
Supplementary Data

1 Supplementary Data 1: Trio K-means for Disomic Data

This section contains the details of the disomic trio K-means algorithm. The trio K-means
method uses the following iterative procedure.

Step 1: Start with a set of initial centroids.
The initial centroids are {C(0)

AA, C
(0)
AB, C

(0)
BB}.

Step 2: At the k+1 step, update all three observations in a family as described
in the following.

Assume we have two alleles, A and B. For disomic family trios, there are 15 pos-
sible genotype combinations that agree with Mendelian segregation rules (see Table 1 of
the original paper). Let g1, g2 and g3 be the possible genotypes for parent 1, parent
2 and the child. For all combinations of g1, g2 and g3 shown in Table 1, we calculate
Dg1,g2,g3 = d(x1, C

(k)
g1 ) + d(x2, C

(k)
g2 ) + d(x3, C

(k)
g3 ), where Ckg ’s are the estimated group cen-

ters from the kth step and d(xi, Ckj ) is the squared Euclidean distance between the observed

value xi and the center for jth genotype group, C(k)
j . Family members are then assigned to

the genotypes g̃1, g̃2 and g̃3 that minimize Dg1,g2,g3 .

Step 3: Iterate until convergence.

Note that our trio K-means procedure assumes that all the family information is correct,
and no Mendelian errors are acceptable. We discuss this assumption further in the discussion
section of the paper.

2 Supplementary Data 2: A Model for Trisomic Trios

Xu and others proposed a basic model for genotype data of trisomic trios (Xu et al., 2004).
We base our family-based methods for trisomic trio data on this model. The following is a
brief description of the model.

Assume a SNP marker with two alleles marked A and B. There are nine possible
mating types (i.e., different combinations of parental genotypes) as shown in Table S1. The
nondisjoining parent (NDJP) is the parent that contributes two copies of the chromosomes
and the correctly dsijoining parent (CDJP) is the parent that contributes only one copy of
the chromosome. Because only a small portion of the trisomic conceptuses survive to term,
we can only observe the disease status of these trisomic individuals. Hence it is impossible
to separate the two events, survival to term and affected with the disease. Therefore, the
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association parameters in the model are defined as the following,

w0 = probability of survival and affectedness of a conceptus with genotype AAA,
w1 = probability of survival and affectedness of a conceptus with genotype AAB,
w2 = probability of survival and affectedness of a conceptus with genotype ABB,
w3 = probability of survival and affectedness of a conceptus with genotype BBB.

The map parameter used in this model is h, which is defined as the probability that the
two chromosomes contributed by the NDJP are reduced to homozygosity (duplicates of the
same parental chromosome). Given the parental data, the probability of a living affected
trisomic offspring’s genotype depends only on the h and the w’s. For example, for mating
type AB (NDJP) × AA (CDJP), the CDJP must contribute an A. If h=0, i.e., the two
chromosomes are not reduced to homozygosity, then the NDJP contributes AB; if h = 1,
i.e., the two chromosomes are reduced to homozygosity, then NDJP contributes either AA
or BB, with half of a chance each. Therefore, given the parental genotypes shown above,

Pr(the affected child is AAA | NDJP is AB and CDJP is AA)
= Pr(NDJP contributes AA)× Pr(the child survives to term and is diseased|the child is AAA)

=
h

2
× w0.

Similarly,

Pr(the diseased child is AAB | NDJP is AB and CDJP is AA)
= Pr(NDJP contributes AB)× Pr(the child survives to term and is diseased | the child is AAB)

=
1− h

2
× w1,

and

Pr(the diseased child is ABB | NDJP is AB and CDJP is AA)
= Pr(NDJP contributes BB)× Pr(the child survives to term and is diseased | the child is ABB)

=
h

2
× w2.

These probabilities are normalized so that they add up to 1 for each mating type, and listed
in the 5th column of Table S1. This example is the 5th mating type shown in Table S1.

3 Supplementary Data 3: Trisomic Trio K-means Method

The trisomic trio K-means algorithm follows the same iteration steps as the disomic trio
K-means algorithm. For trisomic trio data, the parents are disomic and the offspring are
trisomic. We follow the trisomic model described by Xu et al, 2004. There are a total of
18 possible family types. They are listed in Table S1. Details of the model are described in
supplementary data 2. NDJP is the abbreviation for the nondisjoining parent that passes
2 alleles to the offspring and CDJP is the abbreviation for the correctly disjoining parent
that passes 1 allele to the offspring. Again, at each iteration, we calculate Dg1,g2,g3 =
d(x1, C

(k)
g1 ) + d(x2, C

(k)
g2 ) + d(x3, C

(k)
g3 ) as defined in supplementary data 1. Family members

are then assigned to the genotypes g̃1, g̃2 and g̃3 that minimize Dg1,g2,g3 .
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Table S1: Eighteen Family Types of a SNP Marker for a Nuclear Family with One Trisomic
Offspring.

Family Type NDJP CDJP Child Probability

p q

1 AA AA AAA 1 p2
aa

2 AA AB AAA ( w0
w0+w1

) paapab
3 AAB ( w1

w0+w1
) paapab

4 AA BB AAB 1 paapbb
5 AB AA AAA ( w0h

w0h+2w1(1−h)+w2h
) pabpaa

6 AAB ( 2w1(1−h)
w0h+2w1(1−h)+w2h

) pabpaa

7 ABB ( w2h
w0h+2w1(1−h)+w2h

) pabpaa

8 AB AB AAA ( w0h
w0h+(w1+w2)(2−h)+w3h

) pabpab

9 AAB ( w1(2−h)
w0h+(w1+w2)(2−h)+w3h

) pabpab

10 ABB ( w2(2−h)
w0h+(w1+w2)(2−h)+w3h

) pabpab

11 BBB ( w3h
w0h+(w1+w2)(2−h)+w3h

) pabpab

12 AB BB AAB ( w1h
w1h+2w2(1−h)+w3h

) pabpbb

13 ABB ( 2w2(1−h)
w1h+2w2(1−h)+w3h

) pabpbb

14 BBB ( w3h
w1h+2w2(1−h)+w3h

) pabpbb

15 BB AA ABB 1 pbbpaa
16 BB AB ABB ( w2

w2+w3
) pbbpab

17 BBB ( w3
w2+w3

) pbbpab
18 BB BB BBB 1 p2

bb

paa, pab and pbb are the population genotype frequencies for genotypes aa, ab and bb respec-
tively. h is the trisomic map parameter.

4 Supplementary Data 4: Trisomic Trio Beta-Mixture Model

This section contains the details of the trisomic trio beta-mixture model for genotype calling,
including the derivation of the likelihood, the expectation-maximization (EM) algorithm for
the estimation of the parameters and the genotype prediction procedure.

4.1 Likelihood for complete data

Let Yi = (yNi, yCi, yKi) denote the observed one-dimensional data for the NDJP, CDJP
and child of the ith trio; Gi = (gNi, gCi, gKi) the corresponding genotype vector, where Gi

is unknown. The contribution to the complete-data likelihood function from the ith trio is:

Li(θ, Yi, Gi, hi) (4.1)
= {Pr(gNi)Pr(gCi)Pr(gKi|gNi, gCi)}
×{Pr(yNi|gNi)Pr(yCi|gCi)Pr(yKi|gKi)} ,

where the first component, Pr(gNi)Pr(gCi)Pr(gKi|gNi, gCi), is the pedigree likelihood; the
second component, Pr(yNi|gNi)Pr(yCi|gCi)Pr(yKi|gKi), is the penetrance term. h is the
probability that the two alleles contributed by the NDJP are reduced to homozygousity
(see supplementary data 2). The parameter vector is θ = (pλ1’s, αλ1’s, αλ2’s, βλ1’s, βλ2’s)T ,
where λ1 ∈ Λ1 = {AA,AB,BB}, and λ2 ∈ Λ2 = {AAA,AAB,ABB,BBB}. Therefore,
the likelihood for the ith trio is

Li(Yi, Gi, hi, θ) = pλ1pλ1Pr(gKi|gNi, gCi) (4.2)

3



×f(yNi, αλ1, βλ1)f(yCi, αλ1, βλ1)f(yKi, αλ2, βλ2)

and the corresponding log likelihood is

li(Yi, Gi, hi, θ) = log pλ1 + log pλ1 + logPr(gKi|gNi, gCi) (4.3)
+ log f(yNi, αλ1, βλ1)
+ log f(yCi, αλ1, βλ1)
+ log f(yKi, αλ2, βλ2)

4.2 A beta-mixture model

A beta-mixture model is assumed for the penetrance term. In a trisomic trio, the parents are
disomic and the child is trisomic. Therefore, two mixture models are needed for the data,
one for the parents, and one for the children. Let y be the obseved value for an individual, we
assume the following two beta mixture-models for the parents and the children respectively

y ∼
∑
λ1∈Λ1

νλ1f(y, αλ1, βλ1), (4.4)

and

y ∼
∑
λ2∈Λ2

νλ2f(y, αλ2, βλ2), (4.5)

where νλ1 is the probability of a parent having genotype λ1 ∈ Λ1 = {AA,AB,BB}, νλ2 is
the probability of a child having genotype λ2 ∈ Λ2 = {AAA,AAB,ABB,BBB}, and

f(y, α, β) =
1

B(α, β)
yα−1(1− y)β−1

=
Γ(α+ β)
Γ(α)Γ(β)

yα−1(1− y)β−1, 0 < y < 1, α, β > 0.

4.3 Pedigree likelihood

We follow the model proposed by Xu et al., 2004, as discussed in supplementary data 2.
In our real data example, the h’s are estimated from the microsatelite marker map already
established on this dataset (Feingold, et al. 2000). h = 1 when we are sure that the two
alleles from the NDJP are reduced to homozygosity, and h = 0 when we are sure that the
two alleles from the NDJP are not reduced to homozygosity. For the purpose of genotype
calling, all w’s are set to 1.

4.4 Estimation

The expectation-maximization (EM) algorithm was applied to estimate the model param-
eters, θ = (νλ1’s, αλ1’s, βλ1’s, αλ2’s, βλ2’s)T .

4.5 Estimation of νλ1’s.

Here we denote the population genotype frequencies, the pλ’s=νλ1’s, where λ1 ∈ Λ1 =
{AA,AB,BB}. The sufficient statistic for νλ1 is

S1,λ1 =
n∑
i=1

[1{gNi = λ1}+ 1{gCi = λ1}] (4.6)
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E-step

At the E-step, we calculate E(S1,λ1|Y, θ(t)).

Pr(gNi = λ1|Yi, θ(t)) (4.7)

=
Pr(Yi|gNi = λ1, θ(t))Pr(gNi = λ1, θ(t))∑

λ1∈Λ={AA,AB,BB} Pr(Yi|gNi = λ1, θ(t)Pr(gNi = λ1, θ(t))

=
νλ1f(yNi, αλ1, βλ1)

∑
gCi

∑
gKi

νgCiPr(gKi|gCi, gNi = λ1, θ(t))
∏
γ∈{Ci,Ki} f(yγ , αgγ , βgγ )∑

gNi

∑
gCi

∑
gKi

νgNiνgCiPr(gKi|gCi, gNi, θ(t))}
∏
γ∈{Ni,Ci,Ki} f(yγ , αgγ , βgγ )

Similarly

Pr(gCi = λ1|Yi, θ(t)) (4.8)

=
νλ1f(yCi, αλ1, βλ1)

∑
gNi

∑
gKi

νgCiPr(gKi|gCi = λ1, gNi, θ(t))
∏
γ∈{Ni,Ki} f(yγ , αgγ , βgγ )∑

gNi

∑
gCi

∑
gKi

νgNiνgCiPr(gKi|gCi, gNi, θ(t))}
∏
γ∈{Ni,Ci,Ki} f(yγ , αgγ , βgγ )

.

Therefore, we can use the above two formulas to calculate

E(S1,λ1|Y, θ(t)) (4.9)

=
n∑
i=1

[
Pr(gNi = λ1|Yi, θ(t) + Pr(gCi = λ1|Yi, θ(t))

]
M-step
At the M-step, we update νλ1 using the following formula,

ν
(t+1)
λ1 =

E(S1λ|Y, θ(t))
2n

, (4.10)

where n is the number of family trios.

4.6 Estimation of the beta components.

• E stimation of αλ1’s and βλ1’s

The part of the log likelihood that involves αλ1 and βλ1 is

lλ1 =
n∑
i=1

1{gNi = λ1} log f(yNi, αλ1, βλ1) +
n∑
i=1

1{gCi = λ1} log f(yCi, αλ1, βλ1).

E-step

At the E-step, we calculate

E(lλ1|Y, θ(t)) (4.11)

=
n∑
i=1

Pr(gNi = λ1|Yi, θ(t)) log f(yNi, αλ1, βλ1)

+
n∑
i=1

Pr(gCi = λ1|Yi, θ(t)) log f(yCi, αλ1, βλ1).
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Pr(gNi = λ1|Yi, θ(t)) and Pr(gCi = λ1|Yi, θ(t)) can be clculated using equations 4.7
and 4.8 respectively.

M-step
At the M-Step, we maximize E(lλ1|Y, θ(t)) using the nlm procedure included in the
R-package to get α(t+1)

λ1 and β
(t+1)
λ1 .

• E stimation of αλ2’s and βλ2’s

The part of the log likelihood that involves αλ2s and βλ2s is

lλ2 =
n∑
i=1

1{gNi = λ1} log f(yKi, αλ2, βλ2).

E-step
At the E-step, we calculate

E(lλ2|Y, θ(t)) =
n∑
i=1

Pr(gKi = λ2|Yi, θ(t)) log f(yKi, αλ2, βλ2).

Similar to derivation shown above, we get

Pr(gKi = λ2|Yi, θ(t)) (4.12)

=
Pr(Yi|gKi = λ2, θ(t))Pr(gKi = λ2, θ(t))∑

λ2∈Λ2={AAA,AAB,ABB,BBB} Pr(Yi|gKi = λ2, θ(t)Pr(gKi = λ2, θ(t))

=
f(yKi, αλ2, βλ2)

∑
gNi

∑
gCi

pgNipgCiPr(gKi = λ2|gCi, gNi)
∏
γ∈{Ni,Ci} f(yγ , αgγ , βgγ )∑

gNi

∑
gCi

∑
gKi

pgNipgCiPr(gKi|gCi, gNi)}
∏
γ∈{Ni,Ci,Ki} f(yγ , αgγ , βgγ )

.

M-step
At the M-Step, we maximize E(lλ2|Y, θ(t)) using the nlm procedure included in the
R-package to get α(t+1)

λ2 and β
(t+1)
λ2 .

4.7 Genotype prediction using Bayes rule

Once the parameters are estimated, we can use the Bayes rule to determine the geno-
types of the family members. The posterior probability of the family genotype vector
G = (gN , gC , gK) given the observed values Y = (yN , yC , yK) is

p(G|Y ) (4.13)

=
νλ1νλ1Pr(gK |gN , gC)f(yN , ξλ1)f(yC , ξλ1)f(yK , ξλ2)∑

j=1:18 νλ1νλ1Pr(gKj |gNj , gCj)f(yNj , ξλ1)f(yCj , ξλ1)f(yKj , ξλ2)
.

Here the ξλ = (αλ, βλ)T are the parameters for the beta distribution of genotype cluster
λ.
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5 Supplementary Data 5: Disomic Simulation Study Results

Two simulation studies were conducted to compare the performance of different clustering
algorithms. For each simulation study, we simulated 1000 datasets. Each dataset consists of
150 trios. A beta distribution was used in simulating the observations in different genotype
groups. Six different clustering methods were applied to these datasets. Three methods
treat each individual independently: the K-means clustering method, the regular Gaussian-
mixture model for independent data and the regular beta-mixture model for independent
data. Three corresponding methods treat the family as a group: the trio K-means method,
the trio Gaussian-mixture model and the trio beta-mixture model.

The datasets we simulated in the first simulation study represent “good” data, because
the genotype clusters are well separated. The distributions of the AA and the BB genotype
clusters are highly skewed and the distribution of the AB genotype cluster is relatively more
symmetric following our experience with SNP array data in general. We then simulated
datasets that represent “bad” data. The genotype clusters are less well defined and the
distributions of each cluster are wider compared to the “good” data. In the original
paper, we reported the results of the second simulation only. The detailed results
for these two simulation studies are summarized in the following two tables.

Table S2: Simulation study 1: “good” disomic data.

Methods K-means Regular Gaussian- Regular beta- Trio K-means Trio Gaussian- Trio beta-
mixture model mixture model mixture model mixture model

Average number of mistakes

Total 0.253 0.699 0.037 0.127 0.549 0.024

Misscalled
heterozygotes 0.25 0 0.019 0.125 0 0.011

Misscalled
homozygotes 0.003 0.699 0.018 0.002 0.549 0.013

Number of simulations with

0 error 775 514 964 883 589 976

1 errors 200 320 35 107 295 24

2 errors 22 122 1 10 94 0

3 errors 3 41 0 0 22 0

4 errors 0 3 0 0 0 0

A total of 1000 datasets were simulated. Each dataset consisted 150 disomic trios. Popu-
lation genotype frequencies were set at pAA = 0.2, pAB = 0.35 and pBB = 0.45. The beta
parameters used in the simulations for the three genotype clusters were αAA = 1, βAA = 40,
αAB = 20, βAB = 20, αBB = 40, βBB = 1.
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Table S3: Simulation study 2: “bad” disomic data.

Methods K-means Regular Gaussian- Regular beta- Trio K-means Trio Gaussian- Trio beta-
mixture model mixture model mixture model mixture model

Average number of mistakes

Total 14.62 6.65 5.31 7.13 4.42 3.47

Misscalled
heterozygotes 14.46 1.38 2.89 6.93 1.09 1.90

Misscalled
homozygotes 0.16 5.27 2.42 0.20 3.33 1.57

Number of simulations with

0 error 0 1 3 3 15 35

1-5 errors 8 349 572 285 705 819

6-10 errors 158 574 394 599 274 145

10-15 errors 449 73 31 108 6 1

>15 errors 385 3 0 5 0 0

A total of 1000 datasets were simulated. Each dataset consisted 150 disomic trios. Popu-
lation genotype frequencies were set at pAA = 0.2, pAB = 0.35 and pBB = 0.45. The beta
parameters used in the simulations for the three genotype clusters were αAA = 5, βAA = 40,
αAB = 10, βAB = 10, αBB = 40, βBB = 5.

6 Supplementary Data 6: Trisomic Simulation Study Results

This document provides the detailed results for Figure 4 of the original paper. A total of
1000 datasets were simulated and 150 family trios were simulated in each dataset. A beta
distribution was used to simulate the observed values. Population genotype frequencies
were set at pAA = 0.2, pAB = 0.35 and pBB = 0.45. The K-means clustering method,
the regular beta-mixture model, the trio K-means and the trio beta-mixture model were
applied to the simulated datasets. The results of the simulation study are summarized in
Table S4.
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Table S4: Trisomic simulation study results

Methods K-means Regular beta- Trio K-means Trio beta-
mixture model mixture model

Average number of mistakes
4.41 4.18 3.23 1.44

Number of simulations with
0 error 14 32 35 233

1-5 errors 714 762 825 761
6-10 errors 265 162 138 6
10-15 errors 7 27 2 0
>15 errors 0 15 0 0

The beta parameters used in simulation of the parental genotypes are: αAA = 2, βAA =
20, αAB = 60, βAB = 84, αBB = 2, βBB = 2. Those for the four genotype clusters
of the children’s genotyes are: αAAA = 2, βAA = 20, αAAB = 26, βAB = 51, αABB =
83, βBB = 65, αABB = 2, βBB = 20.
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