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Supporting Text S1

Stochastic context-free grammars (SCFGs) employed in study. SCFGs are provided in Chom-
sky normal form. Different models of recruitment using the same grammar are defined by alternative
parameterizations, i.e., assignment of rule probabilities.

1. Uniform recruitment models:
Rule Multinomial (M1) Binomial (Mb

1)
S → bR 1
b → ( 1
R → Gr 1
r → ) 1
G → p p1 p3

1

p → . 1
G → pI p2 3p2

1(1− p1)
I → bJ 1
J → Gr 1
G → pV p3 3p1(1− p1)2

V → bU 1
U → GJ 1
G → pW 1− p1 − p2 − p3 (1− p1)3

W → bX 1
X → GU 1
G → : (1)

Each model parameter is denoted by pi where max(i) corresponds to the degrees of freedom in the model.
Note that the probabilities of rules for replacing the non-terminal symbol G sum to greater than unity
because of an additional rule for censoring respondents (each encoded in the RDS string as ‘:’); this rule
is disregarded during model inference. Chomsky normal form (CNF) of a grammar can be interpreted as
an expansion of rules from their original form, as demonstrated in the following example: G → pI → .bJ
→ .(Gr → .(G)
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2. Hidden state recruitment model (M1×2), no visible differentiation among respondents:
Rule Rule
S → bR 1
b → ( 1
R → Gr p1

R → Hr 1− p1

r → ) 1
G → d p2 H → d p6

d → . 1
G → pI p3 H → pi p7

I → bJ 1 i → pj 1
J → Gr p4 j → Gr p8

J → Hr 1− p4 j → Hr 1− p8

G → pV p5 H → pv p9

V → bU 1 v → bu 1
U → GJ p4 u → Gj p8

U → HJ 1− p4 u → Hj 1− p8

G → pW 1− p2 − p3 − p5 H → pw 1− p6 − p7 − p9

W → bX 1 w → bx 1
X → GU p4 x → Gu p8

X → HU 1− p4 x → Hu 1− p8

G → : (1) H → : (1)

Entries are left blank to indicate that the rule assumes the same probability parameterization as the
preceding rule on the same row.
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3. Binary visible state recruitment models (M2 family):

Rule Full model Constrain number Constrain mixing Mixing dependent
of recruits (M2) rates (MC

2 ) on recruitment (MD
2 )

S → bR 1
b → ( 1
R → Gr p1

R → Hr 1− p1

r → ) 1
G → d p2

d → A 1
G → dI p3

I → bJ 1
J → Gr p4

J → Hr 1− p4

G → dV p5

V → bU 1
U → GJ p4 p4p7/(p4p7 + 1− p4)
U → HJ 1− p4 (1− p4)/(p4p7 + 1− p4)
G → dW 1− p2 − p3 − p5

W → bX 1
X → GU p4 p4p

2
7/(p4p

2
7 + 1− p4)

X → HU 1− p4 (1− p4)/(p4p
2
7 + 1− p4)

G → : (1)
H → e p6 p2 p6 p2

e → B 1
H → ei p7 p3 p7 p3

i → bj 1
j → Gr p8 p6 p4 p6

j → Hr 1− p8 1− p6 p4 1− p6

H → ev p9 p5 p8 p5

v → bu 1
u → Gj p8 p6 p4 p6/(1− p6p7 + p6)
u → Hj 1− p8 1− p6 1− p4 (1− p6)p7/(1− p6p7 + p6)
H → ew 1− p6 − p7 − p9 1− p2 − p3 − p5 1− p6 − p7 − p8 1− p2 − p3 − p5

w → bx 1
x → Gu p8 p6 p4 p6/(1− p6p

2
7 + p6)

x → Hu 1− p8 1− p6 1− p4 (1− p6)p2
7/(1− p6p

2
7 + p6)

H → : (1)

In constraining the number of recruits, we assume that the number of peers recruited by a respondent
follows the same distribution regardless of the respondent’s visible state. Similarly, in constraining the
mixing rates, we assume that the probability that a respondent recruits peers in a given visible state is
independent of the respondent’s visible state.
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4. Binary visible state model with mixing on latent variables (ML
2×2) or hidden states (MH

2×2), and
constrained numbers of recruits:

Rule Latent mixing Hidden Rule Latent mixing Hidden
S → bR 1
b → ( 1
R → Gr p1 p1

R → Hr p2 1− p1

R → gr p3 0
R → hr 1− p1 − p2 − p3 0
r → ) 1

G → d p4 p2 g → d p4 p9

d → A 1

G → dI p5 p3 g → dI’ p5 p10

I → bJ 1 I’ → bJ’ 1
J → Gr p6p7 p4p5 J’ → Gr (1− p9)p7 0
J → Hr p6(1− p7) p4(1− p5) J’ → Hr (1− p9)(1− p7) 0
J → gr (1− p6)p8 (1− p4)p5 J’ → gr p9p8 p11

J → hr (1− p6)(1− p8) (1− p4)(1− p5) J’ → hr p9(1− p8) 1− p11

G → dV p10 p6 g → dV’ p10 p12

V → bU 1 V’ → bU’ 1
U → GJ p6p7 p4p5 U’ → GJ’ (1− p9)p7 0
U → HJ p6(1− p7) p4(1− p5) U’ → HJ’ (1− p9)(1− p7) 0
U → gJ (1− p6)p8 (1− p4)p5 U’ → gJ’ p9p8 p11

U → hJ (1− p6)(1− p8) (1− p4)(1− p5) U’ → hJ’ p9(1− p8) 1− p11

G → dW 1− p4 − p5 − p10 1− p2 − p3 − p6 g → dW’ 1− p4 − p5 − p10 1− p9 − p10 − p12

W → bX 1 W’ → bX’ 1
X → GU p6p7 p4p5 X’ → GU’ (1− p9)p7 0
X → HU p6(1− p7) p4(1− p5) X’ → HU’ (1− p9)(1− p7) 0
X → gU (1− p6)p8 (1− p4)p5 X’ → gU’ p9p8 p11

X → hU (1− p6)(1− p8) (1− p4)(1− p5) X’ → hU’ p9(1− p8) 1− p11

G → a (1) g → a (1)

H → e p2 h → d p9

e → B 1
(continued on next page)
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(continued from preceding page)

Rules Latent mixing Hidden Rules Latent mixing Hidden
H → ei p3 h → di’ p10

i → bj 1 i’ → bj’ 1
j → Gr p6p7 p7p8 j’ → Gr (1− p9)p7 0
j → Hr p6(1− p7) p7(1− p8) j’ → Hr (1− p9)(1− p7) 0
j → gr (1− p6)p8 (1− p7)p8 j’ → gr p9p8 p11

j → hr (1− p6)(1− p8) (1− p7)(1− p8) j’ → hr p9(1− p8) 1− p11

H → ev p6 h → dv’ p12

v → bu 1 v’ → bu’ 1
u → Gj p6p7 p6 u’ → Gj’ (1− p9)p7 0
u → Hj p6(1− p7) 1− p6 u’ → Gj’ (1− p9)(1− p7) 0
u → gj (1− p6)p8 (1− p7)p8 u’ → gr p9p8 p11

u → hj (1− p6)(1− p8) (1− p7)(1− p8) u’ → hr p9(1− p8) 1− p11

H → ew 1− p2 − p3 − p6 h → dw’ 1− p9 − p10 − p12

w → bx 1 w’ → bx’ 1
x → Gu p6p7 p6 x’ → Gu’ (1− p9)p7 0
x → Hu p6(1− p7) 1− p6 x’ → Gu’ (1− p9)(1− p7) 0
x → gu (1− p6)p8 (1− p7)p8 x’ → gr p9p8 p11

x → gu (1− p6)(1− p8) (1− p7)(1− p8) x’ → hr p9(1− p8) 1− p11

H → b (1) h → b (1)

Our choice of this grammar is motivated by results from binary visible state models without hidden
states, is supported by model selection procedures (Akaike’s information criterion), and obtains similar
parameter estimates to the full binary visible state model with hidden states.


