Supplementary Information

MCCE2: Improving Protein pK_a Calculations with Extensive Side Chain Rotamer Sampling

Yifan Song, Junjun Mao and M. R. Gunner*

Physics Department J-419

City College of New York

138th St. and Convent Ave.

New York, NY 10031

Supplementary Material S1. Rotamer making. The number of conformers is given for hen egg white lysozyme (4LZT). Default values for each step are given. Underlined values can be modified in running parameter input file.

Step	Number of conformers	Default rules
	Lysozyme	
	(129 amino acids)	
1. Prepare protein.	128ª	Delete exposed water and ions; add NTR and CTR;
		add missing atoms to any group as needed.
2. Build multiconformer pro	otein	
a. Initial minimization	620	5 initial minimization cycles based on ideal
		conformers closest to the native ones
b. Isosteric conformers	908	Asn, Gln, His
c. Heavy atom rotamer	25707	Make heavy atom rotamers at <u>60°</u> intervals
Self-energy pruning	3659	Delete rotamers with ≥ 10 Kcal total LJ and torsion
		energy to atoms in backbone and in the same
		conformer.
d. Packing and pruning	1201	Repack 5000 times. Keep conformers within 2.5
		Kcal/mol of the minimum energy conformers.
e. Protons and ionization	2012	Heavy atom rotamers duplicated for each
states		ionization state; polar protons added into each
		torsion minima.
f. Heavy atom relaxation	4218	Energy minimization for neighboring pairs of all-
		atom conformers. $\underline{10}$ rounds with $\underline{100} \underline{1}$ fs
		minimization steps.
g. Hydroxyl optimization	6063	Hydroxyl hydrogens optimized to have favorable
		interactions with neighboring residue conformers.
h. Rotamer pruning	2301	Cluster conformers differing by less than $\underline{2}\underline{A}$
		atomic distance; and <u>1.5 kcal/mol</u> LJ and <u>1.5</u>
		Kcal/mol electrostatic pairwise interactions,
		retaining only one.

^aGLY has no side chain conformers, and NTR and CTR are counted as separate residues.

Supplementary Material S2. List of proteins analyzed, the PDB files used and source of the experimental pK_{as}

Protein	Exp pK _a ref	PDB	Method	# of Models	Ligands kept	Deleted ligands
Ribonuclease α -sarcin precursor	[1, 2]	1DE3	NMR	20		
Apo E2	[3]	1LE2	X-ray	1		
Apo E3	[4]	1NFN	X-ray	1		
Apo E4	[3]	1GS9	X-ray	1		
B1 Domain of protein G	[5]	1GB1	NMR	60		
		1PGA	X-ray	1		
		1PGB	X-ray	1		
B2 Domain of protein G	[5]	2IGH	NMR	24		
		1IGD	X-ray	1		
		2IGD	X-ray	1		
Barnase	[6-10]	1A2P	X-ray	3		Surface Zn
		1B2X	X-ray	3		Surface Zn
		1BNR	NMR	20		
		1FW7	NMR	20		
Pancreatic trypsin inhibitor precursor (BPTI)	[11, 12]	1BPI	X-ray	1		Surface PO4
		1JV8	NMR	23		
		4PTI	X-ray	1		
Calbindin D9k	[13]	1KQV	NMR	30		LA(III) not affecting benchmarked residues
		1KSM	NMR	1		LA(III)
		1IG5	X-ray	1		Mg
		4ICB	X-ray	1		Са
Cardiotoxin A5	[14]	1KXI	X-ray	2		
CD2d1	[15]	1HNG	X-ray	2		
Chymotrypsin	[16]	2TGA	X-ray			Са
Chymotrypsin Inhibitor 2	[17]	2CI2	X-ray	1		
		2SNI	X-ray	1		Ca, only chain I is used
		3CI2	NMR	20		
Cyclophilin	[18]	2CPL	X-ray			
		10CA	NMR	20		
Epidermal growth factor	[19]	1EGF	NMR	16		
		1EPG	NMR	1		
		1EPH	NMR	10		
		1EPI	NMR	1		
		1EPJ	NMR	5		
<u>- ЕКВР</u>	[18]	1FKS	NMR			
fungal beta cryptogein	[20]	1BEG	NMR	18		
		1BEO	X-ray	1		
		1BXM	X-ray	1		ERG

hen egg white lysozyme	[21-23]	1E8L	NMR	50			
		1LSE	X-ray	1			
		4LZT	X-ray	1		NO3	
human DNA polymerase lambda lyase domain	[24]	1NZP	NMR	8			
		1XSN	X-ray	1			
MutT	[25]	1PPX	NMR	20		80G, MO2	
		1MUT	NMR	15			
Myoglobin - horse	[26, 27]	1DWR	X-ray	1	HEM	CMO,SO4	
		1WLA	X-ray	1	HEM	S04	
		1YMB	X-ray		HEM	S04	
Myoglobin - sperm whale	[26, 28]	1MYF	NMR	12	HEM		
		1A6K	X-ray	1	HEM	S04	
		1A6M	X-ray	1	HEM	Oxy,SO4	
phage T4 lysozyme	[29]	2LZM	X-ray	1			
phage T4 lysozyme M102K mutant	[30]	1L54	X-ray	1			
Phosphonoacetaldehyde hydrolase	[31]	1FEZ	X-ray	4		Mg, WO4	
		1RQL	X-ray	2		Mg, VSO	
RNase A	[32, 33]	2AAS	NMR	32			
		7RSA	X-ray	1		TBU	
		9RAT	X-ray	1			
		3RN3	X-ray	1		SO4	
RNase H1	[34, 35]	1RCH	NMR	8			
		1GOA	X-ray	1			
		2RN2	X-ray	1			
RNase SA	[36]	1C54	NMR	20			
		1LNI	X-ray	2		GOL,SO4	
		1RGG	X-ray	2		SO4	
RNase T1	[37-40]	1IYY	NMR	24			
		1I0V	X-ray	1		ADP,MG,POB	
		1BVI	X-ray	4		2GP,Ca	
		1RGA	X-ray	1		3GP, Ca, G	
Sea anemone neurotoxin III	[41]	1ANS	NMR	28			
snake erabutoxin b	[42]	1ERA	NMR	1			
		1FRA	NMR	14			
		3EBX	X-ray	1		S04	
Staphylococcal Nuclease	[43]	1STY	X-ray				
<i>Streptomyces</i> Subtilisin Inhibitor	[44]	2SIC	X-ray	1		Са	
		3SIC	X-ray	1		Ca	
		5SIC	X-ray	1		Са	
		3SSI	X-ray	1			

Sso7d	[45]	1JIC	NMR	1	
		1SSO	NMR	1	
		1BBX	NMR	2	
					Not used in this study due
		1C8C	X-ray	1	to the methylated residue
					1 and disordered CTR
Thioredoxin (reduced)	[46]	1ERT	X-ray	1	
		3TRX	NMR	1	
		4TRX	NMR	33	
Thioredoxin (oxidized)	[46]	1ERU	X-ray	1	
		1AUC	X-ray	1	
Turkey ovomucoid inhibitor	[47, 48]	10MT	NMR	50	
		10MU	NMR	50	
		1PPF	X-ray	1	BMA,FUC,GAL,GLC,MAN,N AG complex structure
		1TUR	NMR	12	·
		1TUS	NMR	12	
Tyrosin phosphatase	[49, 50]	1BVH	NMR	15	
		1DG9	X-ray	1	EPE
		1Z12	X-ray	1	VO4
		1Z13	X-ray	1	МОО
		1PNT	X-ray	1	PO4
Xylanase BA	[51]	1H4G	X-ray	2	FXP,SO4
		1 Ц Л Ц	V rov	1	XYP,XYS, residue 1
		111411	A-Tay	4	changed from Glu to Gln
		1QH6	X-ray	2	FXP
		1QH7	X-ray	2	XYP
Xylanase BC	[52]	1BVV	X-ray	1	DFX,XYP
		1C5H	X-ray	1	
		1XNB	X-ray	1	S04

Bold: PDB files used for the dataset with 1 X-ray structure/protein.

References:

- 1. Perez-Canadillas, J.M., et al., Biochemistry, 1998. **37**(45): p. 15865-76.
- 2. Garcia-Mayoral, M.F., et al., Biochemistry, 2003. **42**(45): p. 13122-33.
- 3. Lund-Katz, S., et al., J Lipid Res, 2001. 42(6): p. 894-901.
- 4. Lund-Katz, S., et al., J Biol Chem, 2000. 275(44): p. 34459-64.
- 5. Khare, D., et al., Biochemistry, 1997. **36**(12): p. 3580-9.
- 6. Oliveberg, M., V.L. Arcus, and A.R. Fersht, Biochemistry, 1995. **34**(29): p. 9424-33.
- 7. Loewenthal, R., J. Sancho, and A.R. Fersht, J Mol Biol, 1992. 224(3): p. 759-70.
- 8. Loewenthal, R., et al., J. Mol. Biol., 1993. 232: p. 574-583.
- 9. Mossakowska, D.E., K. Nyberg, and A.R. Fersht, Biochemistry, 1989. 28(9): p. 3843-50.
- 10. Sali, D., M. Bycroft, and A.R. Fersht, Nature, 1988. 335(6192): p. 740-3.
- 11. March, K.L., et al., Biochemistry, 1982. **21**(21): p. 5241-5251.

- 12. Richarz, R. and K. Wuthrich, Biochemistry, 1978. 17: p. 2263-2269.
- 13. Kesvatera, T., et al., J Mol Biol, 1996. **259**(4): p. 828-39.
- 14. Chiang, C.M., et al., Biochemistry, 1996. **35**: p. 9177-9186.
- 15. Chen, H.A., et al., Biochemistry, 2000. **39**(23): p. 6814-24.
- 16. Markley, J.L. and I.B. Ibanez, Biochemistry, 1978. 17(22): p. 4627-40.
- 17. Tan, Y., et al., J. Mol. Biol., 1995. **254**: p. 980-92.
- 18. Yu, L. and S.W. Fesik, Biochim Biophys Acta, 1994. 1209(1): p. 24-32.
- 19. Kohda, D., T. Sawada, and F. Inagaki, Biochemistry, 1991. 30: p. 4896-4900.
- 20. Gooley, P.R., et al., J Biomol NMR, 1998. 12(4): p. 523-34.
- 21. Bartik, K., C. Redfield, and C.M. Dobson, Biophys J, 1994. 66(4): p. 1180-4.
- 22. Kuramitsu, S. and K. Hamaguchi, J Biochem (Tokyo), 1980. 87(4): p. 1215-9.
- 23. Takahashi, T., H. Nakamura, and A. Wada, Biopolymers, 1992. 32: p. 897-909.
- 24. Gao, G., et al., Biochemistry, 2006. 45(6): p. 1785-94.
- 25. Harris, T.K., et al., Biochemistry, 2000. **39**(7): p. 1655-74.
- 26. Kao, Y.H., et al., Biophys J, 2000. 79(3): p. 1637-54.
- 27. Papa, S., et al., Ann N Y Acad Sci, 1992. 671: p. 345-358.
- 28. Bashford, D., et al., Biochemistry, 1993: p. 8045-8056.
- 29. Anderson, D.E., W.J. Becktel, and F.W. Dahlquist, Biochemistry, 1990. 29(9): p. 2403-8.
- 30. Dao-pin, S., et al., Biochemistry, 1991. **30**(49): p. 11521-9.
- 31. Zhang, G., et al., Biochemistry, 2002. 41(45): p. 13370-7.
- 32. Rico, M., et al. *Proceedings of the 2nd International Meeting*. 1991. Sant Feliu de Guixols, Girona, Spain.
- 33. Baker, W.R. and A. Kintanar, Arch Biochem Biophys, 1996. **327**(1): p. 189-99.
- 34. Oda, Y., M. Yoshida, and S. Kanaya, J Biol Chem, 1993. 268(1): p. 88-92.
- 35. Oda, Y., et al., Biochemistry, 1994. **33**(17): p. 5275-84.
- 36. Laurents, D.V., et al., J Mol Biol, 2003. 325(5): p. 1077-92.
- 37. Koumanov, A., et al., Eur Biophys J, 2001. **30**(3): p. 198-206.
- 38. Spitzner, N., et al., Eur Biophys J, 2001. **30**(3): p. 186-97.
- 39. Inagaki, F., et al., J Biochem (Tokyo), 1981. **89**(4): p. 1185-95.
- 40. Giletto, A. and C.N. Pace, Biochemistry, 1999. 38(40): p. 13379-84.
- 41. Norton, R.S., et al., Biochem J, 1993. 293 (Pt 2): p. 545-51.
- 42. Inagaki, F., et al., Eur J Biochem, 1978. **89**(2): p. 433-42.
- 43. Lee, K.K., C.A. Fitch, and E.B. Garcia-Moreno, Protein Sci, 2002. 11(5): p. 1004-16.
- 44. Fujii, S., K. Akasaka, and H. Hatano, J Biochem (Tokyo), 1980. 88(3): p. 789-96.
- 45. Consonni, R., et al., Biochemistry, 2003. 42(6): p. 1421-9.
- 46. Forman-Kay, J.D., G.M. Clore, and A.M. Gronenborn, Biochemistry, 1992. **31**(13): p. 3442-52.
- 47. Schaller, W. and A.D. Robertson, Biochemistry, 1995. 34(14): p. 4714-4723.
- 48. Swint-Kruse, L. and A.D. Robertson, Biochemistry, 1995. 34(14): p. 4724-4732.
- 49. Zhou, M.M., J.P. Davis, and R.L. Van Etten, Biochemistry, 1993. 32(33): p. 8479-86.
- 50. Tishmack, P.A., et al., Biochemistry, 1997. 36(39): p. 11984-94.
- 51. Betz, M., et al., Biochemistry, 2004. 43(19): p. 5820-31.
- 52. Joshi, M.D., A. Hedberg, and L.P. McIntosh, Protein Sci, 1997. 6(12): p. 2667-70.

Supplementary Material S3. Calculated pK_as - FULL MCCE single X-ray structure; 33 proteins

		Calc	Calc	ехр		
Protein	Res	pK1	pK2	рΚ	Comments	DSSP
Apo E2	LYS 69	12.6		10.1		Н
Apo E2	LYS 72	10.6		10		Н
Apo E2	LYS 75	11.3		10		Н
Apo E2	LYS 95	10.1		10.2		Н
Apo E2	LYS 143	10.1		9.4		Н
Apo E2	LYS 146	9.2		9.9		Н
Apo E2	LYS 157	11.5		10.9		Н
Apo E3	LYS 69	11.7		10.4		Н
Apo E3	LYS 72	10.7		10		Н
Apo E3	LYS 75	11.8		10.1		Н
Apo E3	LYS 95	10.2		10.1		Н
Apo E3	LYS 143	9.7		9.5		Н
Apo E3	LYS 146	9.7		9.2		Н
Apo E3	LYS 157	12.0		11.1		Н
Apo E4	LYS 69	11.2		10.1		Н
Apo E4	LYS 72	10.4		10		Н
Apo E4	LYS 75	10.5		10.1		Н
Apo E4	LYS 95	10.7		10.1		Н
Apo E4	LYS 143	9.8		9.9		Н
Apo E4	LYS 146	9.8		9.4		Н
Apo E4	LYS 157	11.9		10.9		Н
B1 Domain of protein G	TYR 3	15.6		11	Lower Limit	E
B1 Domain of protein G	LYS 4	11.8		11	Lower Limit	E
B1 Domain of protein G	LYS 10	11.9		11	expt val approximate	S
B1 Domain of protein G	LYS 13	11.8		11	Lower Limit	E
B1 Domain of protein G	GLU 15	5.0		4.4		E
B1 Domain of protein G	GLU 19	4.1		3.7		E
B1 Domain of protein G	ASP 22	2.3		2.9		S
B1 Domain of protein G	GLU 27	4.9		4.5		Н
B1 Domain of protein G	LYS 28	10.9		10.9		Н
B1 Domain of protein G	TYR 33	11.1		11	expt val approximate	Н
B1 Domain of protein G	ASP 36	4.9		3.8		Н
B1 Domain of protein G	ASP 40	4.4		4		L
B1 Domain of protein G	GLU 42	4.0		4.4		E
B1 Domain of protein G	TYR 45	15.8		12	Lower Limit	E
B1 Domain of protein G	ASP 46	3.8		3.6		E
B1 Domain of protein G	ASP 47	3.3		3.4		Т
B1 Domain of protein G	GLU 56	3.7		4		L
B2 Domain of protein G	TYR 8	14.8		11	Lower Limit	E
B2 Domain of protein G	LYS 9	11.5		11	expt val approximate	E
B2 Domain of protein G	LYS 15	12.4		11	Lower Limit	S
B2 Domain of protein G	LYS 18	11.6		11	Lower Limit	E
B2 Domain of protein G	GLU 20	4.8		4.3		E
B2 Domain of protein G	LYS 24	11.1		10.7		E
B2 Domain of protein G	ASP 27	3.0		2.9		S

B2 Domain of protein G	GLU 29	4.3		4.2		Н
B2 Domain of protein G	GLU 32	4.9		4.6		Н
B2 Domain of protein G	LYS 33	10.8		11	expt val approximate	Н
B2 Domain of protein G	TYR 38	11.9		11	expt val approximate	Н
B2 Domain of protein G	ASP 41	5.1		3.9		Н
B2 Domain of protein G	ASP 45	4.4		4		L
B2 Domain of protein G	TYR 50	16.3		12	Lower Limit	E
B2 Domain of protein G	ASP 51	3.6		3.6		E
B2 Domain of protein G	ASP 52	3.2		3.4		Т
B2 Domain of protein G	GLU 61	4.7		4.2		L
Bacterial phosphono-					pH dependence of	
acetaldehyde hydrolase	LYS 53	7.8		9.3	inactivation	Н
Bacterial proteinase						
inhibitor Ssi	HIS 43	1.7		3.15	A - see below	L
Bacterial proteinase						
inhibitor Ssi	HIS 106	4.9		6		Т
Barnase	ASP 8	3.6		3.3		Н
Barnase	ASP 12	4.0		3.8		Н
Barnase	HIS 18	7.6		7.73		S
Barnase	ASP 22	3.9		3.3		Т
Barnase	GLU 29	5.3		3.75		Н
Barnase	ASP 44	4.2		3.35		Н
Barnase	ASP 54	3.8		2.2		E
Barnase	GLU 60	3.9		3		Т
Barnase	GLU 73	2.1	4.4	2.2		Е
Barnase	ASP 75	2.4		3.1	change boundary	E
Barnase	ASP 86	5.8		4.2	J ,	L
Barnase	ASP 93	1.2		2	Upper Limit	Т
Barnase	ASP 101	2.0	1.1	2		S
Barnase	HIS 102	6.2		6.3		Т
Barnase	CTR	3.6		3.3		ND
BPTI	NTR	6.9		7.9		ND
BPTI	ASP 3	3.5		3.55		G
BPTI	GLU 7	3.9		3.85		S
BPTI	TYR 10	10.2		9.46		L
BPTI	LYS 15	10.7		10.4		L
BPTI	TYR 21	10.5		9.94		Е
BPTI	TYR 23	12.2		11		Е
BPTI	LYS 26	10.7		10.4		Т
BPTI	TYR 35	10.4		10.6		E
BPTI	LYS 41	11.3		10.8		L
BPTI	LYS 46	10.5		10.4		S
BPTI	GLU 49	4.0		3.91		Н
BPTI	ASP 50	2.7		3.2		Н
BPTI	CTR	3.7		3.1		ND
Calbindin D9k	LYS 1	11.3		10.6		L
Calbindin D9k	GLU 4	4.1		3.8		Н
Calbindin D9k	GLU 5	2.8		3.4		Н
Calbindin D9k	LYS 7	11.6		11.4		Н

Calbindin D9k	GLU 11	4.9	4.7		Н
Calbindin D9k	LYS 12	11.2	11.1		Н
Calbindin D9k	LYS 16	11.9	10.1		Т
Calbindin D9k	GLU 17	3.5	3.62		S
Calbindin D9k	LYS 25	11.7	11.7		Н
Calbindin D9k	GLU 26	3.7	4.1		Н
Calbindin D9k	LYS 29	11.0	11.4		Н
Calbindin D9k	LYS 41	10.7	10.9		L
Calbindin D9k	ASP 47	3.9	3		Н
Calbindin D9k	GLU 48	4.4	4.6		Н
Calbindin D9k	LYS 55	12.2	12.1		Т
Calbindin D9k	GLU 64	3.7	3.8		Н
Calbindin D9k	LYS 71	9.8	10.7		Н
Calbindin D9k	LYS 72	10.6	11.3		Н
Calbindin D9k	CTR	3.9	3.2		ND
Cardiotoxin A5	HIS 4	6.2	5.6		E
Cardiotoxin A5	GLU 17	3.8	4		Т
Cardiotoxin A5	ASP 42	3.2	3.2		S
Cardiotoxin A5	ASP 59	1.8	2.3	Upper Limit	Т
CD2d1	ASP 2	2.3	3.5		L
CD2d1	ASP 25	3.5	3.53		Т
CD2d1	ASP 26	4.0	3.58		Т
CD2d1	ASP 28	4.0	3.57		E
CD2d1	GLU 29	5.1	4.51		E
CD2d1	GLU 33	4.0	4.2		E
CD2d1	GLU 41	6.7	6.53		E
CD2d1	GLU 56	4.4	3.95		E
CD2d1	ASP 62	6.2	4.18		L
CD2d1	ASP 71	3.8	3.2		G
CD2d1	ASP 72	5.2	4.14		G
CD2d1	ASP 94	3.1	3.83		E
CD2d1	GLU 99	4.3	4.1		L
CD2d1	CTR	4.0	3.11		ND
Chymotrypsin Inhibitor 2	GLU 23	4.3	3.2		В
Chymotrypsin Inhibitor 2	GLU 26	2.4	3.3		G
Chymotrypsin Inhibitor 2	GLU 33	3.2	4.2		Н
Chymotrypsin Inhibitor 2	GLU 34	3.8	3.8		Н
Chymotrypsin Inhibitor 2	GLU 45	3.2	3.85		Т
Chymotrypsin Inhibitor 2	GLU 60	3.1	3.5		L
Chymotrypsin Inhibitor 2	ASP 64	4.8	3.8		Т
Chymotrypsin Inhibitor 2	ASP 71	2.1	2.8		L
Chymotrypsin Inhibitor 2	ASP 74	4.4	4.95		S
chymotrypsinogen	His 40	3.7	4.6		E
chymotrypsinogen	His 57	8.8	7.3		G
Cyclophilin	HIS 54	1.4	4.2	Upper Limit	L
Cyclophilin	HIS 70	6.3	5.8		S
Cyclophilin	HIS 92	-2.8	4.2	Upper Limit	L
Cyclophilin	HIS 126	5.2	6.3		S
Fungal beta cryptogein	NTR	9.0	7.43		ND

Fungal beta cryptogein	TYR 12	10.4		11.5	expt val approximate	Н
Fungal beta cryptogein	ASP 21	2.1		2.49		S
Fungal beta cryptogein	ASP 30	5.0		2.51		Н
Fungal beta cryptogein	TYR 33	18.1		12	Lower Limit	L
Fungal beta cryptogein	TYR 47	14.0		12	Lower Limit	Н
Fungal beta cryptogein	LYS 61	10.4		10.1	Ambiguous assignment	Н
Fungal beta cryptogein	ASP 72	4.0		2.61		В
Fungal beta cryptogein	TYR 85	10.0		10.4		Н
Fungal beta cryptogein	TYR 87	17.5		12	Lower Limit	Н
Fungal beta cryptogein	LYS 94	10.7		9.4	Ambiguous assignment	Н
Fungal beta cryptogein	CTR	4.2		3.51		ND
Hen egg white lysozyme	LYS 1	10.9		10.8		L
Hen egg white lysozyme	GLU 7	3.0		2.85		Н
Hen egg white lysozyme	LYS 13	11.1		10.5		Н
Hen egg white lysozyme	HIS 15	6.0		5.36		Т
Hen egg white lysozyme	ASP 18	2.3		2.66		Т
Hen egg white lysozyme	TYR 20	11.6		10.3		В
Hen egg white lysozyme	TYR 23	10.7		9.8		В
Hen egg white lysozyme	LYS 33	9.4		10.4		Н
Hen egg white lysozyme	GLU 35	6.1		6.2		Н
Hen egg white lysozyme	ASP 48	3.5		1.6		Т
Hen egg white lysozyme	ASP 52	4.2		3.68		Е
Hen egg white lysozyme	ASP 66	1.0		0.9		L
Hen egg white lysozyme	ASP 87	2.1		2.1		S
Hen egg white lysozyme	ASP 87	2.1		2.07		S
Hen egg white lysozyme	LYS 96	11.3		10.8		Н
Hen egg white lysozyme	LYS 97	11.0		10.3		Н
Hen egg white lysozyme	ASP 101	5.2		4.08		Т
Hen egg white lysozyme	LYS 116	10.2		10.2		Т
Hen egg white lysozyme	ASP 119	3.9		3.2		L
Hen egg white lysozyme	CTR	3.3		2.75		ND
Human DNA polymerase			_ .			
lambda lyase domain	LYS 312	9.6	8.1	9.5		Н
Human thioredoxin (ox)	GLU 6	3.8		4.9		L
Human thioredoxin (ox)	GLU 13	4.2		4.4		Н
Human thioredoxin (ox)	ASP 16	3.9		4.2		H
Human thioredoxin (ox)	ASP 20	3.2		3.8		T
Human thioredoxin (ox)	ASP 26	10.7	13.0	8.1	change boundary	E
Human thioredoxin (ox)	GLU 4/	4.5		4.3		Н
Human thioredoxin (ox)	GLU 56	2.4		3.2		E
Human thioredoxin (ox)	ASP 58/0	00/612	2.7,3.	9, 5.2	2 (coupled expt values)	L
Human thioredoxin (ox)	ASP 58	2.5	1.3			E
Human thioredoxin (ox)	ASP 60	3.8	2.4			
Human thioredoxin (ox)	ASP 61	5.0	3.4	2 2		1
Human thioredoxin (ox)	ASP 64	3.8 4 7		ა.∠ ⊑ 1		H
numan thioredoxin (ox)		4.3		⊃.⊥ ₄ ○		H T
numan thioredoxin (ox)		4.2		4.ð		
numan thioredoxin (ox)		2.8 2.7		3.0 ∕ 1		E
numan thioredoxin (ox)	GLU 95	/.১		4.1		Н

Human thioredoxin (ox)	GLU 98	3.4	3.9		Н
Human thioredoxin (ox)	GLU 103	4.1	4.5		Н
Human thioredoxin (red)	GLU 6	4.3	4.8		L
Human thioredoxin (red)	GLU 13	4.0	4.4		Н
Human thioredoxin (red)	ASP 16	3.7	4		Н
Human thioredoxin (red)	ASP 20	3.4	3.8		Т
Human thioredoxin (red)	ASP 26	10.7	9.9		Е
Human thioredoxin (red)	HIS 43	7.4	5.5		Н
Human thioredoxin (red)	GLU 47	3.6	4.1		Н
Human thioredoxin (red)	GLU 56	2.9	3.1		Е
Human thioredoxin (red)	ASP 58/6	612	2.8, 4.2, 5.3	<i>(coupled expt values)</i>	L
Human thioredoxin (red)	ASP 58	2.7	7.5		Ε
Human thioredoxin (red)	ASP 60	5.2			Т
Human thioredoxin (red)	ASP 61	4.8			Τ
Human thioredoxin (red)	ASP 64	3.7	3.2		Н
Human thioredoxin (red)	GLU 68	3.9	4.9		Н
Human thioredoxin (red)	GLU 70	3.7	4.6		Т
Human thioredoxin (red)	GLU 88	2.9	3.7		Е
Human thioredoxin (red)	GLU 95	4.2	4.1		Н
Human thioredoxin (red)	GLU 98	4.2	3.9		Н
Human thioredoxin (red)	GLU 103	4.4	4.4		Н
Myoglobin - horse	HIS 36	6.1	7.8		L
Myoglobin - horse	HIS 48	5.9	5.62		Т
Myoglobin - horse	HIS 81	7.0	6.94		L
Myoglobin - horse	HIS 113	6.0	5.87		Н
Myoglobin - horse	HIS 116	6.6	6.79		Н
Myoglobin - horse	HIS 119	5.6	6.56		S
Myoglobin - sperm whale	HIS 12	7.4	6.5		Н
Myoglobin - sperm whale	HIS 24	-0.5	5	Upper Limit	Н
Myoglobin - sperm whale	HIS 36	7.0	8		L
Myoglobin - sperm whale	HIS 48	6.5	5.6		Т
Myoglobin - sperm whale	HIS 64	1.8	5	Upper Limit	Н
Myoglobin - sperm whale	HIS 81	6.9	6.9		L
Myoglobin - sperm whale	HIS 82	3.8	5	Upper Limit	L
Myoglobin - sperm whale	HIS 97	5.8	5.6		S
Myoglobin - sperm whale	HIS 113	6.5	5.4		Н
Myoglobin - sperm whale	HIS 116	6.8	6.7		Н
Myoglobin - sperm whale	HIS 119	5.6	6.2		L
Phage T4 lysozyme	HIS 31	7.9	9.1		Е
RNase A	GLU 2	3.0	2.6		L
RNase A	GLU 9	4.6	4		Н
RNase A	HIS 12	4.1	6		Н
RNase A	ASP 14	1.8	1.8		L
RNase A	ASP 38	3.2	3.5		S
RNase A	HIS 48	7.8	6.1		L
RNase A	GLU 49	4.4	4.7		S
RNase A	ASP 53	4.2	3.7		Н
RNase A	ASP 83	5.3	3.3		Е
RNase A	GLU 86	4.3	4		Е

RNase A	HIS 105	6.8	6.5		L
RNase A	GLU 111	4.2	3.5		E
RNase A	HIS 119	5.5	6.5		E
RNase A	ASP 121	2.6	3		E
RNase A	CTR	2.8	2.3		?
RNase H1	GLU 6	4.0	4.5		E
RNase H1	ASP 10	8.2	6.1		E
RNase H1	GLU 32	4.2	3.6		E
RNase H1	GLU 48	1.8	4.4		Н
RNase H1	GLU 57	3.7	3.2		Н
RNase H1	GLU 61	3.3	3.9		S
RNase H1	HIS 62	6.7	7		L
RNase H1	GLU 64	4.5	4.4		E
RNase H1	ASP 70	3.6	2.6		L
RNase H1	HIS 83	5.9	5.5		Н
RNase H1	ASP 94	4.2	3.2		Т
RNase H1	ASP 102	0.9	2	Upper Limit	Н
RNase H1	ASP 108	3.8	3.2		Н
RNase H1	HIS 114	-0.1	5	Upper Limit	S
RNase H1	GLU 119	5.2	4.1		E
RNase H1	HIS 124	7.9	7.1		S
RNase H1	HIS 127	7.3	7.9		L
RNase H1	GLU 129	3.3	3.6		Н
RNase H1	GLU 131	4.6	4.3		Н
RNase H1	ASP 134	2.7	4.3		Н
RNase H1	GLU 135	4.7	4.3		Н
RNase H1	GLU 147	4.5	4.2		L
RNase H1	ASP 148	-1.6	2	Upper Limit	L
RNase H1	GLU 154	4.5	4.4		L
RNase H1	CTR	3.4	3.4		ND
RNase SA	NTR	8.6	9.14		ND
RNase SA	ASP 1	3.2	3.44		L
RNase SA	GLU 14	5.3	5.05		Н
RNase SA	ASP 17	4.7	3.72		Н
RNase SA	ASP 25	5.1	4.87		Т
RNase SA	TYR 30	10.5	11.3		S
RNase SA	ASP 33	0.6	2.39		Т
RNase SA	GLU 41	3.5	4.14		Т
RNase SA	TYR 49	10.1	10.6		Т
RNase SA	TYR 51	15.8	11.5	Lower Limit	S
RNase SA	TYR 52	19.4	11.5	Lower Limit	L
RNase SA	HIS 53	8.9	8.27		E
RNase SA	GLU 54	4.2	3.42		E
RNase SA	TYR 55	13.8	11.5	Lower Limit	E
RNase SA	GLU 74	5.0	3.47		S
RNase SA	GLU 78	4.9	3.13		L
RNase SA	ASP 79	7.4	7.37		E
RNase SA	TYR 80	18.1	11.5	Lower Limit	E
RNase SA	TYR 81	13.2	11.5	Lower Limit	E

RNase SA	ASP 84	2.7		3.01		S
RNase SA	HIS 85	5.9		6.35		Т
RNase SA	TYR 86	14.0		11.5	Lower Limit	Т
RNase SA	ASP 93	3.8		3.09		E
RNase SA	CTR	2.1		2.43		ND
RNase T1	ASP 15	4.2		3.52		Н
RNase T1	HIS 27	8.4		7		Н
RNase T1	GLU 28	6.1		5.61		Н
RNase T1	ASP 29	5.5		4.26		Н
RNase T1	GLU 31	4.6		5.36		L
RNase T1	HIS 40	8.5		7.9		E
RNase T1	GLU 46	4.0		3.62		Т
RNase T1	ASP 49	5.0		4.22		L
RNase T1	GLU 58	2.5		3.96		E
RNase T1	ASP 66	4.6		3.9		S
RNase T1	ASP 76	4.1		0.5	B - see below	E
RNase T1	GLU 82	2.8		3.27		Т
RNase T1	HIS 92	6.1		7.3		S
RNase T1	GLU 102	5.3		5.3		E
Snake erabutoxin b	HIS 6	0.1		2.8	Upper Limit	L
Snake erabutoxin b	TYR 25	13.5		12	Lower Limit	E
Snake erabutoxin b	HIS 26	5.6		5.8		E
Staph Nuclease	HIS 8	7.6		6.52		L
Staph Nuclease	HIS 46	6.4		5.86		L
Staph Nuclease	HIS 121	6.6		5.3		Т
Staph Nuclease	HIS 124	4.6		5.73		Н
Turkey ovomucoid inhibitor	NTR	6.0		8		ND
Turkey ovomucoid inhibitor	ASP 7	2.1		2.6	Upper Limit	L
Turkey ovomucoid inhibitor	GLU 10	2.5		4.2		Т
Turkey ovomucoid inhibitor	TYR 11	9.2	11.5	10.2		L
Turkey ovomucoid inhibitor	LYS 13	11.2	14.1	9.9		L
Turkey ovomucoid inhibitor	GLU 19	3.7		3.2		L
Turkey ovomucoid inhibitor	TYR 20	10.3		11.1		L
Turkey ovomucoid inhibitor	ASP 27	3.3		2.3	Upper Limit	Т
Turkey ovomucoid inhibitor	LYS 29	11.4		11.1		L
Turkey ovomucoid inhibitor	TYR 31	14.9		12.5	Lower Limit	E
Turkey ovomucoid inhibitor	LYS 34	10.6		10.1		Н
Turkey ovomucoid inhibitor	GLU 43	3.9		4.8		Н
Turkey ovomucoid inhibitor	HIS 52	7.3		7.5		E
Turkey ovomucoid inhibitor	LYS 55	11.1		11.1		L
Tyrosin phosphotase	HIS 66	6.8		8.3		Т
Tyrosin phosphotase	HIS 72	7.3		9.2		L
Xylanase BA	ASP 5	4.6		3.84		S
Xylanase BA	HIS 11	7.4	0.7	6.5	change boundary	E
Xylanase BA	ASP 12	5.2		3.94		Т
Xylanase BA	ASP 15	3.2		3.35		E
Xylanase BA	GLU 17	3.5		4.31		E
Xylanase BA	ASP 21	2.8		3.46		L
Xylanase BA	HIS 32	5.4		6.7		S

Xylanase BA	HIS 60	4.0	6.2	4		Н
Xylanase BA	ASP 90	4.0		3.88		Т
Xylanase BA	GLU 94	4.6	8.1	3.94		Е
Xylanase BA	ASP 99	2.2		2.7	Upper Limit	Е
Xylanase BA	ASP 118	2.5		2.7	Upper Limit	Т
Xylanase BA	ASP 123	0.4		2.7	Upper Limit	Е
Xylanase BA	GLU 126	4.7		4.51		Е
Xylanase BA	HIS 162	-2.5		2.7	Upper Limit	Н
Xylanase BA	GLU 167	2.3		3.58		Н
Xylanase BA	GLU 178	4.5	7.1	4.1	change boundary	Е
Xylanase BA	GLU 184	5.3		6.5		Е
Xylanase BA	CTR	4.2		6.52		ND
Xylanase BC	ASP 11	2.2		2.5		L
Xylanase BC	GLU 78	4.3	7.2	4.6		Е
Xylanase BC	ASP 101	1.1		2	Upper Limit	Т
Xylanase BC	ASP 106	4.6		2.7		Е
Xylanase BC	ASP 119	3.3		3.2		Т
Xylanase BC	ASP 121	4.7		3.6		S
Xylanase BC	HIS 149	-1.3		2.3	Upper Limit	Н
Xylanase BC	HIS 156	6.7		6.5		Т
Xylanase BC	GLU 172	6.7	4.1	6.7		Е

References to experimental values in Table S2

pK2 provided when bimodal equation provides significantly better fit to calculated titration **Comments**

Upper or lower limit indicates the residue pK could not be seen in experimental titration Change boundary:Rerun with MCCE selected exposed conformer substituted for experimental input positions used to calculate the corrected boundary Other notes refer to ambiguity of assignments.

A Exp pK = 3.2. Protonation of His occurs with denaturation of the protein. Therefore, pKa for the wildtype protein should be <3.2. High desolvation energy is consistent with the low solvent accessibility found in the NMR measurements. (Fujii et al., 1980, J Biochem (Tokyo))

B Small ppm shift is found in Spitzner et al. at ph 4 and 8, ambiguous data in Koumanov et al. Pfeiffer et al. suggest it is protonated at pH 5.5

DSSP assignment: H helix; E b-sheet;L loops; ND termini not defined; S,T etc other

••	-		pK _a - pK _{arsol}				Error			
PDB	Res	Exp	MCCE	MD	PROPKA	MCCE	MD	PROPKA		
3rn3	Asp 14	-2.2	-2.7	-0.3	-2.6	-0.5	1.9	-0.4		
4lzt	Asp 87	-1.9	-2.0	-0.8	-1.5	-0.1	1.1	0.4		
1ppf ^a	Asp 27	-1.8	-0.8	0.6	-1.6	1.0	2.4	0.2		
1xnb	Asp 11	-1.5	-2.0	-0.1	-2.0	-0.5	1.4	-0.5		
1beo	Asp 21	-1.5	-2.0	-1.1	-2.6	-0.5	0.4	-1.1		
4lzt	Asp 18	-1.3	-1.7	-0.8	-1.2	-0.4	0.5	0.1		
1xnb	Asp 106	-1.3	0.5	-1.2	-1.0	1.8	0.1	0.3		
1pga	Asp 22	-1.1	-0.6	-0.4	-1.8	0.5	0.7	-0.7		
3rn3	Asp 121	-0.9	-1.8	1.0	-0.3	-0.9	1.9	0.6		
1a2p	Asp 75	-0.9	-1.6	0.3	-5.3	-0.7	1.2	-4.4		
2rn2	Asp 94	-0.8	0.1	0.3	-1.3	0.9	1.1	-0.5		
1pga	Asp 47	-0.6	0.2	-0.1	-1.3	0.8	0.5	-0.7		
3rn3	Asp 53	-0.3	0.2	1.0	-0.6	0.5	1.3	-0.3		
4lzt	Asp 52	-0.3	0.2	2.0	-1.0	0.5	2.3	-0.7		
1pga	Asp 36	-0.2	1.0	0.6	-0.1	1.2	0.8	0.1		
2trx	Asp 20	-0.2	0.2	0.0	-1.5	0.4	0.2	-1.3		
1de3	Asp 59	0.1	-0.8	-0.1	-0.8	-0.9	-0.2	-0.9		
1de3	Asp 57	0.3	0.0	-0.1	0.0	-0.3	-0.4	-0.3		
2rn2	Asp 10	2.1	4.6	2.7	3.0	2.5	0.6	0.9		
2trx	Asp 26	4.1	2.9	3.7	1.2	-1.2	-0.4	-2.9		
3rn3	Glu 2	-1.8	-3.3	-2.0	-1.7	-1.5	-0.2	0.1		
4lzt	Glu 7	-1.5	-1.5	0.0	-0.7	0.0	1.5	0.8		
1ppf	Glu 19	-1.2	-0.8	-0.3	-0.5	0.4	0.9	0.7		
2rn2	Glu 57	-1.2	-0.5	0.2	-1.8	0.7	1.4	-0.6		
1a2p	Glu 60	-1.2	-0.5	0.7	-0.6	0.7	1.9	0.6		
3rn3	Glu 111	-0.9	-0.1	0.5	0.2	0.8	1.4	1.1		
2rn2	Glu 129	-0.8	-1.3	-0.5	-0.9	-0.5	0.3	-0.1		
2rn2	Glu 61	-0.5	-1.2	0.5	-0.8	-0.7	1.0	-0.3		
<u>3rn3</u>	Glu 9	-0.4	0.1	1.3	0.2	0.5	1.7	0.6		
2bca	Glu 26	-0.3	-0.1	0.4	0.4	0.2	0.7	0.7		
1ppf	Glu 10	-0.3	-2.0	0.7	0.0	-1.7	1.0	0.3		
2rn2	Glu 119	-0.3	0.6	1.6	-0.9	0.9	1.9	-0.6		
1pga	Glu 27	0.1	0.9	1.3	-0.1	0.8	1.2	-0.2		
1ppf	Glu 43	0.4	-0.5	0.3	0.1	-0.9	-0.1	-0.3		
1de3	Glu 96	0.7	1.4	2.4	0.6	0.7	1./	-0.1		
<u>lans</u>	Glu 20	1.0	0.2	0.7	0.1	-0.8	-0.3	-0.9		
1rga	Glu 28	1.5	0.6	1.2	-0.3	-0.9	-0.3	-1.8		
4lzt	Glu 35	1.8	1.1	1.8	0.6	-0.7	0.0	-1.2		
1hng	Glu 41	2.3	1.9	2.3	0.3	-0.4	0.0	-2.0		
1xnb	Glu 172	2.3	0.7	2.7	2.9	-1.6	0.4	0.6		
<u>2snm^v</u>	<u>Lys 66</u>	<u>-4.1</u>	<u>-11.5</u>	<u>-3.1</u>	<u>-2.6</u>	-7.4	1.0	1.5		
<u>1/54⁰</u>	<u>Lys 102</u>	<u>-3.9</u>	<u>-9.7</u>	<u>-0.9</u>	<u>-0.3</u>	-5.8	3.0	3.6		
1mut ^a	Lys 39	-2.1	1.3	0.3	0.0	3.4	2.4	2.1		
1nfn	Lys 146	-1.3	-0.8	-0.8	0.0	0.5	0.5	1.3		
1fez ^a	Lys 53	-1.2	-3.4	1.8	-2.4	-2.2	3.0	-1.2		

Supplementary Material S4. Comparson of pK_as calculated by MCCE, MD/GB/TI and PROPKA

1gs9	Lys 146	-1.1	-0.7	-0.8	0.0	0.4	0.3	1.1
1le2	Lys 143	-1.1	-0.5	-0.2	-0.5	0.6	0.9	0.6
1nfn	Lys 143	-1.0	-0.8	-0.3	0.0	0.2	0.7	1.0
1nzp	Lys 312	-1.0	0.3	0.7	-0.2	1.3	1.7	0.8
1gs9	Lys 143	-0.6	-0.7	-0.3	0.0	-0.1	0.3	0.6
1le2	Lys 146	-0.6	-1.5	-0.5	-0.1	-0.9	0.1	0.5
1ppf	Lys 34	-0.4	0.2	-0.2	-0.3	0.6	0.2	0.1
4lzt	Lys 33	-0.1	-0.8	-0.4	-0.2	-0.7	-0.3	-0.1
2bca	Lys 41	0.3	0.3	0.2	-0.1	0.0	-0.1	-0.4
4lzt	Lys 96	0.3	1.3	0.1	-0.3	1.0	-0.2	-0.6
1pga	Lys 28	0.4	0.6	0.2	-0.6	0.2	-0.2	-1.0
2bca	Lys 16	0.4	2.4	0.7	-0.6	2.0	0.3	-1.0
1ppf	Lys 55	0.6	0.7	0.2	0.0	0.1	-0.4	-0.6
2bca	Lys 7	0.7	1.0	0.9	0.0	0.3	0.2	-0.7
2bca	Lys 55	1.3	1.5	1.3	0.0	0.2	0.0	-1.3
3ebx ^a	His 6	-3.5	-5.3	-4.6	0.0	-1.8	-1.1	3.5
<u>3ssi^b</u>	<u>His</u> <u>43</u>	<u>-3.1</u>	<u>-6.3</u>	<u>-3.1</u>	<u>-1.4</u>	-3.2	0.0	1.7
1stn	His 121	-1.0	0.8	1.4	-1.0	1.8	2.4	0.0
4lzt	His 15	-0.9	-0.4	1.9	1.0	0.5	2.8	1.9
1ert	His 43	-0.8	0.1	0.2	0.0	0.9	1.0	0.8
1de3	His 137	-0.5	-1.0	1.3	-4.3	-0.5	1.8	-3.8
3rn3	His 48	-0.2	1.4	4.9	-3.1	1.6	5.1	-2.9
3rn3	His 119	0.2	-0.8	-0.5	0.2	-1.0	-0.7	0.0
3rn3	His 12	-0.3	-2.2	0.5	-4.5	-1.9	0.8	-4.2
1de3	His 104	0.2	0.6	2.3	0.1	0.4	2.1	-0.1
1de3	His 36	0.5	0.3	0.7	0.2	-0.2	0.2	-0.3
2rn2	His 62	0.7	0.3	0.7	0.7	-0.4	0.0	0.0
2rn2	His 124	0.8	1.0	-1.1	0.1	0.2	-1.9	-0.7
1de3	His 50	1.4	1.1	3.1	-3.8	-0.3	1.7	-5.2
1rga	His 92	1.5	0.1	1.2	-0.4	-1.4	-0.3	-1.9
1rga	His 40	1.6	2.1	1.6	2.5	0.5	0.0	0.9
2rn2	His 127	1.6	1.0	1.6	0.8	-0.6	0.0	-0.8
1dg9	His 66	2.0	0.5	1.3	1.3	-1.5	-0.7	-0.7
2lzm	His 31	2.8	1.6	0.9	1.3	-1.2	-1.9	-1.5
1dg9	His 72	2.9	1.0	3.2	1.6	-1.9	0.3	-1.3
RMSD ¹			0.94	1.24	1.40			
RMSD ²			1.46	1.27	1.45			

Calculated pK_a shift using MD/GB/TI (Simonson et al. J Am Chem Soc, 2004) and PROPKA (Li et al. Proteins, 2005) methods as reported in Stanton and Houk's study (Stanton and Houk, J Chem Theory Comput, 2008). Errors greater then 2pH units in bold.

a: The experimental $\dot{p}K_a$ is out of the range of the titration or is measured by protein activity.

b: the measured pK_a is coupled to protein denaturation.

RMSD¹: The RMSD between calculations and experiments for 73 residues, excluding (a) and (b).

RMSD²: The RMSD between calculations and experiments for 76 residues, excluding (a).