## X-ray vs. NMR structures as templates for computational protein design

Schneider, Fu and Keating

Table S1: Re-evaluation of the Rosetta designs with a CHARMM-based energy function or FoldEF.

|         | Mean energy difference<br>(lowest-energy-NMR – X-ray) <sup>1</sup> |             | Number of NMR designs better than<br>or within 2 kcal/mol of X-ray design |        |
|---------|--------------------------------------------------------------------|-------------|---------------------------------------------------------------------------|--------|
| Method  | CHARMM                                                             | FoldEF      | CHARMM                                                                    | FoldEF |
| C-RELAX | -22.9 ± 33.7                                                       | 3.26 ± 6.9  | 23                                                                        | 13     |
| R-RELAX | -16.6 ± 37.7                                                       | 3.07 ± 8.22 | 21                                                                        | 14     |
| R-ITER  | -26.0 ± 31.9                                                       | 3.66 ± 7.93 | 23                                                                        | 12     |

<sup>1</sup>Average of energy differences between the lowest-NMR design and the respective X-ray derived design over all structure pairs.



**Figure S1:** Re-evaluation of designed structures with a CHARMM-based energy function. Templates were prepared using three different methods and sequences were designed on each structure, as described in the text. (a) C-RELAX, (b) R-RELAX, (c) R-ITER.



Figure S2: Re-evaluation of designed structures with the FOLDEF potential. Templates were prepared using three different methods and sequences were designed on each structure, as described in the text. (a) C-RELAX, (b) R-RELAX, (c) R-ITER.



**Figure S3:** The energy difference  $(E_{NMR} - E_{X-ray})$  plotted vs. NMR template  $\chi_1$ -angle recovery for all NMR templates used in design calculations. Different symbols highlight properties of the designed structures and sequences as in Table III: Green "+" symbols show structures with native sequence recoveries similar to the X-ray design; blue diamonds are used for designs with SASApack values similar to the X-ray design; red diamonds are used for designs that satisfy both criteria; black circles are for designs that satisfy neither criterion.



**Figure S4:** The energy difference  $(E_{NMR} - E_{X-ray})$  plotted vs. hydrogen-bond coincidence with the X-ray template for all NMR templates used in design calculations. Different symbols highlight properties of the designed structures and sequences as in Table III: Green "+" symbols show structures with native sequence recoveries similar to the X-ray design; blue diamonds are used for designs with SASApack values similar to the X-ray design; red diamonds are used for designs that satisfy both criteria; black circles are for designs that satisfy neither criterion.