in a statistically relevant number of samples (common CN signature), and 
complete annotations (Entrez Gene ID, chromosome, position, cytoband, strand) for any 
gene as reported in the rna_annotation file; 

− a .geSDGset file, i.e. a data table in tab-delimited format, containing the GE status of all 
samples (as derived from the various .sdg files), the p- and q-values of genes with GE 
status shared in a statistically relevant number of samples (common GE signature), and 
complete annotations (Entrez Gene ID, chromosome, position, cytoband, strand) for any 
gene of the rna_annotation file; 

− a .SDGset file, i.e. a data table in tab-delimited format, containing the SODEGIR status 
of all samples (as derived from the various .sdg files), the p- and q-values of genes with 
SODEGIR status shared in a statistically relevant number of samples (dataset SODEGIR 
signature), and complete annotations (Entrez Gene ID, chromosome, position, cytoband, 
strand) for any gene of the rna_annotation file; 

− a .SDGset_table file specifying the characteristics of all CN, GE and SODEGIR clusters 
(i.e. gain and loss, up- and down-regulated, deleted and amplified regions) shared, at a 
given q-value threshold, in a statistically relevant number of samples. Clusters are 
annotated in terms of chromosome, start, end, length, cytoband, number of associated 
genes and SNPs and symbols of genes contained in the region. 

Finally, SODEGIR results are visualized at various levels of detail. In particular, the outputs 
can be represented in: 
− a genome view where regions of CN gain/loss, GE up-/down-regulation and deleted (CN 

loss and GE down-regulation) and amplified (CN gain and GE up-regulation) SODEGIRs 
are shown as boxes on each chromosome. As in the cPlot view of R geneplotter package, 
horizontal lines represent chromosomes and grey bars indicate gene positions. Three lines 
per chromosome and shades of red and green are used to display CN gain/loss, GE 
up/down, and SODEGIRs amplified and deleted; 

− a chromosome view displaying CN (N_AB) and LOH statuses as estimated by the 
CNAG HMM on each SNP probe, CN, GE, and SODEGIR statuses as determined by the 
SODEGIR procedure on gene positions for a given chromosome in a single sample . The 
grey bars indicate SNP probes (in N_AB and LOH lanes) or Entrez Gene ID positions (in 
CN, GE and SODEGIR lanes). Red and green bars in the N_AB lane indicate N_AB 
greater than 3 and less than 1, respectively. Blue bars in the LOH lane highlight SNP 
probes with an inferred LOH value greater than 20. Green bars in CN, GE, and 
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SODEGIR lanes indicate loss, down-regulation, or deletion (i.e. a status of 1). Red bars in 
CN, GE, and SODEGIR lanes indicate gain, up-regulation, or amplification (i.e. a status 
of 3).  

− a SDG chromosome view which highlights the SODEGIRs on a given chromosome in 
all samples of a dataset. The grey bars indicate Entrez Gene ID positions and the color 
scheme is the same as in the SODEGIR lane of a single sample chromosome view (i.e. 
green bars for status 1, red bars for status 3); 

− a boxplot of CN and GE relative levels in SODEGIRs. This plot allows quantifying the 
impact of gene copy number on global gene expression levels in the entire genome 
(genome boxplot) or, eventually, in a single chromosome (chromosome boxplot). CN 
levels are categorized into 5 bins highlighting 2 ranges of loss (green boxes, gene CN 
score less than -0.1), 1 range of diploidy (white box, gene CN score between -0.1 and 0.1) 
and 2 ranges of gain (red boxes, gene CN score greater than 0.1). The GE values in the y-
axis correspond to GE scores;  

− a q_plot reporting the aggregation of CN, GE and SODEGIR results for the analysis of an 
entire dataset. The statistical significance for the aggregation of gains/losses, up/down-
regulations and amplifications/deletions is displayed as q-value. Chromosome positions 
are indicated along the y-axis with the centromere positions identified by yellow dotted 
lines. Gains, up-regulations and amplifications (red lines) and losses, down-regulations 
and deletions (green lines) that are shared by a statistically relevant number of samples 
surpass the significance threshold (blue dotted line, q-value≤0.05). 

Step 1 
The first step transforms SNP copy number and gene expression data into CN and GE scores 
and integrates them with structural information (i.e., chromosomal coordinate), using a kernel 
regression estimator with adaptive bandwidth. Resembling LAP (6), the kernel smoothing 
allows estimating CN and GE scores at the chromosomal locations of Entrez Gene IDs from 
the probe set data of the microarrays. This first step can be applied separately on SNP copy 
number and on gene expression data. In the case the input are only SNP copy number data, 
the procedure is named Lokern Smoothing Copy Number (LSCN), while when only gene 
expression signals are available the procedure is a revised version of LAP. 

CN score 
In the LSCN part of the procedure, CN data are transformed into a score ∆ ௜ܰ,௝

ௌே௉  which 
quantifies, for each SNP i in any sample j, the amplitude of the CN variation from the diploid 
status. Since several evidences questioned the assumption that normal samples have copy 
number 2 everywhere (8-10), the CN value of the diploid status is not set to 2 (i.e., 
log2ratio=0), but is estimated from the median CN calculated over all i SNPs. Although not 
equal to zero, the CN medians calculated over all samples of an entire dataset are 
nevertheless tightly distributed around zero (CN=2), irrespectively that the dataset represents 
normal or pathological samples (Figure 2_SI). As such, the CN score ∆ ௜ܰ,௝

ௌே௉ can be defined 
as follows: 
 
∆ ௜ܰ,௝

ௌே௉ ൌ ௜ܰ,௝
ௌே௉ െ min൫ ෩ܰ௝

ௌே௉, ൯ (1)ܰݎ݄ݐ

 

where ௜ܰ,௝
ௌே௉ is the copy number of SNP i in sample j, ෩ܰ௝

ௌே௉ is the median CN calculated over 
all the i SNP probes of array j and 0.05=ܰݎ݄ݐ is an upper threshold to cope with potential 
outlying samples (Figure 2_SI). 
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Figure 2_SI: Box plot of CN medians for all samples of all considered datasets. The upper 
dot in the RCCp dataset represents an outlying sample. 

GE score 
In its original version (6), LAP calculates a statistic for ranking probes in order of strength of 
differential expression in two or more populations. Specifically, given a matrix X of 
normalized expression levels xij for gene i in sample j and a response vector Y for n samples, 
the score ∆ܧ௜

௣௥௢௕௘ is defined according to Tusher et al. (11): 
 
௜ܧ∆

௣௥௢௕௘ ൌ
௜ݎ

௜ݏ ൅ ଴ݏ
 (2)

 
where the quantities ri (i.e., the change in gene expression) and si (i.e. the standard deviation 
of the data) of each probe set i assume different formulations in different experimental 
designs (e.g., two- and multi-class problems, paired data, quantitative responses, time course 
experiments, survival analyses) and the estimates of gene-specific variance over repeated 
measurements are stabilized by a factor s0 (see Tusher et al. 2001 and SAM technical manual 
for details).  
Considering the analysis of a single sample j from a population of m pathological samples 
with normalized expression level xij for probe set i and a population of n normal specimens 
with average gene expression ݔҧ௜௡௢௥௠, the GE score ∆ܧ௜,௝

௣௥௢௕௘ can be defined as: 
 

௜,௝ܧ∆
௣௥௢௕௘ ൌ

௜,௝ݔ െ ҧ௜௡௢௥௠ݔ

௜ݏ ൅ ଴ݏ
 (3)

 
where the standard deviation si for each probe set i is estimated using all pathological and 
normal samples: 
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௜ݏ ൌ ቐܽ ቎෍൫ݔ௜,௝ െ ҧ௜ݔ
௣௔௧௢௟൯

ଶ
௠

௝ୀଵ

൅ ෍൫ݔ௜,௞ െ ҧ௜௡௢௥௠൯ଶݔ
௡

௞ୀଵ

቏ቑ

ଵ
ଶൗ

ܽ ൌ
݉ ൅ ݊
݉ · ݊ ·

1
݉ ൅ ݊ െ 2

(4)

Estimation of scores at gene positions: lokern smoothing  
CN and GE scores are estimated at gene positions integrating probe set data and structural 
information using a kernel regression estimator with automatically adapted local plug-in 
bandwidth. As described in (6,12), the integration of variational scores and structural 
information corresponds to estimate the value of a score at a given chromosomal coordinate, 
e.g. the Entrez Gene physical position of a gene in bp. This integration can be formally stated 
as a non-parametric regression problem where the score is to be estimated over fixed 
chromosomal coordinates using a smoothing function. Non-parametric regression problems 
can be approached using various methods, as kernel smoothing, orthogonal series, spline 
functions or wavelets. A critical issue in selecting the regression strategy is represented by 
the procedure for adapting the smoothing parameters (e.g., the bandwidth) which can be 
adapted globally or locally (13). CN and GE scores are integrated with structural information 
using the lokern set of functions adapted from the Gasser-Müller type estimator (13,14) 
which is available as part of the lokern package (http://cran.r-
project.org/web/packages/lokern/index.html). 
Specifically, for each sample j, the regression model specifies: 
 
∆ ௜ܰ,௝

ௌே௉ ൌ ௜ሻܾܯ௝ሺߟ ൅ ߳௜,௝

௜,௝ܧ∆
௣௥௢௕௘ ൌ ௝߬ሺܾܯ௜ሻ ൅ ௜,௝ߝ

 (5)

 
where ܾܯ௜  is the physical position of SNP (probe) i, ߟ௝ሺܾܯ௜ሻ  and ௝߬ሺܾܯ௜ሻ  are arbitrary 
functions of ܾܯ௜ , and ߳௜,௝  and ߝ௜,௝  are independent and identically distributed (i.i.d.) errors 
with zero mean. In these non-parametric models, the systematic part of the variation, i.e. the 
dependence of ∆ ௜ܰ,௝

ௌே௉  ( ௜,௝ܧ∆
௣௥௢௕௘ ) on the physical position Mbi, is left as an arbitrary 

function ߟ௝ሺܾܯ௜ሻ (or ௝߬ሺܾܯ௜ሻሻ, while the random part is specified by assuming that the error 
components are uncorrelated with zero mean and constant variance. Considering for instance 
copy number values, the kernel regression model takes as input the pairs (ܾܯ௜, ∆ ௜ܰ,௝

ௌே௉ with 
i=1, ..., L), estimates ॱ൫∆ ௜ܰ,௝

ௌே௉൯ ൌ  ௜ሻ by extracting a curve from the data, and returnsܾܯ௝ሺߟ
the values ∆ ௚ܰ,௝

௚௘௡௘of ߟ௝൫ܾܯ௚൯ at given design points ܾܯ௚  (e.g., the g physical position of 
Entrez Genes). Similarly for gene expression levels, the input pairs (ܾܯ௜, ∆ܧ௜,௝

௣௥௢௕௘ with i=1, 
..., P) are used for estimating ॱ൫∆ܧ௜,௝

௣௥௢௕௘൯ ൌ ௝߬ሺܾܯ௜ሻ and returning the values ∆ܧ௚,௝
௚௘௡௘  of 

௝߬൫ܯ ௚ܾ൯ at, e.g. the g physical position of Entrez Genes. 
The input positions of L=115,561 SNPs and M=41,192 expression probes are derived from 
the Human Mapping 100K NetAffx Annotation Files and from the HG-U133 Plus 2.0 
Bioconductor annotation library, respectively (see dna_annotation and rna_annotation files, 
as described in the Input and Output Data section). The output vector contains estimates of 
CN and GE scores for G=16,395 annotated Entrez Genes, obtained filtering out genes in 
chromosomes X and Y. It’s worthwhile noting that, in the case of multiple probes mapping to 
the same locus (probe set redundancy in Affymetrix GE arrays), the average GE score of 
multiple probes mapping to the same physical coordinate has been assigned to the 
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chromosomal position (6). CN and GE scores at Entrez Gene positions (i.e., ∆ ௚ܰ,௝
௚௘௡௘  and 

௚,௝ܧ∆
௚௘௡௘ for g=1, …, G) have been obtained using a kernel regression estimator with adaptive 

smoothing bandwidth (13). The adaptive smoothing bandwidth accounts for the non-uniform 
distribution and density of genes along the genome. Briefly, the smoothing function performs 
a local averaging of the observations when estimating the regression function. Crucial for the 
kernel regression estimation is the choice of the smoothing bandwidth, since too small 
bandwidths will lead to a wiggly curve, while too large ones will smooth away important 
details. The lokern package contains functions that calculate the regression with an 
automatically chosen local (lokerns) or global (glkerns) bandwidth. The efficacy of the 
locally adaptive approach (i.e. the lokerns function) in smoothing GE scores has been already 
shown in (6), while its performance with CN scores are shown in Figure 3_SI. As shown in 
the various panels, both the local (red line) and the global (green line) approaches perform an 
efficient smoothing of the CN scores (black dots) and allow detecting broad as well as subtle 
changes.  
 

 
 

Figure 3_SI: Smoothing of CN scores ∆ ௜ܰ,௝
ௌே௉ (black dots) using kernel regression estimator 

with adaptive local (red line) and global (green line) bandwidth. Bandwidth amplitude is 
shown as gray bars (right y-axis). A. copy number neutral (chromosome 11 in AffyRef 
NA17203); B. copy number gain of an entire chromosome (chromosome 7 in RCCp 27CG); 
C. copy number loss of an entire chromosome (chromosome 10 in Astro HF1232); D. copy 
number spike in the p-arm and gain of the entire q-arm (chromosome 7 in Astro HF1232); E. 
copy number gain of part of the q-arm (chromosome 5 in RCCp 50PC); F. copy number loss 
of the entire p-arm and gain of the q-arm (chromosome 3 in RCCp 27CG). 
 
Moreover, both lokerns and glkerns regress efficiently the CN score irrespectively of the 
array density (50K, 100K and 250K sets), although denser arrays allow a finer smoothing of 
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the data using smaller bandwidths (Figure 4_SI). Thus, consistently with GE analysis, the 
locally adaptive approach (i.e. the lokerns function) has been applied also to regress CN 
scores in the LSCN part of the procedure depicted in Figure 1_SI. 
 

 
 

Figure 4_SI: Smoothing of CN scores ∆ ௜ܰ,௝
ௌே௉ (black dots) in chromosome 1 of Caki-1 using 

array with different SNP densities. The kernel regression estimator with adaptive local and 
global bandwidth is represented by red and green lines, respectively. Bandwidth amplitude is 
shown as gray bars (right y-axis). A. CN scores from 50K Hind GeneChip® Mapping assay; 
B. CN scores from 50K Xba GeneChip® Mapping assay; C. CN scores from Human Mapping 
100K set; D. CN scores from Human Mapping 250K Nsp array. 

Step 2 
In the second step, the goal is to assess the statistical significance of copy number and gene 
expression variations and define regions with concomitant alterations of gene CN and GE in 
single samples. The procedure locally computes the significance levels (i.e., p-values and q-
values) through a permutation scheme and estimates the CN and GE statuses of annotated 
genes. Finally, SODEGIRs are defined based on the copy number and transcriptional 
statuses. 

Assessment of statistical significance 
The scope is to make inferences about ߟ௝൫ܾܯ௚൯ (or ௝߬ሺܾܯ௜ሻሻ at each position g by testing the 
significance of a departure from the null form of ߟ௝൫ܾܯ௚൯ (or ௝߬ሺܾܯ௜ሻሻ corresponding to no 
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alterations of copy number (gene expression). This corresponds to test the following multiple 
hypotheses, for CN and GE respectively: 
 
௚,௝ܪ

ே ௚൯ܾܯ௝൫ߟ : ൌ 0
௚,௝ܭ

ே ܯ௝൫ߟ : ௚ܾ൯ ് 0
    g=1, …, G 

 (6)
௚,௝ܪ

ா : ௝߬൫ܯ ௚ܾ൯ ൌ 0
௚,௝ܭ

ா : ௝߬൫ܾܯ௚൯ ് 0
    g=1, …, G 

 
When no alterations of copy number (gene expression) are present along the genome, i.e. 
when ځ௚ୀଵ

ீ ௚,௝ܪ
ே ௚ୀଵځ) 

ீ ௚,௝ܪ
ா ) is true, the observed data values ∆ ௜ܰ,௝

ௌே௉ ൌ ߳௜,௝ (∆ ௜ܰ,௝
௣௥௢௕௘ ൌ  (௜,௝ߝ

are i.i.d. realizations and thus are exchangeable: 
 

൫ΔNଵ
SNP, … , ΔNL

SNP൯
d
= ൫ΔN஠ሺଵሻ

SNP , … , ΔN஠ሺLሻ
SNP ൯ 

(7)
ቀΔEଵ

୮୰୭ୠୣ, … , ΔEP
୮୰୭ୠୣቁ

d
= ቀΔE஠ሺଵሻ

୮୰୭ୠୣ, … , ΔE஠ሺPሻ
୮୰୭ୠୣቁ

 
where ሼߨሺ1ሻ, … , ,ሺ1ሻߨሻሽand ሼܮሺߨ … , ,ሺܲሻሽ represent arbitrary permutations of ሼ1ߨ … ,  ሽ andܮ

ሼ1, … , ܲሽ, respectively and 
d
=  denotes equality in distribution. This implies that, starting from 

the original data, all L! (P!) permutations of the data are equally likely and that a permutation 
scheme can be used to identify chromosomal regions with statistically significant CN and GE 
imbalances. Specifically, at each permutation, ∆ ௜ܰ,௝

ௌே௉  and ∆ܧ௜,௝
௣௥௢௕௘  scores are randomly 

assigned to chromosomal locations and ∆ ௚ܰ,௝
௚௘௡௘  and ∆ܧ௚,௝

௚௘௡௘  re-estimated using the lokerns 
function (permuted scores ∆ ௚ܰ,௝

௚௘௡௘,௕ and ∆ܧ௚,௝
௚௘௡௘,௕). The permutation process, over B random 

assignments, defines the distribution of the null scores for any output design position. Since 
the observed and expected gene CN and GE scores are estimated using the same function 
over the same input and output design points, the significance of CN and transcriptional 
imbalances can be computed testing ܪ௚,௝

ே  and ܪ௚,௝
ா  on the estimated scores 

∆ ௚ܰ,௝
௚௘௡௘ and ∆ܧ௚,௝

௚௘௡௘  as test statistic, respectively. The significance ݌௚,௝
ே   (or ݌௚,௝

ா ) that the 
expected score ∆ ௚ܰ,௝

௚௘௡௘,௕ (or ∆ܧ௚,௝
௚௘௡௘,௕) exceeds the observed one ∆ ௚ܰ,௝

௚௘௡௘ (or ∆ܧ௚,௝
௚௘௡௘), over 

B permutations, can be then computed as follows : 
 

௚,௝݌
ே ൌ

∑ ∆൛หܫ ௚ܰ,௝
௚௘௡௘,௕ห ൒ ห∆ ௚ܰ,௝

௚௘௡௘หൟ஻
௕ୀଵ

ܤ

௚,௝݌
ா ൌ

∑ ௚,௝ܧ∆൛หܫ
௚௘௡௘,௕ห ൒ ห∆ܧ௚,௝

௚௘௡௘หൟ஻
௕ୀଵ

ܤ

 (8)

 
where ܫሼ·ሽ  is an indicator function that takes the value 1 if the argument is true and 0 
otherwise. 
These p-values ݌௚,௝

ே   and ݌௚,௝
ா  have the peculiarity to be local, since the observed scores are 

compared only with the expected ones estimated on the same neighborhood of gene position 
g. Indeed, during the permutation process, the chromosomal position is conserved while the 
scores are randomly shuffled. Once the distributions of empirical p-values have been 
generated (Figure 5_SI), the q-value is used to assign a measure of significance to each of 
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many tests performed simultaneously. Q-values ݍ௚,௝
ே   and ݍ௚,௝

ா  are estimated using R qvalue 
package (http://genomics.princeton.edu/storeylab/qvalue/). 
 

 
 
Figure 5_SI: Distribution of p-values ݌௚,௝

ே   (calculated by LSCN) and ݌௚,௝
ா  (calculated by 

LAP) for RCC samples and of p-values ݌௚,௝
ே   for astrocytoma samples. 

Status quantification and SODEGIR definition 
When the null hypothesis ܪ௚,௝

ே  ሺܪ௚,௝
ா ) is rejected, the copy number (or gene expression) status 

of a gene g in a sample j is decided basing on whether ߟ௝൫ܾܯ௚൯ (or ௝߬൫ܯ ௚ܾ൯) is smaller or 
greater than zero. The two-sided hypotheses of Eq. 6 are equivalent to the simultaneous 
testing of the following pair of one-sided hypotheses: 
 
௚,௝ܪ

ே௚௔௜௡: ߟ௝൫ܯ ௚ܾ൯ ൒ 0 ௚,௝ܭ    ݐݏ݊݅ܽ݃ܽ 
ே௟௢௦௦: ܯ௝൫ߟ ௚ܾ൯ ൏ 0

௚,௝ܪ
ே௟௢௦௦: ߟ௝൫ܾܯ௚൯ ൑ 0 ௚,௝ܭ    ݐݏ݊݅ܽ݃ܽ

ே௚௔௜௡: ܯ௝൫ߟ ௚ܾ൯ ൐ 0
 (9)
௚,௝ܪ

ா௨௣: ௝߬൫ܯ ௚ܾ൯ ൒ ௚,௝ܭ    ݐݏ݊݅ܽ݃ܽ   0
ாௗ௢௪௡: ௝߬൫ܯ ௚ܾ൯ ൏ 0

௚,௝ܪ
ாௗ௢௪௡: ௝߬൫ܾܯ௚൯ ൑ 0 ௚,௝ܭ    ݐݏ݊݅ܽ݃ܽ 

ா௨௣: ௝߬൫ܯ ௚ܾ൯ ൐ 0
 

 
Considering for instance copy number, the rejection of either ܪ௚,௝

ே௚௔௜௡ or ܪ௚,௝
ே௟௢௦௦ is equivalent 

to the rejection of ܪ௚,௝
ே . Although Eq. 6 and Eq. 9 are equivalent ways of formulating the 
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same hypothesis testing problem, there is some advantage in using the formulation of Eq. 9. 
Indeed, when the action to take in the event of rejection of ܪ௚,௝

ே  (or of ܪ௚,௝
ா ) depends upon 

which tail brought about the rejection,    ܭ௚,௝
ே௟௢௦௦ or    ܭ௚,௝

ே௚௔௜௡ (and    ܭ௚,௝
ாௗ௢௪௡ or    ܭ௚,௝

ா௨௣) can be 
associated with the two courses of action. 
In particular, the null hypothesis ܪ௚,௝

ே  ሺܪ௚,௝
ா ) is rejected according to thresholds on the q-value 

(i.e., ݍݎ݄ݐே and ݍݎ݄ݐா) and on the scores (i.e., ݎ݄ݐ∆ܰ and ܧ∆ݎ݄ݐ). The q-value and score 
thresholds for CN and GE may be set to different values, depending on the desired stringency 
of the analysis. In this case ݍݎ݄ݐே and ݍݎ݄ݐாhave been set to 0 and 0.05, respectively. For 
both CN and GE, low (e.g., ݎ݄ݐ∆ ௟ܰ௢௪  and ܧ∆ݎ݄ݐ௟௢௪ ) and high (e.g., ݎ݄ݐ∆ ௛ܰ௜௚௛  and 
 ௛௜௚௛) score thresholds have been defined from the distribution of the estimated scoresܧ∆ݎ݄ݐ
∆ ௚ܰ,௝

௚௘௡௘  and ∆ܧ௚,௝
௚௘௡௘ . Specifically, the 10th and 90th quantile of ∆ ௚ܰ,௝

௚௘௡௘  and ∆ܧ௚,௝
௚௘௡௘ 

distributions have been selected as low and high score thresholds, respectively. The CN q-
value and score thresholds have been optimized based on the analysis of the AffyRef 
Reference DNA dataset (data not shown), ∆ܧ௚,௝

௚௘௡௘ thresholds have been selected according to 
the criteria used for the CN ones, and ݍݎ݄ݐா has been set to the value commonly used with 
gene expression data (6). 
As such, CN and GE statuses are coded as (Table 2_SI): 

 1 (CN loss, GE down-regulation) when the q-value is below the q-value threshold and 
the score is smaller than the low score threshold, i.e. ܭ௚,௝

ே௟௢௦௦ (ܭ௚,௝
ாௗ௢௪௡) is true; 

 3 when the q-value is below the q-value threshold and the score is larger than the high 
score threshold (CN gain, GE up-regulation) i.e. ܭ௚,௝

ே௚௔௜௡ (ܭ௚,௝
ா௨௣) is true; 

 2 (CN and GE neutral) in all other cases. 
 
Table 2_SI: Quantification of CN and GE statuses based on q-value and score thresholds. 

Status 
CN GE 

௚,௝ݍ
ே  ∆ ௚ܰ,௝

௚௘௡௘ ݍ௚,௝
ா ௚,௝ܧ∆ 

௚௘௡௘ 
1 =0 ≤quantile(∆ ௚ܰ,௝

௚௘௡௘,0.1) ≤0.05 ≤quantile(∆ܧ௚,௝
௚௘௡௘,0.1) 

3 =0 ≥quantile(∆ ௚ܰ,௝
௚௘௡௘,0.9) ≤0.05 ≥quantile(∆ܧ௚,௝

௚௘௡௘,0.9) 
 
Given the quantification of CN and GE statuses in a single sample, a significant overlap of 
differentially expressed and genomic imbalanced regions (SODEGIR) corresponds to a 
region of the genome where the CN and GE statuses are concordant. In particular, if both CN 
and GE statuses are equal to 1, the SODEGIR indicates deletion (SODEGIR status 1), while 
if CN and GE statuses are both 3, the SODEGIR indicates amplification (SODEGIR status 3). 
The identification of the SODEGIRs corresponds to test the following hypothesis pair: 
 
௚,௝ܪ

௔௠௣: ܪ௚,௝
ே௚௔௜௡ܪڂ௚,௝

ா௨௣ ௚,௝ܭ    ݐݏ݊݅ܽ݃ܽ
ௗ௘௟: ௚,௝ܭ

ே௟௢௦௦ܭځ௚,௝
ாௗ௢௪௡

௚,௝ܪ
ௗ௘௟: ܪ௚,௝

ே௟௢௦௦ܪڂ௚,௝
ாௗ௢௪௡ ௚,௝ܭ    ݐݏ݊݅ܽ݃ܽ

௔௠௣: ௚,௝ܭ
ே௚௔௜௡ܭځ௚,௝

ா௨௣  (10)

 
In this case either ܭ௚,௝

ௗ௘௟ or ܭ௚,௝
௔௠௣௟ can be true and each testing problem is specified with the 

intersection–union formulation (16). As a consequence, the rejection of ܪ௚,௝
௔௠௣௟ (ܪ௚,௝

ௗ௘௟) and the 
acceptance of ܭ௚,௝

ௗ௘௟  ( ௚,௝ܭ
௔௠௣ ) is accomplished only if both ܪ௚,௝

ே௚௔௜௡  and ܪ௚,௝
ா௨௣  ( ௚,௝ܪ

ே௟௢௦௦  and 
௚,௝ܪ

ாௗ௢௪௡) are rejected, i.e. the SODEGIR status is equal to 1 (3) if both CN and GE statuses 
are equal to 1 (3). 
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Step 3 
The third step provides a statistical method to elevate the analysis from the single to the 
multiple-sample level and to detect the presence of common SODEGIR signature across an 
entire dataset. Specifically, SOGEDIRs from all single sample analyses are aggregated to 
generate summary scores for amplifications and deletions using a binomial distribution test 
and the q-value to correct for multiple hypothesis testing. 

Aggregation of single sample SODEGIRs  
The procedure aims at determining where the regions of deletion and amplification shared by 
multiple samples are located and how likely it is that an observed shared region is due to 
chance. To this end, let ࢐,ࢍࡿ be the SODEGIR status for sample j at the gene g and assume 
that ࢐,ࢍࡿ  follows a multinomial distribution with ࢐,ࢍࡿ൫࢘ࡼ  ൌ ૚൯ ൌ ࢍࣂ

૚ ࢐,ࢍࡿ൫࢘ࡼ , ൌ ૛൯ ൌ ࢍࣂ
૛ , 

࢐,ࢍࡿ൫࢘ࡼ ൌ ૜൯ ൌ ࢍࣂ
૜ , and ࢍࣂ

૚ ൅ ࢍࣂ
૛ ൅ ࢍࣂ

૜ ൌ ૚. Under the null hypothesis that there are no real 
imbalanced regions, these probabilities are independent from g, i.e. ࢍࣂ

࢙ ൌ ,࢙ࣂ ࢙ ൌ ૚, ૛, ૜ . 
Then for each gene g, the following hypotheses are tested: 
 
௚ܪ

ଵ: ߠ௚
ଵ ൌ ݐݏ݊݅ܽ݃ܽ  ଵߠ ௚ܭ  

ଵ: ߠ௚
ଵ ൐ ଵߠ

௚ܪ
ଷ: ߠ௚

ଷ ൌ ݐݏ݊݅ܽ݃ܽ  ଷߠ ௚ܭ  
ଷ: ߠ௚

ଷ ൐ ଷߠ  (11)

 
When there are no real imbalanced regions, i.e. when ځ௚ୀଵ

ீ ௚ܪ
௦ is true, a reasonable estimator 

of ߠ௦  is given by ෠௦ߠ  ൌ
∑ ∑ ூ൛ௌ೒,ೕୀ௦ൟಸ

೒సభ
಻
ೕసభ

ீ௃
. The test statistic ௚ܶ ൌ ∑ ൛ܫ ௚ܵ,௝ ൌ ൟ௃ݏ

௝ୀଵ , which is 
distributed as ݈ܽ݅݉݋݊݅ܤሺܬ, ௚ܪ ௦ሻ whenߠ

௦ is true, can be used to test each ܪ௚
௦. Hence, the p-

value is given by: 
 

௚݌
௦ ൌ ൫ݎܲ ௚ܶ ൒ ௚൯ݐ ൌ ෍ ൬

ܬ
൰ݎ

௃

௥ୀ௧೒

൫ߠ෠௦൯௥൫1 െ ෠௦൯௃ି௥ߠ
 (12)

 
where ݐ௚ is the observed frequency of SODEGIR status s at gene g across the J samples. 
Once computed the p-values for each gene, the q-value is used to assign a measure of 
significance to each of the many tests simultaneously performed and is adopted as summary 
score for deletions or amplifications. The same statistical approach has been used to 
aggregate, at dataset level, CN or GE statuses alone, thus computing dataset scores for the 
genomic regions with CN gain or loss, or with up-/down-regulation. 
 
Supplementary results  
All results from the single sample and the aggregation analyses of Caki-1, Astro, RCC, RCCp, 
and reference DNA datasets are available at the web companion site 
http://www.xlab.unimo.it/SODEGIR/. Specifically, for any single sample, the supplementary 
files include: 
− the characteristics of all CN, GE and SODEGIR clusters (.SDG_table); 
− the boxplots of CN and GE relative levels in SODEGIRs (.boxplot); 
− chromosome views displaying CN status (N_AB) and LOH status as estimated by the 

CNAG HMM on each SNP probe, CN, GE, and SODEGIR statuses as determined by the 
SODEGIR procedure on gene positions for a given chromosome (.chr.view); 
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− genome views where regions of CN gain/loss, GE up-/down-regulation and deleted (CN 
loss and GE down-regulation) and amplified SODEGIRs (CN gain and GE up-regulation) 
are shown as boxes on each chromosome (.genome.view).  

Moreover, for the Astro and RCC datasets, the supplementary files report: 
− the physical characteristics of LOH regions as estimated by the CNAG HMM in all 

samples (.LOH_table) 
− the characteristics of all CN, GE and SODEGIR clusters shared, at a given q-value 

threshold, in a statistically relevant number of samples (.SDGset_table) 
− chromosome views which highlight LOH regions and SODEGIRs on a given 

chromosome in all samples of a dataset (.chr.LOH_view and .chr.SDG_view), 
− q plots reporting the aggregation of CN, GE and SODEGIR results for the analysis of the 

entire dataset (.q_plot.CN, .q_plot.GE, and .q_plot.SODEGIR).  
 
Simulation analysis 
Since the true status of genes is unknown in real data sets, the performance of the proposed 
procedure was assessed on synthetic data through a simulation analysis. Differently from real 
data, in an artificial data set the true status and the test result of each gene are known. For 
sake of simplicity, all possible statuses of a gene (1, 2 or 3) have been summarized into a 
binary classification, where the neutral status is indicated by 2 while ≠ 2 denotes an altered 
condition. The performance of the gene discovery is best seen in a simple two-by-two table, 
where the genes are classified according to their true status and the test result (Table 3_SI). 
 
Table 3_SI: Contingency table for assessing the performance on simulated data. 

  True status 
 ≠ 2 2 

Te
st

 
re

su
lt ≠ 2 TP FP 

2 FN TN 
 
In particular, the contingency table allows computing the following elements: 
1. TP (true positives), i.e. the number of altered genes correctly identified as altered; 
2. FP (false positives), i.e. the number of neutral genes wrongly identified as altered; 
3. TN (true negatives), i.e. the number of neutral genes correctly identified as neutral; 
4. FN (false negatives), i.e. the number of altered genes wrongly identified as neutral; 
ܴܦܨ .5 ൌ ܲܨ ሺܶܲ ൅ ⁄ሻܲܨ , i.e. the proportion of false positives among the genes identified 

as altered. This notation slightly departs from that of Benjamini and Hochberg (1995) 
because here we use FDR to denote the realized false discovery rate. What Benjamini and 
Hochberg called the false discovery rate is the expected proportion of false positives 
among the rejected hypotheses, and we denote it by E(FDR), which can be estimated by 
the mean of FDR realizations (hereafter mean FDR); 

ݕݐ݅ݒ݅ݐ݅ݏ݊݁ܵ .6 ൌ ܶܲ ሺܶܲ ൅ ⁄ሻܰܨ , i.e. the proportion of altered genes which are correctly 
identified as such. 

Since the processes generating GE and CN signals and their underlying probability 
distributions in real datasets are unknown, synthetic data have been generated directly from 
the gene expression and copy number values. Specifically, artificial CN and GE data 
mimicking samples with no alterations (gene status =2) have been obtained independently 



SODEGIR: a computational procedure to identify significant overlap of differentially expressed and genomic imbalanced regions 

 18

permuting copy number and expression values within each chromosome c in each sample j 
derived from six out of 11 normal specimens of the RCC dataset (28RA, 33BV, 36MML, 
37BA, 40RR and 50PC): 
 
൫N୨,ଵ

ୡ , … , N୨,Lౙ
ୡ ൯ ึ ൫N୨,஠ሺଵሻ

ୡ , … , N୨,஠ሺLౙሻ
ୡ ൯ 

(13)
൫x୨,ଵ

ୡ , … , x୨,Mౙ
ୡ ൯ ึ ൫x୨,஠ሺଵሻ

ୡ , … , x୨,஠ሺMౙሻ
ୡ ൯ 

 
where ሼߨሺ1ሻ, … , ௖ሻሽܮሺߨ  and ሼߨሺ1ሻ, … , ௖ሻሽܯሺߨ  are independent permutations of ሼ1, … ,  ௖ሽܮ
SNP and ሼ1, … , ௖ሽܯ  probe positions in chromosome c. CN and GE scores have been 
quantified directly from ௝ܰ,గ

௖  and ݔ௝,గ
௖  according to Eq. 1 and Eq. 3. To verify the 

performances of the entire procedure (LSCN, LAP, and SODEGIR) under the null 
hypothesis, 30 random data generations (i.e., 30 data sets of CN and GE values derived 
permuting 5000 times copy number and expression values of six normal specimens from the 
RCC dataset) were analyzed and CN, GE and SODEGIR statuses quantified according to the 
thresholds reported in Table 2_SI. Table 4_SI reports the simulation results in terms of 
number of type I errors out of 16395 null hypotheses tested in each simulation. 
Table 4_SI: Number of type I errors out of 16395 null hypotheses tested in each simulation. 

Data 
type 

Simulation number 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

Data originated from sample 28RA 

CN 0 0 0 0 0 0 0 0 0 0 0 0 30 0 0 0 0 0 78 0 32 0 0 0 0 0 0 0 0 0 

GE 0 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 7 0 0 

Data originated from sample 33BV 

CN 0 0 0 0 0 8 10 0 0 0 0 0 0 0 0 0 65 49 0 0 0 0 0 0 0 0 0 33 0 0 

GE 0 0 4 8 0 0 0 0 0 0 0 0 0 0 16 4 0 3 0 0 0 0 4 18 0 0 0 0 0 2 

Data originated from sample 36MML 

CN 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 

GE 4 6 0 0 0 0 30 0 0 0 0 9 0 0 0 0 0 1 0 4 0 8 0 0 0 0 0 0 0 0 

Data originated from sample 37BA 

CN 0 0 0 0 0 0 0 0 0 0 0 80 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 2 0 0 

GE 0 0 0 0 0 0 16 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 3 

Data originated from sample 40RR 

CN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

GE 0 0 0 0 0 0 2 33 0 0 0 0 0 0 5 0 0 0 1 13 0 0 1 21 11 11 0 5 0 0 

Data originated from sample 50PC 

CN 0 0 0 0 0 0 0 41 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 

GE 11 0 0 6 0 0 0 0 0 0 0 0 0 10 1 0 1 0 0 0 0 0 0 0 3 0 0 8 2 34 

 
The estimated E(FDR), i.e., in this case, the estimated probability of making one or more type 
I errors, (with 95% confidence intervals) are 0.083 (0.05÷0.13), 0.222 (0.16÷0.29) and 0 
(0÷0.02) for CN (i.e., LSCN), GE (i.e., LAP) and SODEGIR, respectively, indicating that the 
overall SODEGIR procedure is highly conservative, although singularly LSCN and LAP 
tends to not entirely control the E(FDR) at α=0.05. 
To test the performances of LSCN, LAP, and SODEGIR under the alternative hypothesis, CN 
and GE values of genes in a non-neutral status (i.e. ≠ 2), within a specific chromosomal 
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region r, were generated adding (or subtracting) specific constants ݇ே  and ݇ா  to the data 
generated in Eq. 13: 
 

௝ܰ,௥
௖ ึ ௝ܰ,௥

௖ േ ݇ே       ݎ א ࣬ே 
௝,௥ݔ(14)

௖ ึ ௝,௥ݔ
௖ േ ݇ா        ݎ א ࣬ா 

 
where ݇ே, ݇ா א Թ and are calculated from the average standard deviations of the original data 
and ࣬ே and ࣬ா are regions within chromosome c. The average standard deviations of copy 
number and gene expression over all chromosomes and samples are approximately ߪതே ൌ 0.3 
and ߪതா ൌ 9 4⁄ , respectively. As such, ݇ே has been set equal to ߪതே, 2 ⁄തேߪ3 , and 1 ⁄തேߪ2  when 
simulating large, medium, and small effects, respectively. The corresponding values of ݇ா 
have been set equal to 2ߪതா, 4 ⁄തாߪ3 , and ߪതா considering the intrinsic differences between CN 
and GE data. Finally, CN and GE scores have been quantified directly from ௝ܰ,௥

௖  and ݔ௝,௥
௖  

according to Eq. 1 and Eq. 3. Figure 6_SI shows CN and GE simulated data with a medium 
amplification (up-regulation) effect, i.e. ݇ே ൌ 0.2  , ݇ா ൌ 3 and a window of 20 Mb. 
 

 
Figure 6_SI: CN (panel A.) and GE (panel B.) values of genes in a non-neutral status (i.e. ≠ 
2) within a region of 20 Mb located between 20Mb and 40Mb in chromosome 1 of patient 
28RA. ଶ଼ܰோ஺,ሺଶ଴ൊସ଴ெ௕ሻ

ଵ  and ݔଶ଼ோ஺,ሺଶ଴ൊସ଴ெ௕ሻ
ଵ  have been generated using with ݇ே ൌ 0.2  and 

݇ா ൌ 3. 
 
Non-neutral status of CN and GE signals has been simulated generating 10 non-neutral 
effects (named from A to L in Table 5_SI), differing in terms of affected chromosome (e.g., 
chromosomes 1 and 3), size of the affected regions (chromosomal segments or entire arms), 
and amplitude of the effect (small, medium, large) added or subtracted to CN and GE data. 
Figure 7_SI highlights the location of non-neutral regions and the type (i.e., gain/loss and up-
/down-regulation) of each effect described in Table 5_SI. 
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Table 5_SI: Type of effects used to simulate non-neutral gene statuses. Effects differ in terms of affected 
chromosome, size of the affected regions, and amplitude of the effect added on CN and GE data (small, 
medium, large). 

Effect 
name 

Affected region Effect 
amplitude ࡱ࢑ ࡺ࢑ chr from (Mb) to (Mb) length (Mb) # of genes % of genes 

A 1 20 40 20 255 1.6 medium 0.2 3 
B 1 110 115 5 60 0.4 large 0.3 9/2 
C 1 120 190 70 464 2.8 small 0.15 9/4 
D 1 entire p-arm 120 950 5.8 small 0.15 9/4 
E 1 entire q-arm 155 806 4.9 small 0.15 9/4 
F 3 10 20 10 62 0.4 medium 0.2 3 
G 3 40 55 15 207 1.3 medium 0.2 3 
H 3 120 165 45 248 1.5 small 0.15 9/4 
I 3 entire p-arm 90 452 2.8 small 0.15 9/4 
L 3 entire q-arm 109 495 3 small 0.15 9/4 

 

 
Figure 7_SI: Location of non-neutral regions and type (i.e., gain/loss and up-/down-
regulation) of each effect described in Table 5_SI. 
 
The 10 effects described in Table 5_SI have been mixed in two major scenarios, one named 
small regions and one named large regions, composed of 10 configurations each. 
Specifically, the small regions scenario simulates the presence of different CN and GE 
matched and un-matched effects (i.e. the existence or not of SODEGIRs) affecting relatively 
small regions of two chromosomes. Details of the 10 small regions configurations are as 
follows (Figure 8_SI):  
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Configuration #1: a region of 70 Mb in chromosome 1 and a region of 45 Mb in 
chromosome 3 both affected by a small effect CN loss and GE down-
regulation (effects C and H); 

Configuration #2: the same as configuration #1 plus a region of 5 Mb in chromosome 1 
affected by a large effect CN gain and GE up-regulation (effects B, C 
and H); 

Configuration #3: the same as configuration #2 plus a region of 10 Mb in chromosome 3 
affected by a medium effect CN gain and GE up-regulation (effects B, C 
F, and H); 

Configuration #4: the same as configuration #3 plus a region of 15 Mb in chromosome 3 
affected by a medium effect CN gain and GE up-regulation (effects B, C 
F, G, and H); 

Configuration #5: the same as configuration #4 plus a region of 20 Mb in chromosome 1 
affected by a medium effect CN gain and GE up-regulation (effects A, 
B, C F, G, and H); 

Configuration #1’: the same as configuration #1 but the region of 45 Mb in chromosome 3 
lacks of the matched GE down-regulation; 

Configuration #2’: the same as configuration #2 but the region of 5 Mb in chromosome 1 
lacks of the matched GE up-regulation and the region of 45 Mb in 
chromosome 3 lacks of the matched GE down-regulation; 

Configuration #3’: the same as configuration #3 but the region of 5 Mb in chromosome 1 
lacks of the matched GE up-regulation and the region of 45 Mb in 
chromosome 3 lacks of the matched GE down-regulation; 

Configuration #4’: the same as configuration #4 but the region of 5 Mb in chromosome 1 
lacks of the matched GE up-regulation and the region of 45 Mb in 
chromosome 3 lacks of the matched GE down-regulation; 

Configuration #5’: the same as configuration #5 but the region of 5 Mb in chromosome 1 
lacks of the matched GE up-regulation and the region of 45 Mb in 
chromosome 3 lacks of the matched GE down-regulation. 

 

 
 

Figure 8_SI: Description of the 10 configurations of effects in the small regions scenario. 
The effect is indicated by roman letters (A to L) as described in Table 5_SI. The symbol  
indicates a CN gain and a concomitant GE up-regulation (amplification),  a CN loss and a 
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concomitant GE down-regulation (deletion), and  a CN gain without a concomitant GE 
up-regulation (discordant region). 
 
Similarly, the large regions scenario (Figure 9_SI) simulates the presence of: 
Configuration #6: a small effect CN gain and GE up-regulation affecting the entire p arm of 

chromosome 1 (effect D); 
Configuration #7: the same as configuration #6 plus a region of 70 Mb in the q arm of 

chromosome 1 affected by a small effect CN loss and GE down-
regulation (effects C and D); 

Configuration #8: the same as configuration #6 plus a small effect CN loss and GE down-
regulation affecting the entire q arm of chromosome 1 (effects D and E); 

Configuration #9: the same as configuration #8 plus a small effect CN gain and GE up-
regulation affecting the entire p arm of chromosome 3 (effects D, E, and 
I); 

Configuration #10: the same as configuration #9 plus a small effect CN loss and GE down-
regulation affecting the entire q arm of chromosome 3 (effects D, E, I, 
and L); 

Configuration #6’: the same as configuration #6 lacking of the matched GE up-regulation; 
Configuration #7’: the same as configuration #7 lacking of the matched GE up-regulation of 

the p arm of chromosome 1; 
Configuration #8’: the same as configuration #8 lacking of the matched GE up-regulation of 

the p arm of chromosome 1; 
Configuration #9’: the same as configuration #9 lacking of the matched GE up-regulation of 

the p arm of chromosome 1; 
Configuration #10’: the same as configuration #10 lacking of the matched GE up-regulation 

of the p arm of chromosome 1. 
 

 
 

Figure 9_SI: Description of the 10 configurations of effects in the large regions scenario. 
The type of effect is indicated by roman letters (A to L) as described in Table 5_SI. The 
symbol  indicates a CN gain and a concomitant GE up-regulation (amplification),  a 
CN loss and a concomitant GE down-regulation (deletion), and  a CN gain without a 
concomitant GE up-regulation (discordant region). 
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The 20 different configurations have been applied to CN and GE data obtained from three 
different permutations of the original data signals of the 6 RCC samples previously described 
(Eq. 13) and then applying Eq. 14, according to the values of table 5_SI. CN and GE scores 
have been quantified directly from ௝ܰ,గ

௖  and ݔ௝,గ
௖  according to Eq. 1 and Eq. 3 leading to a 

total of 360 different simulated sets. The analysis of the simulated data sets and the 
quantification of the observed CN, GE and SODEGIR statuses (according to the thresholds of 
Table 2_SI) lead to a mean sensitivity of 0.91, 0.94, and 0.87 and a mean FDR of 0.014, 
0.019, and 0.005 for LSCN, LAP and SODEGIR procedures, respectively. In Table 6_SI and 
Figures 10_SI and 11_SI are reported the mean sensitivity, the mean FDR and the respective 
95% confidence intervals for LSCN, LAP and SODEGIR procedures when applied to the 
analysis of the 20 configurations of matched and un-matched alterations in the small and 
large regions scenarios. 
 
Table 6_SI: Mean sensitivity, mean FDR and the respective 95% confidence intervals for LSCN, LAP and 
SODEGIR procedures when applied to the analysis of the 20 configurations of matched and un-matched 
alterations in the small and large regions scenarios (360 total sample simulations). 

Configuration 
# 

LSCN LAP SODEGIR 
Sensitivity FDR Sensitivity FDR Sensitivity FDR 

Mean 95% CI Mean 95% CI Mean 95% CI Mean 95% CI Mean 95% CI Mean 95% CI 
Small regions scenario 

1 0.86 0.51÷1 0 0÷0.01 0.86 0.82÷1 0.01 0÷0.05 0.77 0.49÷1 0 --- 

2 0.88 0.83÷0.96 0.02 0÷0.07 0.9 0.87÷0.94 0.01 0÷0.06 0.82 0.76÷0.92 0 0÷0.01 

3 0.87 0.79÷0.98 0.03 0÷0.8 0.91 0.88÷0.94 0.04 0.01÷0.07 0.81 0.74÷0.92 0.02 0÷0.04 

4 0.92 0.82÷0.99 0.04 0÷0.7 0.95 0.89÷0.97 0.04 0÷0.08 0.89 0.76÷0.95 0.02 0÷0.03 

5 0.88 0.83÷0.94 0.03 0÷0.07 0.9 0.85÷0.95 0.04 0÷0.08 0.83 0.78÷0.90 0.01 0÷0.03 

1' 0.82 0.72÷0.95 0.03 0÷0.08 0.89 0.85÷0.96 0 0÷0.05 0.75 0.6÷0.97 0 --- 

2' 0.92 0.83÷0.96 0.02 0÷0.05 0.9 0.87÷0.95 0 0÷0.06 0.88 0.79÷0.94 0 --- 

3' 0.89 0.79÷0.97 0.03 0÷0.06 0.91 0.77÷0.97 0.05 0÷0.09 0.82 0.66÷0.92 0.02 0÷0.04 

4' 0.9 0.85÷0.97 0.03 0÷0.07 0.92 0.88÷0.95 0.04 0÷0.10 0.84 0.75÷0.93 0.01 0÷0.04 

5' 0.89 0.82÷0.95 0.04 0÷0.07 0.87 0.79÷0.94 0.05 0÷0.10 0.83 0.72÷0.91 0.02 0÷0.04 

Large regions scenario 
6 0.92 0.83÷1 0 --- 1 0.99÷1 0.01 0÷0.04 0.92 0.83÷1 0 --- 

7 0.96 0.91÷1 0 --- 0.98 0.96÷0.99 0 0÷0.03 0.94 0.88÷0.98 0 --- 

8 0.93 0.86÷1 0 --- 0.99 0.96÷1 0.01 0÷0.02 0.92 0.85÷1 0 --- 

9 0.96 0.87÷1 0 --- 0.99 0.96÷1 0.01 0÷0.03 0.95 0.84÷1 0 --- 

10 0.96 0.9÷1 0 --- 0.97 0.95÷0.99 0.01 0÷0.02 0.93 0.86÷0.98 0 --- 

6' 0.92 0.83÷1 0 --- --- --- --- --- --- --- --- --- 

7' 0.94 0.82÷1 0 0÷0.01 0.91 0.85÷0.98 0.01 0÷0.04 0.82 0.73÷0.95 0 --- 

8' 0.93 0.86÷1 0.01 0÷0.02 0.99 0.93÷1 0.01 0÷0.02 0.89 0.78÷1 0 --- 

9' 0.95 0.91÷1 0 --- 0.99 0.94÷1 0.01 0÷0.04 0.94 0.88÷1 0 --- 

10' 0.95 0.91÷1 0 0÷0.01 0.95 0.89÷1 0.01 0÷0.02 0.90 0.83÷0.98 0 --- 
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Figure 10_SI: Mean sensitivity (o), mean FDR (o) and the respective 95% confidence 
intervals (+) for LSCN, LAP and SODEGIR procedures when applied to the analysis of the 
10 configurations of matched and un-matched alterations in the small regions scenario (180 
total sample simulations). The dashed line indicates the 0.05 FDR threshold. 
 

 
Figure 11_SI: Mean sensitivity (o), mean FDR (o) and the respective 95% confidence 
intervals (+) for LSCN, LAP and SODEGIR procedures when applied to the analysis of the 
10 configurations of matched and un-matched alterations in the large regions scenario (180 
total sample simulations) The dashed line indicates the 0.05 FDR threshold. 
 



SODEGIR: a computational procedure to identify significant overlap of differentially expressed and genomic imbalanced regions 

 25

Comparison of LSCN with FASeg 
The forward-backward Fragment Assembling Segmentation algorithm (FASeg) (17) was 
used to determine the gene copy number from genotyping data and compare results with the 
gene CN values estimated by LSCN at Entrez Gene IDs. In details, CN data of the AffyRef 
samples were quantified by CNAT 4.01 without any smoothing and loaded into FASeg. The 
significance cutoff value for the likelihood-ratio test in segmentation (sig) and the initial 
smoothing range (smooth.range) were set to 1e-5 and 75, respectively. FASeg returned a 
matrix with CN data for all SNP probes in all samples which was used to calculate the gene 
CN values for 24,535 gene accession numbers. After re-annotating gene accession numbers 
in terms of Entrez Gene IDs and filtering out duplicated identifiers, the FASeg gene CN 
matrix resulted in 15,702 Entrez Gene IDs, all represented in the LSCN gene CN matrix. As 
in LSCN, the CN status of a gene g in a sample j has been defined setting a low and a high 
threshold on the FASeg gene CN. Specifically, the 10th and 90th quantile of FASeg gene CN 
distributions have been selected as low and high thresholds, respectively. Similarly to the 
aggregation of SODEGIRs, a binomial distribution test with the q-value correction has been 
applied to identify regions of status concordance (amplifications and deletions) shared by a 
statistically relevant number of samples. Results obtained from FASeg gene CN of AffyRef 
dataset are available at the web companion site as .SDG_tables and q plots 
(http://www.xlab.unimo.it/SODEGIR/). 
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