Supplementary material

Meta-analysis of age-related gene expression profiles identifies common signatures of aging de Magalhães et al.

Contents

In this file

Figure S1: Flow diagram of our meta-analysis method

Table S1: List of aging microarray datasets used in this work

Table S2: Genes differentially expressed with age that have been validated by direct methods

References for Tables S1 and S2

In accompanying Excel file

Table S3: List of genes overexpressed with age with q < 0.5

Table S4: List of genes underexpressed with age with q < 0.5

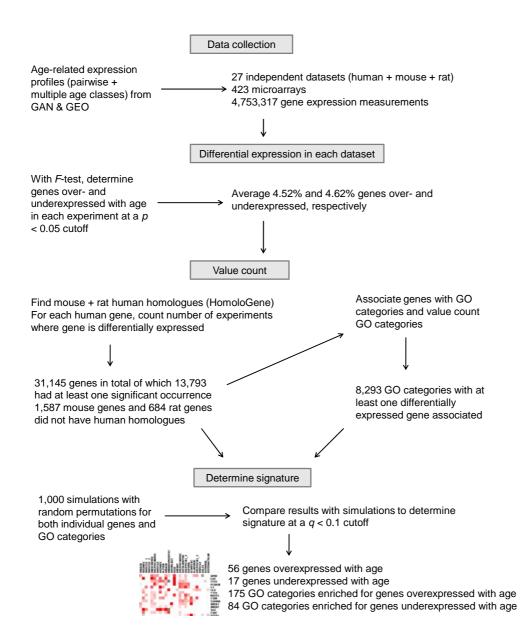

Table S5: List of genes significantly (p < 0.05) overexpressed with age using Fisher's inverse Chi-square approach

Table S6: List of genes significantly (p < 0.05) underexpressed with age using Fisher's inverse Chisquare approach

Table S7: List of GO categories overrepresented for genes overerexpressed with age with q < 0.1

Table S8: List of GO categories overrepresented for genes underexpressed with age with q < 0.1

Figure S1: Flow diagram of our meta-analysis method

Note: Please see Method section for additional details.

Table S1: List of aging microarray datasets used in this work

Tissue	Ages	GEO	Reference			
Human (Homo sapiens) datasets						
Brain	26-106 yrs	GDS707	Lu, et al., 2004			
Kidney	27-92 yrs	NA	Rodwell, et al., 2004			
Skeletal muscle	20-75 yrs	GDS472, GDS473, GDS287, and GDS288	Welle, et al., 2004; Welle, et al., 2003			
Skeletal muscle	22.5-73 yrs	GDS156	Welle, et al., 2002			
Mouse (Mus musculus datasets						
Skeletal muscle	5-25 mo	GDS2612 GDS355 and	Edwards, et al., 2007 NA			
Kidney	5-30 mo	GDS356				
Brain	4.5-22 mo	GDS1311	Godbout, et al., 2005			
Hippocampus	2-15 mo	GDS2082	Verbitsky, et al., 2004			
Liver	6-22 mo	GDS2019	Papaconstantinou, et al., 2005			
Heart	3-12 mo	GDS40	NA			
Lung	2-26 mo	GDS2929	Misra, et al., 2007			
Neocortex	5-30 mo	NA	Lee, et al., 2000			
Eye	2-24 mo	GDS396 and GDS397	Ida, et al., 2003			
Cochlea	4-15 mo	GDS2681	Someya, et al., 2007			
Hematopoietic stem cells	2.5-23 mo	GDS1803	Rossi, et al., 2005			
Myogenic progenitors	8-23.5 mo	GDS1079	Beggs, et al., 2004			
Rat (Rattus norvegicus) datasets						
Hippocampus	5-25 mo	GDS2639	Rowe, et al., 2007			
Stromal cells	3-15 mo	GDS2231	Akavia, et al., 2006			
Spinal cord	6-30 mo	GDS1280	NA			
Oculomotor nucleus	6-30 mo	GDS1280	NA			
Skeletal muscle	6-30 mo	GDS1279	NA			
Extraocular muscle	6-30 mo	GDS1279	NA			
Laryngeal muscle	6-30 mo	GDS1278	McMullen and Andrade, 2006			
Heart	3.5-21 mo	GDS399	Dobson, et al., 2003			
CA1 hippocampi	3-24 mo	GDS2315	Burger, et al., 2007			
CA1 hippocampi	4-24 mo	GDS520	Blalock, et al., 2003			
Primary glia	3-24 mo	NA	NA			
• 0						

Notes: yrs = years; mo = months; NA = not available.

Table S2: Genes differentially expressed with age that have been validated by direct methods

Gene symbol	Up- or down- regulated	Organism	Method	Reference
APOD	un	Mouse	qRT-PCR	Ida, et al., 2003
_	up			
<i>C3</i>	up	Human	single radial immunodiffusion	Yonemasu, et al., 1978
CTSS	up	Mouse	qRT-PCR	Ida, et al., 2003
CLU	up	Rat	Northern blot	Bettuzzi, et al., 1994
C1QA	up	Mouse	qRT-PCR	Sharman, et al., 2005
GFAP	up	Mouse	qRT-PCR	Lee, et al., 2000
MGST1	up	Human	qRT-PCR	Prall, et al., 2007
C1QB	up	Mouse	qRT-PCR	Verbitsky, et al., 2004
C4A	up	Mouse	qRT-PCR	Lee, et al., 2000
COL3A1	down	Mouse	qRT-PCR	Misra, et al., 2007
COL1A1	down	Mouse	qRT-PCR	Misra, et al., 2007
ATP5G3	down	Rat	Northern blot	Ishihata and Katano, 2006
CALB1	down	Rat	Northern blot	Iacopino and Christakos, 1990

Note: Organism refers to the organism in which the validation was carried out.

References

- Akavia, U.D. et al. (2006) Transcriptional profiling of mesenchymal stromal cells from young and old rats in response to Dexamethasone, *BMC Genomics*, **7**, 95.
- Beggs, M.L. et al. (2004) Alterations in the TGFbeta signaling pathway in myogenic progenitors with age, *Aging Cell*, **3**, 353-361.
- Bettuzzi, S. et al. (1994) Gene relaxation and aging: changes in the abundance of rat ventral prostate SGP-2 (clusterin) and ornithine decarboxylase mRNAs, *FEBS Lett*, **348**, 255-258.
- Blalock, E.M. et al. (2003) Gene microarrays in hippocampal aging: statistical profiling identifies novel processes correlated with cognitive impairment, *J Neurosci*, **23**, 3807-3819.
- Burger, C. et al. (2007) Changes in transcription within the CA1 field of the hippocampus are associated with age-related spatial learning impairments, *Neurobiol Learn Mem*, **87**, 21-41.
- Dobson, J.G., Jr. et al. (2003) Molecular mechanisms of reduced beta-adrenergic signaling in the aged heart as revealed by genomic profiling, *Physiol Genomics*, **15**, 142-147.
- Edwards, M.G. et al. (2007) Gene expression profiling of aging reveals activation of a p53-mediated transcriptional program, *BMC Genomics*, **8**, 80.
- Godbout, J.P. et al. (2005) Exaggerated neuroinflammation and sickness behavior in aged mice following activation of the peripheral innate immune system, *Faseb J*, **19**, 1329-1331.
- Iacopino, A.M. and Christakos, S. (1990) Specific reduction of calcium-binding protein (28-kilodalton calbindin-D) gene expression in aging and neurodegenerative diseases, *Proc Natl Acad Sci U S A*, **87**, 4078-4082.
- Ida, H. et al. (2003) Age-related changes in the transcriptional profile of mouse RPE/choroid, *Physiol Genomics*, **15**, 258-262.
- Ishihata, A. and Katano, Y. (2006) Investigation of differentially expressed genes in the ventricular myocardium of senescent rats, *Ann N Y Acad Sci*, **1067**, 142-151.
- Lee, C.K. et al. (2000) Gene-expression profile of the ageing brain in mice, Nat Genet, 25, 294-297.
- Lu, T. et al. (2004) Gene regulation and DNA damage in the ageing human brain, *Nature*, **429**, 883-891.
- McMullen, C.A. and Andrade, F.H. (2006) Contractile dysfunction and altered metabolic profile of the aging rat thyroarytenoid muscle, *J Appl Physiol*, **100**, 602-608.
- Misra, V. et al. (2007) Global expression profiles from C57BL/6J and DBA/2J mouse lungs to determine aging-related genes, *Physiol Genomics*, **31**, 429-440.
- Papaconstantinou, J. et al. (2005) Hepatic gene and protein expression of primary components of the IGF-I axis in long lived Snell dwarf mice, *Mech Ageing Dev*, **126**, 692-704.
- Prall, W.C. et al. (2007) Age-related transcription levels of KU70, MGST1 and BIK in CD34+hematopoietic stem and progenitor cells, *Mech Ageing Dev*, **128**, 503-510.
- Rodwell, G.E. et al. (2004) A transcriptional profile of aging in the human kidney, *PLoS Biol*, **2**, e427.
- Rossi, D.J. et al. (2005) Cell intrinsic alterations underlie hematopoietic stem cell aging, *Proc Natl Acad Sci U S A*, **102**, 9194-9199.
- Rowe, W.B. et al. (2007) Hippocampal expression analyses reveal selective association of immediate-early, neuroenergetic, and myelinogenic pathways with cognitive impairment in aged rats, *J Neurosci*, **27**, 3098-3110.
- Sharman, E.H. et al. (2005) Parallel changes in gene expression in aged human and mouse cortex, *Neurosci Lett*, **390**, 4-8.
- Someya, S. et al. (2007) Caloric restriction suppresses apoptotic cell death in the mammalian cochlea and leads to prevention of presbycusis, *Neurobiol Aging*, **28**, 1613-1622.
- Verbitsky, M. et al. (2004) Altered hippocampal transcript profile accompanies an age-related spatial memory deficit in mice, *Learn Mem*, **11**, 253-260.

- Welle, S. et al. (2004) Skeletal muscle gene expression profiles in 20-29 year old and 65-71 year old women, *Exp Gerontol*, **39**, 369-377.
- Welle, S. et al. (2003) Gene expression profile of aging in human muscle, *Physiol Genomics*, **14**, 149-159.
- Welle, S. et al. (2002) Computational method for reducing variance with Affymetrix microarrays, *BMC Bioinformatics*, **3**, 23.
- Yonemasu, K. et al. (1978) Effect of age on C1q and C3 levels in human serum and their presence in colostrum, *Immunology*, **35**, 523-530.