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1. Simulation study

In this section we compare pairs of samples composed of 100 observations each, using the model

discussed in the paper. For each simulated data set, we wish to determine whether both samples

arise from the same underlying distributions, providing some insight into the frequentist properties

of the testing procedure. As summarized in Table 1 and Figure 1, we simulated data under three

different cases, with each simulated data set analyzed using three different models corresponding

to K ∈ {3, 10, 20}. The first case corresponds to only a subtle change in shape, the second

mimics the DNA damage data in exhibiting a shift in location and shape, and the third case case

corresponds to the null hypothesis of equality between both true distribution.

The boxplots in Figure 2 show the performance of the model over 50 simulations carried out

∗Corresponding author’s email address: abel@ams.ucsc.edu

Key words: Hierarchical functional data, Finite mixture model, Comet assay, Samples of distribu-

tions, Stochastic search, Latent factor, Genotoxicity

1



Table 1

True distributions in each case of the simulation study.
.

Case Distribution 1 Distribution 2
1 LN(0.752, 0.693) E(3.000)
2 LN(0.752, 0.693) 0.75LN(1.300, 0.25) + 0.25LN(2.300, 0.090)
3 LN(0.752, 0.693) LN(0.752, 0.693)
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Figure 1. True distributions in the simulation example. Panel (a) corresponds to case 1, while

panel (b) corresponds to case 2. Case 3 uses the same lognormal distribution in panels (a) and (b)

to generate both datasets.
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under each of 9 combinations discussed above. Panels (a), (b) and (c) correspond to K = 3,

K = 10 and K = 20 respectively. Note that when both samples arise from a common distribution

(case 3 in all three panels), the model correctly reports high posterior probabilities for the null

model. Indeed, at least 75% of the simulations report a posterior probability over 0.8, and around

25% report values over 0.9. On the other hand, when the distributions are indeed different, this

probability tends to drop dramatically, especially when a moderately large number of mixture

components are used. In the case K = 3, when very few components are used, the model has a

harder time differentiating across groups, but it still capable of selecting the correct model more

than 50% of the time. When the number of component grows, the model is capable of finding

differences most of time. Indeed, over 75% of the simulations for K = 10 and K = 15 have

an estimated posterior probability for the null hypothesis of no difference in both of the first two

simulation cases. This is in contrast with regular nonparametric tests like the Wilcoxon rank-sum

test, which have power under 20% for the examples displayed here and do not allow for hierarchical

structures. The plots also show that little additional advantages are obtained by increasing the

number of components from 10 to 15.

The explanation is relatively straightforward; if too few components are used, the models

need to compromise in order to fit all distributions as closely as possible, possibly masking their

differences. On the other hand, too many components add little to the ability of the model to

fit the empirical distributions. Similar results (not shown) arise when comparing more than two

distributions. In particular, we note that the probability of false negatives does not fall significantly.
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Figure 2. Simulation results, showing the probability that both samples arise from the same prob-

ability distributon. Each boxplot corresponds to 50 simulations, under the nine conditions in our

simulation study .
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