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Abstract

The purpose of this document is to provide more details of the calcu-
lations, proofs, and fix conventions.

S1 Sketch-proof of moment-hierarchy dy-
namical law.

In the main text, we mentioned that a generating functional

Z[J]:Z%/dl...dn.ﬁ...Jn.f(”>(1,...,n) (1)

of moments

R, k) =1 na e o) (2)

satisfies the evolution equation

1)
0Z[J]=—-H {1 + J, ﬁ} Z[J) (3)
Here we sketch a proof of this.
First note that because the reference state is coherent, we have

(] : flat,a] : [o) = (1] : f[1,a] : |v) (4)
Also, it is not difficult to see that commuting an a' through a’s to its left
acts like differentiation. In multi-index notation therefore:

(9(1,7&

(Ua2H(a', a)[v) = (1]a2H <1 4+ 2 ) o) )

where the derivative acts to the left. This provides a neat way of calcu-
lating the dynamics of a specific normal-ordered moment. In the formal
limit, one can replace the partial derivatives with functional derivatives.



Consider furgler the behaviour of a piece of the hamiltonian which can
be represented 0 Bgﬂ. Then
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n>0 nzp
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= n!= (@) = J (8 ) n!™ (@) (©)
n>0" - n>0"

which together with the above, proves the result.

S2 Coherent-state path integrals and the
effective action

The material in this section is standard to field theory. It is included here
to set conventions and for the benefit of readers who do not have a physics
background. For more details, see e.g. Refs.[6,11] of the main text.

Write ¢ for a field where ¢ (vaguely discretised) refers to site «. Then
take our coherent state definition as

|6) = e P2k |0) (7)

These states have the properties

aa|d) = dald)
(0]¢") = exp <Z ¢’;¢;>

[e3

1= [T] %0 e e st gy
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S2.1 Coherent state path integral

For illustration, we consider
q=(prlage” "' |¢:) = (pylag [[ e o) (8)
k

where the M §t;, give equally spaced intervals which partition [0, t]. Before
each k—th element in this product, we insert

doy, wdoar _ *
1= [Tt = shntetjon) o ©)

(in slightly abusive notation - dropping subscripts to the as where we can
get away with it). Then
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One then uses
eatH(a*,a):;eétH(aT,a):+o(5tz) (10)

and the properties of coherent states above to obtain (ignoring O(5t?))

M
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M
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/Aﬁl

M+1
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Taking various ‘limits’, we write this formally as

t *
la_I % /d¢z,kd¢a,k DB, M+1 expza: <+¢;,i¢a,i +/0 (3£a $a — H@)))

(9slaze™ " |oi) =

" ()=¢F . ‘ . .
/ D[6" gl (w, £)ell Wo" WDow0 [ dt [ ay(6" 0o+ H (5" 6)]
#(0)=9;

™ (t)=0F ) »
= / D[d)*qb]d)(x,t)e[ dye™ (y,t)p(y,t)—S[é™,¢ |
#(0)=9;

and similarly for other ‘observables’.



S2.2 Path integral representations of interesting
quantities

We willconsider initial states which have poisson-distributed numbers of
bugs uniformly in space. This gives a multiple of a coherent state:

e [ dang "Il()) _ effdacnoef dzngal |O> (11)

The final state will always be |1) for us, which is coherent. So for this
state, e.g.

*(t)=1 .
f(l)(x,t) — /d) © D[qﬁ*qﬂqﬁ(m,t)ef dy(¢™ (t)¢(t)—no)—S[¢™,¢ |
¢

(0)=ng

P (2, y.t) :/

#(0)=ng

*(t)=1 .
i D[(;S*d)]qﬁ(x,t)q&(y,t)ef dy(¢* (t)p(t)—no)—S[o*,¢ |

etc.
More general initial probability distributions can be considered by ex-
panding them in terms of coherent states.

S2.3 The shift trick

In [7], Cardy and T#uber point out one can make a shift ¢* = 1+ ¢, which
changes the term in the exponential to

[ v (& @00) =m0~ [ar(oo0+ 160 )
= /dy <1.¢>(t) —ng — /dt ((¢p+1)0p+ Hl[p+1,¢ ]))
- /dy (1.¢(t) —no — ¢(t) + ¢(0) — /dt (¢78t¢>+ H($,¢ ]))

= [a (—/dt (q@at¢+ma€,¢])> = ~S[6,0]

Then we have such things as

5(t)= .
f(l)(aut) = /¢ ’ D[$¢]¢(m,t)e’5[¢*¢ ]
¢(0)=ng
&(t)=0 ~ }
FP@y.0) = / DId¢)é(z, 1)y, t)e” 5]

¢(0)=ng

For the bug case then

g6 = / dadt [a? (0, — KV? —7) 6 — A§*6 — / dyVas (1 + &) by b

write v = (A — u). We will write this more concisely as:



S =¢Do + ¢pV — A\p° ¢ + bV dp (12)
with

D=208,—kV’ -~ (13)

S2.4 Relation of coherent states to probability
distributions

A coherent state corresponds to poisson sprinkling in each infinitesimal
area. In the translation invariant case, this means a poisson choice of total
number sprinkled uniformly across the area. For low densities, this state
is a good approximation to a fixed initial number of bugs.

S2.5 Calculation of T

Introduce a counting parameter ¢, which will in fact count the number of
loops by its power. From the definitions we have

(Toml+Tom) e _ /D[¢]e<—sw1+(f¢>/z

/ D[¢’]e(*s[¢7n]751 [¢m]¢'*Q¢m [¢/]7R[¢‘7nx¢/]+‘]¢/+t]¢m.)/e

e(—swm)wm)/f/DME—QM[¢1/2+<r1—sl[4>m]>¢/E—R[¢m,¢]/z

We have substitued for J from its definition as the derivative I" and shifted
the variable of integration. Integer subscripts indicate functional deriva-
tives, @ is the part of the action quadratic in the shifted variable ¢, and
R is the functional taylor series for the shifted action from third order up.
Writing A =T — S, this reads

N /D ~Qu,, [81/0+D1 6/~ Rlgm,8]/¢

_ /D ~ Qg [91+816/01 /2~ Rl$m £1/26] /€ (14)

where we have made the rescaling qﬁ/(l/ 2 — ¢. (Rescalings of the ‘mea-
sure’ do not concern us because they respresent an irrelevant constant
shift in I'. More careful treatments consider only the ratio of such inte-
grals as meaningful: see, e.g. [11].) This yields an equations which we can
solve iteratively for I', order by order in £:

r=> ¢rr™ (15)
n=0

Although it appears that this series contains non-integer powers of ¢, this
is not the case because only even moments of a gaussian integral are not
Z€ro.



The lowest term in this series reads:

Llpm] = S[(Z)m]—log/D[d,}e*Qqsm[tb]

Slom] + 5 log DetSalbm] = S[om] + 3T LogSa[6m]

where capitals have been used for functional determinants and traces and
we have dropped irrelevant constants.

S3 The general multimode fluctuation in-
tegral

This section extends the mutlimode fluctuation integral to non-hermitian
hamiltonians with sources; a case which does not appear to have been
treated previously. It is this case which is needed for effective action cal-

culations for non-quantum situations, such as those we treat. We closely
follow the techniques of [14].

S3.1 The action

We are interested in the coherent state path integral integral

I= /D[aa]e*‘? (16)

where the integral has zero limits and

Q:/d’T (&Tafa—aTwa—ana—&Tg&—JTa—KTEL> 17)

The discretized version of the action is (indices refering to time-slices)

n+1
> [@JT(GJ' —aj1) — €(@j wi—1aj-1 —aj_1 fi—1a;-1 + @Jrgj—lﬁj)]
j=1
n+1
~e> [ as + KT a (18)
j=1

with appropriate e. Writing @ = x + iy, a = = — ¢y and using where
convenient that &, = &,4+1 = 0, the action reads

= T T T . . T T
> [:r:j zj+y; vy — e 913 — iyig5-175 — iTj g1y — Y gj—lyj)]
i=1
T T . T T
—€> [a?j fiwg + iy fiwg +ixj fiy5 — y; ijj]
i=1



n

T . T T T,
—TjTi—1 = AT Yi—1 + Y5 Tj—1 — Y5 Yi—1

j=1
n
—EZ [xfwj—ll'j—l + iCCJij—1yj—1 - iyfwj—ll'j—l + yfwj_lyj_l]
j=1
n+1
—e 3 [T s i) + KT (5~ )] (19)
Jj=1

n

= ZZJTMJ'ZJ' — ZZJTLJ'ZJ'71 — Zuszj (20)
j=1 j=1 Jj=1

Here, following [14], we have introduced the coordinate system

z = QU +YyYQure

e
W:(?) (21)

where z and y live in R” for a k-mode system. Using this, the action can
be written compactly as

S = ;z‘f{1®1egj1®(_1i :j)*ffj@(:; _il )}z]
-I-ZzJT {1@( _Z.l :i )_€(Uj—1®< jz >] Zj—1
j=1
ezzf [Jj®< 1 )+Kj®< _12 )} (22)

This allows the identification

[l

M; = 1—-€gj-1®@T2—€ef; @I
L; (1+ewj—1)®T3
uj = e(J;0u+K;® pus) (23)

where
no= (]
1 —
b = (4 4)

rs =



v (1)
v (1)

S3.2 The integrations
Repeated use of the formula
drae—aT At a _ T ajapT A (25)
"~ (det A)1/2
allows us to see that I, the discretized version of I, is given by

1 ’ /— ’ - I\ —
I, = 7" exp [4 > i M 1uj] [ (det azj)=172 (26)
J Jj=1

where the M are defined recursively by

M, = M;— iLjM]’:iLjT

M = M (27)
u; = u; + %LkM,';llu;,l

uy = w (28)

S3.3 Solving the recursions

One shows by induction that

M;

!
Uk

Mg — X, @ T (29)
Yi @ p1 + Zx ® p2 (30)

The following properties of the gamma’s will be used:

oDy = DsTols = 4T

[3=r3=0

[Ty =32 =0

Ty = 2T

.y =2l

I'i[s = 2

sy = 2T,

I3 =203 (31)

and



IFipr =Tap2 =0

Tipe =21
Topr = 2u0
Tapn =15 pup =0
Capa = 2p0
T3 pn = 2m
T T
H1pr = pop2 =0
[ p2 =2 (32)

S3.4 The X part
We know

1 _
_ZLk [1— (Xp-1+egha)®Da—efs1 @T4] 7" Ly (33)

Dropping the subscripts for the moment:

- (X+e)@Ta—ef@l] ' =
1+ [(X+eg)@Ta+ef @D+ [(X +eg) @T2 +ef @T4)°
+[(X+eg)@Ta+ef@Ti]P + ... (34)

Note that in the recursion, the L’s carry factors of I's and 'Y, only I'y
and I'2 terms survive this, and both yield I'2. This shows the form given
above is correct. We wish to compute the recursion satisfied by X to order
€ however. It is not hard to see that up to order ¢ we have

- (X+e)@Ty—ef@ly] ' =
1+ (X +e9) @ T2 +ef @Ta] + [2(X + eg)ef @ T + 2 (X + eg) @ T5]
+[e2XfX ®@ T (35)

Hitting these with the L’s one finds that:

X = Xp—1+¢€ (UJk—le—l + Xp 1wy + gro + 4Xk—1fk—1Xk—1)

(36)
The continuum version of this is precisely
dX
E:g+wX+XwT+4XfX (37)

It only remains to calculate
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det M = det(M; —X;®T5)
= det(l—(Xk+egk,1)®F2—e®l“1) (38)
Note both I'; and T’y are traceless. Using det(1+A4) = 1+trA+4 ((trA)* —
trA%) 4 ..., and keeping only order ¢, the above becomes
det(M;) = 1 — detr(X1 Fy) (39)

We then have

H(det M{)™*? = exp |:2€Ztr(lel):| — exp {2/d7’.tr(XTfT)} (40)

l

S3.5 The u part

From the above relations, it is clear that the form uj, = Yi @ u1 + Zx @ s
holds. To order € then:

1
Uk + §Lku271 +

1 1
e (X + ) ®Ta + f @ Taluy + 5 L [2(X + eg)ef @ Ta+2¢/(X +g) @ TF |

1
+§Lk [€2Xf.X ® FQ] u;g—l

1
Up + = Le (Y +2efZ +4efXY) @ p1 + (Z + 2(X + €)Y +4eX fZ + 4eX fXY) ® 2]

2
g+ (1+ew)(Z+2(X +€9)Y +4eXfZ +4eX fXY) @ pa

ur + (Z+2(X +€9)Y +4eX fZ +4eX fXY 4+ ewZ + 2ewXY) ® po

which means

Y
Z

EJk
Zi1 +2Xp1Yio1 + e (K +29Y +AX fZ + AX XY + wZ + 2wXY)
Zior +e(K+2XJ +4XfZ +wZ) + O(e) (42)

which becomes in the continuous limit:

dz

o= K+2XJ+(w+axnz (43)

Up to order € we have

WM T = (e J @+ Z @ p2) "M T e @ pa + Z @ pa)

=(eJ @+ Z @ p2)" [(eJ +2efZ) @ p1 + (Z + €K + 2eXJ + 4eX fZ) @ pia]
=4eZ2"(J + fZ) (44)

(41)



Which means that the u contribution becomes
oxp | [ ar2" () (167) + 1) 2(0)| (15)

S3.6 Summary

We have shown that (up to an irrelevant constant factor):

I =exp Udr (ZTJ-i—ZTfZ—i—Q.tr(Xf))} (46)

where, with trivial initial conditions

% = g+wX+ X' +4XFX
dz
o = KH2XU+(wtaxf)Z (47)

In the main text, we have written Y rather than Z to avoid confusion
with generating functionals.

S4 Explicit computations for the two mod-
els considered

In this section, there are more details of the calculations pertaining to the
specific models we consider.

S4.1 Non-spatial bugs

For our action f, g and w are given by

= —Vém -V (48)
= Apm— Ve, (49)

_ Varying this yields the zero loop equations plus a correction (note that
¢ = 0 after variation):

0Ls = Osps — (v = V)os + V2 (51)
¢ 6Xa

1Ly = OLs—205f(1s)Xs — 2/0 dz fx 53 (52)

= 0Ls — 295 f(¥s) Xs (53)

Note that the dynamical equations in ¢ are satisfied by the trivial solution.
Further, 03 f(1s) = —V giving us the system

11



Ohp = (v=V)p—Ve¢®>—2VX (54)
XX = (No—Ve)+2(y -V —2Ve)X (55)

For comparison, the central moment-closed equations read

n = m—-VN,
Ny = 2yNo+ (A +p)n+V Ny —2VNs
N3 = 3nN,—2n° (56)

with the first and second moment (n and N2) having initial conditions No
and N2 + Ny respectively. Ns is the third moment, posited to satisfy the
closure relation in Eqn.56.

S4.2 Non-spatial SIR

From the SIR-action above, one deduces that

0 ) Bb+b*—a—ab)/2 0
f = B(b+b*—a—ab)/2 0 0 (57)
0 0 0
0 —Bab/2 0
g = —Bab/2 Bab 0 (58)
0 0 0
—B(b + bb) —pB(a + ab) 0
w = B(b+2bb —ab) B(a+2ab—aa)—v 0 (59)
0 v
where the field letters now refer to the mean fields.
The 1-loop effective action is:
r® = —2/dr.tr(fX) (60)

After variation, it is clear that the the barred fields are non-dynamical,
and stay zero (as they should). Given this, and writing

A B D
X=| B C E (61)
D E F

The differential equations for X become:

dA
S5 = —26bA—20aB

% —  —Bab/2+ BbA + (B(a —b) — v) B — BaC
dC

o - Bab + 26bB + 2(Ba — v)C

12



% = —pBbD — BaFE +vB
dd% = pbD + (Ba—v)E +vC
dF
— = 2EFE
dt v
(62)
coupled to the equations of motion:
da
s —Baba — 26B
db
i Bab —vb+ 26B
de

Note that only the first three of the equations in A to F' are relevant
to the correction term 2B, in the same was that only 3 of the second
moments are relevant in moment-closure. For comparison, the zero third
central-moment equations are

Cs; = —BSI+(B(S—1)—v)Csr+pIVs — BSVr — Cs1
Vi = BSI+BCsi+v(I—2Vi)+28(SVi + ICsp)
Vi = BSI+BCsi—2B(IVs+ SCsr) (64)

with the covariance Cgs; and variances V; and Vg satisfying the initial
conditions 0, Ip and So respectively. The covariance plays the role of the
correction to the rate equations for S, I and R.

S4.3 Spatial bugs

We want to write the action in terms of its fourier modes. For a field ¢
write

w(m) _ Z€2ﬂiw.n/Lwn
o = g [ dee T by ) (63)

where d is the number of spatial dimensions.
We have

/ dz ($(x)0d(x) — V2P — 10)

2 12 . ’
/dac Z On |:8t¢n’ + K%‘bn' - ’Y¢>n/] g2miw(ntn")/L

n,n’

L Z Q_Sn (815 +K (271222n2 - '7) P—n (66)

13
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where we have used

/dweQWix.n/L _ Ld5n,0 (67)
Also,

/dxdy¢>(x)V(:c — y)¢(y) = /dyd.’E Z ¢n1 Vn2¢n3 e27-ri/L(z.n1+n2.(z—y)+n34y)

ni,n2,n3

= Z Oy Vg Py Ld‘;nh—ﬂz Ld5n2,n3 =L* Z GnVond—n (68)

ni,n2,n3

The quadratic part of the bugs action is (in condensed notation)

Q = ¢[0 =KV =] 0+ IV + BV b + GV
~XPPm — 22X b + 200V mdm + GmdV dm + dpmV ¢bm + 26¢mV ¢

= Z Ld(Zn (8t + K (2722’” - ’Y) ¢7n +

3 [E O nVondon + LGubonV b + L bmnVono—n

+ 37 [F LA m b — 2L AGmbnd—n + 2LV G bn—n]

+ 3 [P0 Vondn + LGV + 2L b b Vond-n]  (69)
Where we have introduced

V= /di(a)) =L, (70)

Assume X_,, = X,, equivalent to X € R. Summarizing, this gives

Q = Ld Z [énat()bn - flgnwﬁbn - ¢nfn¢n - (z)ngn()gn]

2,2
wn = —K (2722” oy = Vo — LYV + 206 — 2V o — 2L 4V,
fo = LYV, — LGV,
gn = Ao— LIV, (71)

where we have dropped the m-subscript. The multimode result is un-
changed by the L? prefactor, and each mode is in fact uncoupled from the
rest, giving the effective action 1-loop term in the form

v = 23" f.X,

X, Gn + 2w X +4fn X1 (72)
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Similar arguments apply to the one loop case, which means we need only
consider

2, 2

X — L¢°V, + 2 (w% +y—-Vo— qusvn) Xn(73)

S4.3.1 Converting back to real space
Starting with

(27)*n?
12

X, = Ap— L%V, +2 <—n +y—Vo— Ld¢Vn) X,.(74)

one can write the correction in terms of real-space again. First note that

1 _ .
(V * X)n = 7 dmdy.V(m — y)X(y)e 2miz.n/L
=2 %/d‘rdy'anan6_27”1'"/]‘ez"iy‘"Z/Lez"i@—y)ﬂl/L = LV, X,
ni,n2

We therefore have

XX(x) = LNp.O(x) — L@V () +2(kV> +~v — V) X (z) — 2¢.(V % X)(z)
The correction to the tree-level equations of motion for ¢ is then

% / dz.V (2)X (z) (75)

This compares with a moment-closure correxion of the form

/ da.V ()C(x) (76)

where for 3rd-cumulant-zero closure

2C(x) = 2Xp.8(x) — 20°V (x) +2(kV> + v — Vo — V(2))C(x) — 2¢.(V % O)(x)

These are the same, with the identification C' = 2X/L*.

S4.4 Spatial SIR

The quadratic part of the action is given by

Q= /dex {dTGTa — /dy (dfu)mya + al foyay + &fgwy&y)} (77)

where



fay

Wy

In fourier space

Q= /dTLd Z [ELZBTa,n - I (afw,na,n + agf,na,n + &Zg,na,n)}

(81)
As above, we will convert all the —n in this equation to simply n.
0 pBVa@+a-0b"-b)/2 0
fu = BV (ab+a — b* —b)/2 0 0 (82)
0 0 0
0 BVn(ab)/2 0
gn = BVa(ab)/2  —BVyp(ab) 0 (83)
0 0 0
Q1 Q2 0
Wn = Q3 Q0 0
0 Q25 Q6
Q= [-k@2r)’n®/L*+BV(b+1)b] /L?
Qe = BVua(b+1)
Qs = pBVub(a—b) — BVb(1+b)/L*
Q = [-k@2n)’n*/L* +v+ BV (a—b)a] /L — BVaa(l +b)
Q5 = —I//Ld
2m)?n?/L?
Q5 = —m% (84)
Again, everything separates out by mode. The one loop correction is of

the form 2L% > trfnXn with

Xn = gn +wnXn + Xw? (85)

Dropping the ns and writing

A B D
X=| B C E (86)
D E F

16

(78)

(79)

0 BViy(@ +a—b>—0b)/2 0
BVay(@b+a—b* —b)/2 0 0
0 0 0
0 BViey(ab)/2 0
BVay(ab)/2 0 —Vay(ab)
0 0 0
(V2 4+ BV (b + 1)b)6y BViya(b+1) 0
BVayb(@a—b) — BVb(1 + b)0zy (V2 + v+ BV (@ — b)a)duy — BVaya(l + b) 0
0 —Vay

KVQ(SW
(80)



we have

dA
dt
dB
dt
dc
dt
dD
dt
dE
dt
dF
dt

201 A+ 20, B
LBV, (ab) /2 4+ Q3 A+ (Q1 + Q4) B + Q20
—L*BVy(ab) 4 2Q3B 4 2Q.C
QB+ (1 +Q6)D + QFE
Qs5C 4+ Q3D + (U + Q6)E

2QsF + 2Q6 F

where for these calculations

W
Qo
Q3
Q4
Qs
Qs

[—K(QW)Z’ILZ/L2 + BVb]
ﬁVnaLd

—BVb

[—,'£(271')2112/L2 +v] - BVnaL®
—v

—k(2m)?n?/L?

(88)

The correction antisymmetrically applied to the S and I equation is then

2L BVnBn.

S4.4.1 Converting back to real space

The real-space equations are

17

#A = 2[kV?— Vb A(z) — 2BaV * B(x)

B = —V(z)L'Bab/2 + BVbA(z) + [2/{V2 — BVb—v| B(x) + BaV « B(z) — BaV * C(x)
HC = V(z)L'Bab+28VbB(x) + 2 [HVQ —v] C(x) 4 2BaV * C(x)

oD = vB(z)+ [QKVQ — BVb] D(x) — BaV * E(x)

WE = vC(z)+ BVbD(z)+ [26V? —v] E(z) + BaV * E(z)

OF = 2wE(z)+2kV2F(x)

and the correction is of the form

2 / dz.V(z)B(z)

(89)



S5 Variational perturbation calculation

S5.1 Generality

Consider a transition probability

Z7°0[0] = p(at|ao0) = (ale”"|ao) (91)
ar=a—1 -
= / Dlaa)e 51 (92)
ap=aq

We expand the integration variables a and @ around paths a¢ and ag, with
the correct initial and final conditions, respectively, to give

5a;=0

ze%olg) = e—S[ao,aol/ " DlsasajeSalasel-Sinilsasal (g3
dag=0

where Sgda,da] is the quadratic part of the action and Sint[da,da] is

everything else. The idea is to insert a counting parameter € in front of

Sint and expand perturbatively in this:

da+=0
s [0] _ e—S[ao,ao] / t D[5ﬁ5a]€_SQ [6@,86a)—€S;pn¢[0a,8a) (94)
dap=0
—  Slaoa0] <6*€Sint[6a’6a]>Q (95)
) 2
_ 675[a0,a0]<<1 — €.Sint + %ant +.. >>Q (96)

One truncates this at a given order, e.g. 2:

- 2
z5e00] = e TNl — €S + S STudo (97)
and then asserts a principal of minimal sensitivity (PMS). Namely, that

5 (6707 5 (6707
T%Zz °[0] = 57022 °[0]=0 (98)

S5.2 The mean fields

This transition probability is a special case of a generating functional with
J = K = 0. We can carry out the above procedure for

79[ ], K] = /

ag=ag

at=a—1

D[M]efs[a,a]ﬂ dr(JTa+KTa) (99)
more generally. Then we can calculate the mean fields as

0

as) = 57200 (100)
@) = =250 (101)

for a truncation at order n.
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S5.3 Relating to number states

As defined above, we are referring to the transition probability between
Poisson distributions:

a"ag'
p(at|ag0) = Z n'mo' p(nt|m0) (102)

n,m

For large n these things are not so different, but one can also use the
completeness relation

1= [ e (103
to write ) 2 a2 m
R e B e
CHECK!

S5.4 The non-spatial SIR model
The original action is

S = /dT (FzT(‘)Ta +v(E—bb—p(b—a)(l+ B)ab) (105)

which means that

460 = a0+ v(c—B)b— Bl(bo — Go)(1 + bo)ab + (bo — do)b(abo + aob)]

dt
—ﬁ[(l_) — L_l)l_)aobo + (l_) — L_l)(l =+ I_)Q)(abo + aob)} (106)

which means that

0 ~ 0 ~ 0
f = 0 pB(bo—ao)(1+bo) O
0 0 0
0 —ﬁaobo/Q 0
g = —Baobo /2 Baobo 0
0 0 0
_ —6(14-50)1)0 _ B —6(14-50)(10 B 0
w = ﬁ(bo 7do)bo+ﬁ(1+bo)bo I/+ﬁ(b() 7do)a0+ﬂ(1+bo)ao 0
—v 0 0
and
%sm B(a — B)b(abo + aob) + B(@ — B)(1 + bo)ab + B(ao — bo)bab
+8(a — b)bab (107)

The extra terms in (...)g are, at order € (using the fact that the expec-
tation of an odd number of fields is zero)
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/Ot d1.<ﬂ((_11 — 51)51a1b1>Q (108)

and at order €

ﬁ/t d1d2.{
[bo.(@ba — b*a) + ao(@bb — b*b) + do(bab) + bo.(aab — 2bab) + 1.((@ — b)(ab + bab))y
+ 1.

—b)(
x [bo.(@ba — b%a) + ao(@bb — b°b) + ao(bab) + bo.(aab — 2bab) + 1.((a — b)(ab + bab))]2
)Q (109)

The integrand is

—2(aba) (b*a)2)
— (b%a)1(abb)2 + (b*a)1(b%0)2)

(2bab)s — (b%a)1 (aab)z + (b2a)1(2bab)s)
1(6°b)2 + (6°b)1(6°b)2)

aab)s — (5ab)1(25ab)2>
aab)z — (ZLab) (25ab)2 + (2bab)1 (2bab)s)

(110)

One thus has

2 t 2 t
Zy = e Slaosaol {1 —k+ %/ d1L(1)Tao(1) + %/ d1d2.a (2)q(2, 1)ao(1)
0 0

(111)
The PMS thus becomes (using ao for both the barred and unbarred fields)

1)
dao(1)

In our case

Slao, ao]Zz = (2 L(1) 4 € /02 d2.q(1,2)a0(2)> e~ Slaoaol (119)



S5.5 Moments

Calculation of the functions L(¢) and ¢(¢,t") requires the computation of
the moments of (...)o up to order 8. These can be calculated from the
generating functional I, as above:

I = exp (/dTYTJ+YTfY+2tr(Xf)> (113)
Y = K+2XJ+ (w+4Xf)Y (114)
X = gH+wX+Xuw +4XfX (115)

Henceforth, we will confine ourselves to computation of mean fields as
these are simpler. The equations admit a solution with @ = 0. This can
be seen as follows. The §5/da terms are all at least linear in barred fields,
and so the only forcing is from the L and ¢ terms. If the barred fields are
zero, then f =0, so that

I = exp(/dTYTJ) (116)

Y = K+2XJ4wY (117)
X = g4+wX+Xuo" (118)

The first of these implies that

5Y, 5Ys

5K, O0(t — 8) + wy SK. (119)
Y.
= SK. U(z,s)0(x —s) (120)
U(z,s) = Texp/ dr.w- (121)

and hence that higher derivatives of Y with respect to K are zero This
further implies that

SUIT ) )
ST 070 (1< 4) (122)

and this leaves no forcing on the barred dynamics, allowing the solution
ao = 0. The terms of the integrand Eqn. 110 which are are relevant are:
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+bo(1).((@ba — b%a)1 ((@ — b)ab)a)
b

+1.{((@ — b)(1 + b)ab)1((@— b)(1 + b)ab)2)

Since, Wick’s theorem applies in this case, all expectations become reduce
to products of the form

(a1a2) = (+) (124)
To reliably compute these without worrying about regularization etc, we
retreat to the operator formalism. There,

(xa) = (AU (¢, 1)(aJr —1)U(1,2)alU(2,0)|0) (125)
if 1 > 2, and

(xb) = (1|U(t, 2)al(2,1)(a’ — 1)U(1,0)|0) (126)
when 2 > 1. Here, U(t,s) = T exp — f: drHq(T), where

Ho(r) = (a' = 1D)7ga" = 1) + (a' = 1)Twa (127)

Defining the Heisenberg operators ¢; = U(t,0) " *qU(t,0), we have
(va) = (1|(a’ = 1)1a2]0) (128)
(xb) = (l]az(a’ —1)1]0) (129)

and we know that

il ) = 7 (o 25t —pu )V 050

() (Yo

So that
( (@~ 1), ) = < o oo ) ( @ 1) ) (132)
giving
(xa) = 0 (133)
(x) = AiC3 (134)
Since
AT = (139

we have C = A™T and therefore
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2
(xb) = A1 A5 = Texp/ ds.ws (136)
1

which agrees with Eqns. 120 and 121 with the understanding that 6(0) =
0. One could obtain this result directly, if more delicately, by considering
the discretization which underlies the differential equations.
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