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1. SPECIFIC CONSIDERATIONS FOR THEOSELTAMIVIR TRIALS

1.1 Identification of clinical symptom onset

We need a definition of ILI to identify the time of symptom onset, i.e., the first day of an ILI episode, which
provides information for the infection time of a symptomatic influenza case. The two oseltamivir trials
collected the same set of symptoms: temperature, three respiratory symptoms (cough, nasal congestion,
sore throat) and four constitutional symptoms (headache, aches/pains, chills/sweats, fatigue). However,
the two primary analyses use different definitions of ILI. Welliver et al. (2001) used body temperature
> 37.2◦C plus at least one respiratory symptom and at least one constitutional symptom, whereas Hayden
et al. (2004) used body temperature> 37.8◦C plus either cough or nasal congestion. We refer to the
former as the Welliver definition and the latter as the Haydendefinition. There are other definitions of ILI
as well. For example, in the analysis of a zanamivir trial, Monto et al. (2002) used at least two symptoms
of fever (> 37.8◦C), cough, headache, sore throat, and myalgia.

Halloran et al. (2007) used the Hayden definition for Osel I and the Welliver definition for Osel II. In
Yang et al. (2006), the Welliver definition was used for Osel II, but the symptom onset dates in Osel I were
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determined by the source providing the data, and the exact definition of ILI was not clear. We use the same
definition as in Halloran et al. (2007) for comparability between our and previous results. Other definitions
are also explored in sensitivity analyses. We assume the incubation period takes discrete distributions (1
day:0.21, 2 days:0.58, 3 days:0.21) (Elveback, 1976), where l : ρ stands for Pr

(

t̃hi = t̂hi + l |t̂hi
)

= ρ.
We allow multiple ILI episodes for the same person, but two different episodes have to be sufficiently
distant from each other so that each candidate infection daycan be associated with at most a single ILI
episode. Hence, we assume that there must be at least 7 days without any symptom preceding each ILI
episode. Let̃thik denote thekth symptom onset day of person(h, i ), k = 1, . . . , mhi , wheremhi is the
total number of ILI episodes for this individual. Redefinet̃hi as a mapping from{t : Th 6 t 6 Th} to
{t̃hik : k = 1, . . . , mhi }:

t̃hi (t) =

{

t̃hik, ∃t̃hik, such that Pr(t̃hik|t) > 0
∞, otherwise.

That is, t̃hi (t) is the symptom onset day if the infection of subject(h, i ) occurs on dayt . The function
t̃hi (·) is defined on{t : Th 6 t 6 Th} because the true infection dayt̂hi is a latent variable and will be
sampled over this range.

1.2 Identification of candidate infection days

To use our method, it is necessary to identify�hi , the collection of candidate infection days for infected
individuals, which in turn requires specific links betweenC(yyyhi |t̂hi ) and lab-test results. We divide the
time period for each individual into two intervals: [Th, 0] and [1, Th], and refer to the former as the
pre-baseline period and the latter as the post-baseline period. All intervals considered here are sets of
integers. We assume the baseline swab collected on day 1 is fully indicative of the infection status in the
pre-baseline period. Given that the individual is not infected during the pre-baseline period, the infection
status during the post-baseline period is jointly determined by both swabs collected after day 1 (follow-
up swabs) and the HI titers; however, swabs are considered determinant while HI titers are considered
supplementary. We do not consider the sensitivity and specificity of the lab-tests.

Before introducing the specific rules, two principle assumptions about lab-tests are made:

• A positive nasal/throat swab drawn on dayt indicates that infection occurred in the period{s :
t − δ 6 s 6 t − 1}, without considering other information.

• A 4-fold increase in HI titers indicates that infection occurred in the post-baseline period given that
the subject is susceptible at baseline.

When a subject has multiple positive swabs, we only considerthe first one and discard the subsequent
ones. AssumeTh < 1 − δ. Let I (·) be the indicator function. The following rules are used to identify
C(yyyhi |t̂hi ) and thus�hi :

1. If the baseline (day 1) swab is positive, thenC(yyyhi |t) = I
(

t ∈ [1 − δ, 0]
)

; else, subject(h, i ) is
susceptible at the beginning of day 1.

2. Given the baseline swab is negative, if the first positive follow-up swab is drawn on dayt⋆, consider
the following possibilities defined by the location of [t⋆ − δ, t⋆ − 1] relative to [1, Th]:

• If t⋆ − 1 6 Th, thenC(yyyhi |t) = I
(

t ∈ [t⋆ − δ, t⋆ − 1] ∩ [1, Th]
)

.

• If t⋆ − δ 6 Th < t⋆ − 1, check HI titers. If there is a 4-fold increase in HI titers,C(yyyhi |t) =

I
(

t ∈ [t⋆ − δ, t⋆ − 1] ∩ [1, Th]
)

; else,C(yyyhi |t) = 0 for all t ∈ [1, Th].
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• If t⋆ − δ > Th, check HI titers. If there is a 4-fold increase in HI titers,C(yyyhi |t) = I
(

t ∈

[1, Th]
)

; else,C(yyyhi |t) = 0 for all t ∈ [1, Th].

3. Given the baseline swab is negative, if all follow-up swabs are negative or there is no follow-up
swab, check HI titers. If there is a 4-fold increase in HI titers, C(yyyhi |t) = I

(

t ∈ [1, Th]
)

; else,
C(yyyhi |t) = 0 for all t ∈ [1, Th].

While the choice ofδ seems arbitrary, it should at least (1) be biologically reasonable, and (2) allow
�hi to be non-empty for infected subjects. In a meta-analysis ofhuman influenza challenge studies, Carrat
et al. (2008) found the average duration of viral shedding among 375 participants to be 4.8 days (95%
CI:4.31, 5.29). We setδ = 7 for the major analysis, and perform sensitivity analysis for different values
of δ.

The determination ofTh is affected by both the duration of symptom diary and the lastday of specimen
collection. For Osel II, we assume the duration of symptom diary is 14 days, starting from day 1. For
subjects whose symptom diary stopped at day 7 due to absence of ILI in the first week, we assume no
ILI occurred from day 8 to day 14. It probably takes several days for the HI titer level to reach a 4-fold
increase after infection, hence it is reasonable to setTh = 14 as the second blood draw for HI titers was
on day 21. Similarly, we setTh = 23 for Osel I as the second blood draw for HI titers was on day 30,
although the symptom diary was recorded up to day 30.

2. PRIOR DISTRIBUTIONS

As the information in the data about the relative infectivity curve is very limited and the shape parameters,
a andb, are highly dependent, we adopt a reparameterization in theform of A = a + b andB = a

a+b to
improve the convergence rate and to reduce auto-correlation. For all parameters except forA, we use flat
priors over their domains at the natural scale for the primary analysis:

π(γ0) ∝ I (0 < γ0 < ∞)

π(γ1) ∝ I (0 < γ1 < ∞)

π(αuv) ∝ I (−∞ < αuv < ∞), (u, v) ∈ {(0, 0), (0, 1), (1, 0)}

π(θRx) ∝ I (0 < θRx < ∞)

π(φRx) ∝ I (0 < φRx < ∞)

π(θAge) ∝ I (0 < θAge < ∞)

π(φAge) ∝ I (0 < φAge < ∞)

π(A) ∝ exp{−
1

2
(log(A − 2) − log(2))2}, A > 2

π(B) ∝ I (0 < B < 1)

An informative prior is used forA such that it has mode at 4, based on the empirical values ofa andb. A
minimum value of 2 is imposed onA to ensure that most samples ofa andb are larger than 1 so that the
relative infectivity curve has a bell shape.

Highly informative priors are investigated in sensitivityanalyses. It should be noted that these flat
priors are noninformative in the sense that each possible value in the domain is equally weighted, but such
noninformativeness is not invariant to transformation in general. Our purpose of using flat priors at the
natural scale is to make justifiable comparison of the Bayesian estimates with likelihood-based estimates
in previous analyses.
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3. MCMC SAMPLING SCHEME

3.1 Sampling parameters

Let ωωω(−β) denote the collection of parameters withoutβ. Take the common riskγ0 as an example. Given
the current value ofγ0

old, we sampleγ0
new from the proposal distribution Log-Normal(γ0

old, d2
γ0

), and
acceptγ0

new with the probability

α = min

{

1,
Pr

(

yyy, t̂tt, t̃tt, γ0
new, ωωω(−γ0)

)

Pr
(

yyy, t̂tt, t̃tt, γ0
old, ωωω(−γ0)

) ×
γ0

new

γ0
old

}

.

The value ofdγ0 is chosen to reach an acceptance rate of 0.3− 0.4.

3.2 Monitoring the convergence of the chains

To obtain the joint posterior distribution of all the parameters, a burn-in period of 10000 iterations is
adopted on three parallel MCMC chains. Convergence in the joint posterior distribution of all parameters

is diagnosed on three parallel chains using the scale reduction factor defined as
√

R̂ =

√

M−1
M + 1

M
V
W

in Gelman and Rubin (1992), whereM is the number of runs, andV andW are the between-sequence

and within-sequence variances respectively. Convergenceis considered as reached if
√

R̂ < 1.1 for all
parameters. After convergence, we go over the last 5000 iterations and randomly choose one chain per
iteration to read in the samples. We report the results for all parameters based on these 5000 samples.

4. ADDITIONAL SENSITIVITY ANALYSIS

The standard analysis to which all sensitivity analyses arecompared is given in column 2 of Table 4 in
the main text and is also added to each sensitivity analysis table to facilitate comparison. In general, the
posterior estimates forγ1, AVESi (via θRx), θAge andφAge are relatively robust to various assumptions
and prior believes.

4.1 Sensitivity to the definition of ILI (Table S1)

We consider two ILI definitions different from the one used inour primary analysis:

1. Use the Hayden definition for both Osel I and Osel II. The Welliver definition can not be applied to
Osel I because constitutional symptoms were missing for many subjects in that study.

2. A weaker definition that lowers the temperature thresholdof the Hayden definition: body tempera-
ture> 37.2◦C plus either cough or nasal congestion.

We refer to the first one as the Hayden definition and the secondone as the weak definition. The incubation
period takes discrete distributions (1 day:0.21, 2 days:0.58, 3 days:0.21) for the Hayden definition and (1
day:0.5, 2 days:0.5) for the weak definition. The distribution for the weak definition is based on some
challenge studies (Fritz et al., 1999; Hayden et al., 1999) in which one or more symptoms generally
appeared in the first two days after inoculation of influenza viruses.

The estimates forγ1, AVESi, θAge andφAge are not sensitive to the ILI definition, whereas the esti-
mates for all other parameters are. In particular, results for definition 3 are quite different from those for
definitions 1 and 2. With definition 3, the probabilities of developing ILI are similar between treatment
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combinations, and thus the efficacies for pathogenicity approach 0. Overall, regardless of the ILI defini-
tion, the prophylaxis for the susceptible significantly reduced susceptibility to infection and symptomatic
infection but did not change pathogenicity, and antiviral therapy for infectives reduced pathogenicity and
the risk of symptomatic infection in the contacts, but was not able to reduce the risk of viral transmission.

4.2 Sensitivity to the distribution of the incubation period (Table S2)

We change the distribution of the incubation period to{1 day: 0.7, 2 days: 0.2, 3 days: 0.1} and{1 day:
0.1, 2 days: 0.2, 3 days: 0.4, 4 days: 0.3} to reach a shorter mean duration of 1.4 days and a longer mean
duration of 2.9 days, respectively. A longer mean duration of the incubation period seems to be associated
with slightly higherγ0 andγ1, but does not affect the estimates for the pathogenicity parameters and the
efficacies.

4.3 Sensitivity to the range of potential infection time that a positive lab-test can indicate (Table S3)

We have assumed that a positive nasal/throat swab collectedon dayt indicates an infection day between
t − δ andt − 1, whereδ = 7 in the primary analysis. We change the value ofδ to 5 days and 10 days
respectively, but identify no appreciable differences except for minor impacts on the estimates forγ0.

4.4 Sensitivity to the prior distribution (Table S4)

In the primary analysis, priors are changed for one parameter at a time. However, changes in the prior
of one parameter may influence the posterior distribution ofother parameters. Here we investigate the
sensitivity of the Bayesian estimates by changing the priors from flat to non-flat for three subsets of
parameters, one subset at a time while keeping the priors of other parameters unchanged: the infection
rates (γ0 and γ1), the pathogenicity parameters (α00, α01 and α10), and the antiviral effects (θRx and
φRx). The non-flat priors have the same form as those used for Figure 3 in the primary analysis, withµ
corresponding to the 99th percentile of the flat-prior-based posterior distributionreflecting strong prior
belief in extremely large values.

The third column of Table S1 suggests that, when the infection rates are believed to be high, their
posterior estimates go up moderately forγ1 and substantially forγ0. The strong prior in infeciton rates
also lead to increase in AVEIi and decreases inθAge andφAge. The impact on the estimates of other
parameters is limited.

According to the fourth column, strong prior information about the pathogenicity parameters does
play a significant role in the posterior distributions of thepathogenicity parameters themselves and related
efficacy measures, AVESp, AVEIp, AVESd and AVEId, but does not affect much the estimates for other
parameters and efficacy measures.

The last column shows that strong prior belief in large values for θRx andφRx, i.e., towards null or
adverse antiviral effects, has moderate influence on the estimates forγ1, AVESi (via θRx), AVESd and
AVEId, but decreases the posterior estimates for AVEIi substantially. We also observe minor increases in
the posterior estimates forφAge. Pathogenicity parameters seem to be insensitive to the prior belief about
the antiviral effects, and consequently so do AVESpand AVEIp.
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Table S1.Analysis of sensitivity to the definition of ILI. Distribution of the incubation period is{1 day: 0.21, 2 days:
0.58, 3 days: 0.21} for the Hayden definitions and is{1 day:0.5, 2 days:0.5} for the weak definition. Estimates are

presented as Median(95% CS).

Parameter Standard Hayden Definition Weak Definition
γ0 0.00046(0.00006,0.0017) 0.00053(0.00007,0.0019) 0.0017(0.00062,0.0040)
γ1 0.021(0.011,0.038) 0.020(0.010,0.037) 0.018(0.0092,0.034)
η00 0.49(0.33,0.66) 0.41(0.25,0.58) 0.53(0.38,0.68)
η01 0.30(0.095,0.58) 0.21(0.056,0.49) 0.49(0.25,0.74)
η10 0.080(0.018,0.22) 0.079(0.018,0.21) 0.38(0.18,0.65)
AVESi 0.61(0.36,0.78) 0.61(0.36,0.77) 0.58(0.30,0.76)
AVEIi −0.21(−0.94,0.29) −0.17(−0.89,0.29) 0.086(−0.65,0.56)
AVESp 0.38(−0.32,0.81) 0.48(−0.36,0.86) 0.088(−0.54,0.53)

AVEIp 0.84(0.53,0.96) 0.80(0.39,0.95) 0.28(−0.44,0.68)

AVESd 0.77(0.42,0.93) 0.80(0.40,0.95) 0.62(0.25,0.83)
AVEId 0.80(0.38,0.96) 0.78(0.23,0.95) 0.36(−0.38,0.76)
θAge 1.07(0.64,1.87) 1.07(0.65,1.87) 1.03(0.63,1.79)
φAge 1.05(0.64,1.69) 1.04(0.63,1.79) 1.11(0.63,1.89)

Table S2.Analysis of sensitivity to the distributions of the incubation period. The short period has the distribution
{1 day: 0.7, 2 days: 0.2, 3 days: 0.1}, and the long period has the distribution{1 day: 0.1, 2 days: 0.2, 3 days: 0.4, 4

days: 0.3}. Estimates are presented as Median(95% CS).

Parameter Standard Short Long
γ0 0.00046(0.00006,0.0017) 0.00046(0.00006,0.0017) 0.00053(0.00008,0.0019)
γ1 0.021(0.011,0.038) 0.020(0.0096,0.034) 0.026(0.013,0.046)
η00 0.49(0.33,0.66) 0.50(0.33,0.67) 0.49(0.32,0.66)
η01 0.30(0.095,0.58) 0.30(0.10,0.58) 0.31(0.096,0.60)
η10 0.080(0.018,0.22) 0.079(0.018,0.21) 0.079(0.017,0.22)
AVESi 0.61(0.36,0.78) 0.61(0.38,0.78) 0.60(0.33,0.77)
AVEIi −0.21(−0.94,0.29) −0.18(−0.96,0.29) −0.22(−1.03,0.26)
AVESp 0.38(−0.32,0.81) 0.40(−0.28,0.80) 0.37(−0.41,0.80)

AVEIp 0.84(0.53,0.96) 0.84(0.53,0.96) 0.84(0.52,0.96)
AVESd 0.77(0.42,0.93) 0.77(0.44,0.93) 0.75(0.38,0.93)
AVEId 0.80(0.38,0.96) 0.81(0.39,0.96) 0.80(0.33,0.96)
θAge 1.07(0.64,1.87) 1.06(0.64,1.81) 1.05(0.63,1.80)

φAge 1.05(0.64,1.69) 1.07(0.66,1.75) 0.99(0.61,1.63)
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Table S3.Analysis of sensitivity toδ, the range of potential infection time that a positive lab-test can indicate.
Estimates are presented as Median(95% CS).

Parameter Standard (δ = 7) δ = 5 δ = 10
γ0 0.00046(0.00006,0.0017) 0.00055(0.00007,0.0020) 0.00045(0.00007,0.0017)
γ1 0.021(0.011,0.038) 0.020(0.0099,0.038) 0.021(0.011,0.038)
η00 0.49(0.33,0.66) 0.49(0.32,0.65) 0.50(0.33,0.67)
η01 0.30(0.095,0.58) 0.30(0.098,0.59) 0.31(0.098,0.58)
η10 0.080(0.018,0.22) 0.079(0.017,0.22) 0.079(0.018,0.22)
AVESi 0.61(0.36,0.78) 0.61(0.36,0.78) 0.61(0.36,0.77)
AVEIi −0.21(−0.94,0.29) −0.15(−0.98,0.31) −0.21(−1.0,0.28)
AVESp 0.38(−0.32,0.81) 0.37(−0.35,0.80) 0.38(−0.30,0.81)

AVEIp 0.84(0.53,0.96) 0.83(0.52,0.96) 0.84(0.54,0.96)
AVESd 0.77(0.42,0.93) 0.76(0.42,0.93) 0.76(0.43,0.93)
AVEId 0.80(0.38,0.96) 0.81(0.39,0.96) 0.81(0.37,0.96)
θAge 1.07(0.64,1.87) 1.06(0.64,1.86) 1.04(0.64,1.76)

φAge 1.05(0.64,1.69) 1.04(0.62,1.77) 1.05(0.63,1.70)

Table S4.Analysis of sensitivity of posterior estimates to the priordistributions by changing a subset of priors while
keeping other priors flat. The new prior mode for each parameter in this subset corresponds to the99th percentile of

the posterior distribution based on the flat prior. Estimates are presented as Median(95% CS).

Parameters for which priors are changed
Parameter Standard γ0 andγ1

a α00, α01 andα10
b θRx andφRx

c

γ0 0.00046(0.00006,0.0017) 0.00091(0.00033,0.0022) 0.00046(0.00007,0.0017) 0.00044(0.00006,0.0017)
γ1 0.021(0.011,0.038) 0.029(0.019,0.044) 0.020(0.011,0.036) 0.016(0.0090,0.029)
η00 0.49(0.33,0.66) 0.48(0.32,0.64) 0.54(0.42,0.65) 0.50(0.34,0.67)
η01 0.30(0.095,0.58) 0.30(0.10,0.58) 0.45(0.24,0.67) 0.30(0.097,0.59)
η10 0.080(0.018,0.22) 0.078(0.016,0.21) 0.13(0.055,0.26) 0.079(0.017,0.21)
AVESi 0.61(0.36,0.78) 0.63(0.39,0.79) 0.61(0.36,0.78) 0.50(0.30,0.65)
AVEIi −0.21(−0.94,0.29) −0.066(−0.73,0.36) −0.21(−0.97,0.26) −0.53(−1.13,−0.077)
AVESp 0.38(−0.32,0.81) 0.37(−0.36,0.80) 0.17(−0.27,0.53) 0.40(−0.29,0.81)

AVEIp 0.84(0.53,0.96) 0.84(0.53,0.97) 0.76(0.52,0.90) 0.84(0.54,0.97)

AVESd 0.77(0.42,0.93) 0.77(0.44,0.93) 0.68(0.39,0.85) 0.70(0.31,0.91)
AVEId 0.80(0.38,0.96) 0.83(0.44,0.97) 0.70(0.32,0.89) 0.76(0.26,0.95)
θAge 1.07(0.64,1.87) 0.83(0.55,1.26) 1.06(0.66,1.79) 1.05(0.64,1.75)
φAge 1.05(0.64,1.69) 0.91(0.56,1.45) 1.06(0.67,1.74) 1.13(0.70,1.81)

a:µ(σ) = log(0.00197)(0.832) for γ0 and log(0.0408)(0.324) for γ1.
b: µ(σ) = 0.802(0.357) for α00, 0.764(0.724) for α01 and−0.825(0.786)α10.
c: µ(σ) = log(0.711)(0.269)for θRx, log(2.097)(0.26) for φRx.
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