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A. Weighted least squares and generalized least squares

Here we describe two additional approaches to the problem of measurement error in

exposure predictions induced by spatial misalignment.

A.1 Weighted Least Squares (WLS)

An approach that downweights anomalous exposure predictions having high un-

certainty, which might be influential in the health model, is weighted least squares

(WLS) with the weights based on the uncertainty estimates from the exposure model

(e.g., Kunzli et al., 2005). Although this approach seems intuitive may be useful for

downweighting estimates with larger error, these are not the correct weights in our

modeling framework, as discussed in Section 3. As shown there, the correct covariance

is β2
1Σ∗ + σ2

ε Iny . As an example of when this approach could perform poorly, when

all values have large, but similar, uncertainty, this approach will give similar results to

that from OLS without adjusting for the correlation. In practice though, there may

exist some problematic spatial regions where the exposure has not been estimated well
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(e.g., at locations far from data, which give large prediction errors), in which case this

method may improve upon the plug-in estimator.

A.2 GLS based on the exposure covariance estimate (GLS)

As mentioned in Section 3, if one is interested in directly using the predictions

from an exposure model, one should use GLS with covariance β2
1Σ∗ + σ2

ε Iny . This

is essentially the “Krige and Regress” estimator of Madsen et al. (2008), except for

the implementation differences described below. Like the fully Bayesian approach, GLS

accounts for the structure in the uncertainty inX∗. To apply this approach, one needs a

good estimate of Σ∗, the prediction error variance at the health locations. This estimate

can be obtained from the exposure model. Since we use S∗ = Ê(X∗|W ), we want an

estimate of V̂ar(X∗|W ). This conditional variance is difficult to compute (Booth and

Hobert, 1998), so we use the approximation considered by Ruppert et al. (2003, page

103):

Σ̂∗ = C∗Ĉov

([
β̂w

b̂w

]
|bw

)
(C∗)T + σ̂2

δIny .

Since β1 appears in both the mean and the covariance in the health data, one cannot

use a typical GLS approach. Madsen et al. (2008) chose to use an initial estimate of β1

for the covariance matrix. We choose to maximize the likelihood of the health model

using a direct optimization routine, such as nlm or optim in R. These functions require

initial values for all unknown parameters, for which an obvious choice is the plug-in

estimates. To estimate the standard error of the estimated coefficients, one can use the

standard likelihood approach and invert the information matrix.

We emphasize that our GLS approach maximizes the likelihood of the health model

treating an estimate of the covariance structure as fixed and known. Note that this

approach is not a joint maximum likelihood approach to fitting the health and exposure

models simultaneously (Madsen et al., 2008). Such an approach would be the frequentist

analogue of the fully Bayesian approach. We applied that joint approach as well in

our simulations and found results similar to those from the fully Bayesian approach
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(not shown). This finding is in contrast to the simulation results presented of Madsen

et al. (2008), who found that the joint ML approach yields coverage of only 45%

and suggested that the conditions required for the asymptotic variance estimator do

not hold in their spatial setting. One possible reason for this difference is the fact that

Madsen et al. (2008) considered relatively large residual correlation among second-stage

outcomes, motivated by an ecological application in which the outcome represented an

environmental variable (log chloride concentration in streams). In contrast, motivated

by health outcomes that are likely to be much less spatially correlated, we considered

independent residuals in the second-stage outcome and did not see any evidence that

this assumption was violated in the Boston birthweight data.

A.3 WLS and GLS simulation results

In addition to the primary methods described in Section 6, we considered the WLS

and GLS approaches in our simulations. For the WLS weights we used the inverse of

the prediction variances from the penalized spline model used in the plug-in approach.

Table 1 duplicates Table 1 in the paper with added rows for the WLS and GLS

methods. When the exposure is relatively smooth (Scenario A), all methods, including

WLS and GLS, perform reasonably well. In the other scenarios, the WLS approach

provides a slightly improved fit over the plug-in estimator, mostly by decreasing the

bias, but overall it performs quite similarly to the plug-in approach. The GLS approach,

which accounts for heteroscedasticity and correlation in X∗, performs reasonably well.

Under Scenario C, it decreases the bias of the plug-in estimator substantially and attains

a coverage of 86%. However, we note that in Scenario C, this approach had numerical

difficulties in the estimation procedure that resulted in very small (< 0.01) estimates

for the variance of the health model for 3% of the datasets. With regard to type I error

reflected in Scenario D, all the approaches perform well, with the exception of the WLS

approach, for which the estimated type I error is 0.094, almost double the nominal type

I error of 0.05. This occurs because the WLS approach uses incorrect weights when
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β1 = 0.

[Table 1 about here.]

A.4 WLS in the application

We also used WLS in the birthweight application, in which it gave a seemingly

untrustworthy estimate of -55.25 for the health effect coefficient, well away from the

estimates from the three approaches (Section 7), with very large standard error of 52.07

and 95% confidence interval of (-157.31, 46.81). This may have occurred because the

weighting strategy systematically downweights suburban locations relative to urban

locations (see Figure 2 in the paper), without taking into account the spatial structure

of these weights. This may be a form of selection bias.

B. Simulation details

To generate the Gaussian processes in the simulations we used the Fourier basis approx-

imation in the spectralGP package (Paciorek, 2007) in R using the Matérn correlation

function with the parameterization,

1
Γ(ν)2ν−1

(
2
√
ντ

ρπ

)ν
Kν

(
2
√
ντ

ρπ

)
,

with distance τ , spatial range ρ (correlation decay) and differentiability parameter ν > 0.

Note that ν dictates the differentiability of the surface, with large values corresponding

to smoother surfaces.

The settings that we used for the simulations were:

• Scenario A:

g ∼ N(0,R(1.6, 1)), δ ∼ N(0, σ2
δI82), σ2

δ = 0.12, σ2
ε = 0.82

• Scenario B:

g ∼ N(0,R(0.3, 2)), δ ∼ N(0, σ2
δI82), σ2

δ = 0.22, σ2
ε = 0.82

• Scenario C:

g ∼ N(0,R(0.3, 0.5)), δ ∼ N(0, σ2
δI82), σ2

δ = 0.22, σ2
ε = 0.82
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• Scenario D:

g ∼ N(0,R(0.3, 0.5)), δ ∼ N(0, σ2
δI82), σ2

δ = 0.22, σ2
ε = 0.82 but we generated

health data using Y ∗ ∼ N(0, σ2
ε Iny)

For Scenarios C and D, ν = 0.5, giving the exponential correlation function, which

corresponds to Gaussian processes with continuous, but not differentiable sample paths.

C. Mixed model spatial smoothing

In our simulations and application, we spatially smooth exposure using a mixed model

representation of penalized regression splines (Ruppert et al., 2003). This approach is

simple to implement, has low computational cost and is widely applicable. Consider

the simple nonparametric regression model,

Wi = f(geogi) + Ui, 1 ≤ i ≤ n, Ui ∼ N(0, σ2
u),

where geogi = (longitude, latitude)i. A mixed model representation of penalized re-

gression splines for f(·) is:

f(·) ≡X ≡ Cz, (1)

for a choice of basis functions and appropriate representation in terms of the parameters,

z (Ruppert et al., 2003). The vector z consists of a fixed effects vector β of length p and

random effects b, with bi ∼ N(0, σ2
b ), i = 1, 2, ...,K, where K is the number of knots

and C is the corresponding design matrix. We use the thin plate spline generalized

covariance to constructC. Let z̃ = ( 1
σ2

u
CTC+B)−1 1

σ2
u
CTW be the best linear unbiased

predictor (BLUP) for z, where

B =

[
0p×p 0p×K
0K×p

1
σ2

b
IK

]
.

Then the BLUP forX∗, for known σ2
u and σ2

b , is S∗ ≡ Ê(X∗|W ) = C∗z̃ = C∗( 1
σ2

u
CTC+

B)−1 1
σ2

u
CTW , which is a weighted average of the observed data W . Note that C∗ is

the design matrix that corresponds to X∗, for the same choice of basis functions and
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knots used in (1). The BLUP conditions on the available information, as in regression

calibration, so that in this modeling framework the true covariate X∗
i is centered around

around its BLUP, S∗i . As in the Gaussian process framework, the smoothing reverses

the conditioning, producing a Berkson structure, rather than the classical measurement

error structure (Section 3). In implementation of the Bayesian approaches in the sim-

ulations, we used a Bayesian version of the mixed model representation with priors on

the regression coefficients and variance components as described in Section 6.
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Scenario Method Bias E(se(β1)) sd(β̂1) MSE Coverage (%)
A True exposure -0.000 0.093 0.096 0.009 94.8

Plug-in 0.004 0.105 0.122 0.015 91.6
WLS 0.005 0.110 0.124 0.015 91.6
Exposure simulation -0.068 0.118 0.119 0.019 91.2
GLS 0.005 0.110 0.120 0.014 93.2
RC-OOS 0.006 0.122 0.122 0.015 96.4
Fully Bayesian 0.002 0.109 0.122 0.015 92.8
Two-stage Bayes 0.000 0.108 0.123 0.015 93.2

B True exposure 0.002 0.059 0.059 0.003 95.2
Plug-in -0.085 0.091 0.149 0.029 69.8
WLS -0.049 0.089 0.135 0.021 79.2
Exposure simulation -0.254 0.116 0.126 0.080 42.2
GLS -0.022 0.103 0.144 0.021 82.4
RC-OOS 0.036 0.197 0.251 0.064 95.6
Fully Bayesian 0.011 0.107 0.151 0.023 86.4
Two-stage Bayes 0.004 0.105 0.150 0.023 83.8

C True exposure 0.004 0.058 0.058 0.003 95.2
Plug-in -0.140 0.130 0.211 0.064 63.4
WLS -0.096 0.130 0.204 0.050 72.0
Exposure simulation -0.591 0.141 0.146 0.371 0.4
GLS -0.020 0.169 0.215 0.047 85.6
RC-OOS* 0.039 0.340 0.367 0.136 92.6
Fully Bayesian 0.029 0.155 0.177 0.032 93.0
Two-stage Bayes 0.039 0.1646 0.239 0.059 90.8

D True exposure 0.003 0.059 0.062 0.004 93.4
Plug-in 0.001 0.090 0.095 0.009 94.2
WLS -0.002 0.072 0.084 0.007 90.6
Exposure simulation 0.000 0.068 0.054 0.003 98.8
GLS 0.001 0.066 0.066 0.004 96.4
RC-OOS 0.001 0.111 0.115 0.013 95.6
Fully Bayesian 0.000 0.159 0.140 0.019 94.0
Two-stage Bayes 0.000 0.148 0.135 0.018 94.4

Table 1
Results of simulation study for β̂1: Bias, average model-based standard

error, Monte Carlo standard deviation, MSE, and coverage of 95%
confidence or credible intervals, over 500 simulations, for Scenarios

A-D. *One simulation with anomalous estimate omitted.
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