Please cite this article in press as: Caygill and Johnston, Temporal Regulation of Metamorphic Processes in *Drosophila* by the *let-7* and *miR-125* Heterochronic MicroRNAs, Current Biology (2008), doi:10.1016/j.cub.2008.06.020

Supplemental Data Temporal Regulation of Metamorphic Processes in *Drosophila* by the *let-7* and *miR-125* Heterochronic MicroRNAs

Elizabeth E. Caygill and Laura A. Johnston

Supplemental References

- Ranganayakulu, G., Schulz, R.A., and Olson, E.N. (1996). Wingless signaling induces nautilus expression in the ventral mesoderm of the Drosophila embryo. Dev. Biol. *176*, 143–148.
- S2. Brand, A.H., and Perrimon, N. (1993). Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401–415.
- S3. Lin, D.M., and Goodman, C.S. (1994). Ectopic and increased expression of Fasciclin II alters motoneuron growth cone guidance. Neuron 13, 507–523.
- S4. Aberle, H., Haghighi, A.P., Fetter, R.D., McCabe, B.D., Magalhaes, T.R., and Goodman, C.S. (2002). wishful thinking encodes a BMP type II receptor that regulates synaptic growth in Drosophila. Neuron 33, 545–558.
- S5. Salvaterra, P.M., and Kitamoto, T. (2001). Drosophila cholinergic neurons and processes visualized with Gal4/UAS-GFP. Brain Res. Gene Expr. Patterns 1, 73–82.

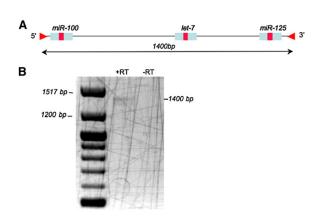


Figure S1. *miR-100*, *let-7*, and *miR-125* Are Expressed in a Single Polyadenylated Transcript

(A and B) The wild-type *let-7*, *miR-125* locus. Red arrowheads indicate positions of primer set three ([A], see Experimental Procedures), which flanks the three microRNAs and amplifies a 1400 bp product from poly(A)⁺ RNA generated from wild-type pupae at 42 hr APF (B), confirming the existence of a single polyadenylated transcript containing all three miRNAs.

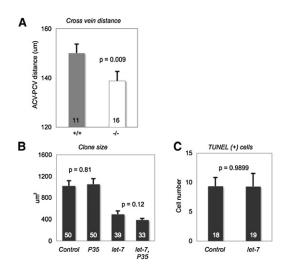


Figure S2. Wing-Phenotype Supportive Data

(A) Temporal defects in *let-7, miR-125* wing development. At 28 hr APF, the separation between the anterior and posterior crossveins is delayed in *let-7, miR-125* mutants (-/-) compared to wild-type (+/+). Numbers indicate number of wing discs analyzed.

(B) Inhibition of cell death does not suppress the small clone size due to misexpression of UAS-*let-7*. Shown is the size of Flp-out clones, which each express UAS-GFP, with or without expression of UAS-P35, the caspase inhibitor. Experimental clones express UAS-*let-7* or UAS-*let-7* + UAS-P35, as indicated. Blocking cell death with UAS-P35 did not alter clone size. Numbers on bars indicate number of clones examined.

(C) Misexpression of *let-7* does not increase death of wing disc cells. Graph shows the number of TUNEL-positive cells in wandering-stage larval wing discs containing GFP-marked control clones or clones expressing UAS-*let-7*. Numbers on bars represent discs examined. Error bars indicate standard error.

S1

Please cite this article in press as: Caygill and Johnston, Temporal Regulation of Metamorphic Processes in *Drosophila* by the *let-7* and *miR-125* Heterochronic MicroRNAs, Current Biology (2008), doi:10.1016/j.cub.2008.06.020

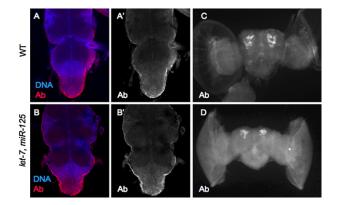


Figure S3. Ab Is Not Expressed in Motoneurons of the Abdominal Ganglion (A and B) wild-type (A and A') and mutant (B and B') abdominal ganglia of the CNS stained for Ab and DNA. No specific Ab staining is detected in motoneurons. As a control for nuclear Ab staining, the brains of wild-type (C) and *let-7*, *miR-125* mutants (D) are shown; note that Ab is neither downregulated in wild-type cells in the brain nor affected by loss of *let-7* and *miR-125*.

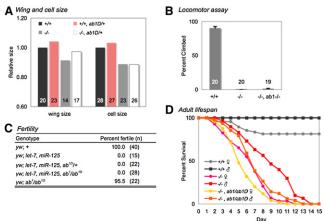


Figure S4. Reduction of *abrupt* Gene Dose Does Not Suppress All *let-7, miR-125* Defects

(A) The small wing and cell sizes of *let-7*, *miR-125* mutants are not rescued in the ab^{1D} /+ background. Reducing the dose of ab with the strong allele ab^{1D} did not alter the small cell size of *let-7*, *miR-125* mutant wings. Wing size was increased in *let-7*, *miR-125*, ab^{1D} /+ mutant wings; however, ab^{1D} /+ also produced a dominant increase in wild-type wing size. The number of wings examined for each genotype is noted on the bars.

(B) Defects in locomotion in *let-7, miR-125* mutants are not rescued by $ab^{1}/$ +. The climbing response of wild-type controls and *let-7, miR-125* mutants to a tap was monitored. The response of mutant files was severely diminished and was not suppressed by the presence of the ab^{1} allele. Data from females are shown; males performed similarly. Note that ab^{1} is a weak allele of ab.

(C) Fertility is not restored in *let-7, miR-125, ab* double mutants. Reducing the dose of *ab* in *let-7, miR-125* mutants with the strong allele ab^{1D} alone or in a transheterozygous combination with the weak allele ab^{1} does not restore fertility.

(D) Adult lifespan, which is significantly reduced in male and female mutants, is not rescued by the $ab^{1/}ab^{1D}$ genetic background. Wild-type (+/+) females, n = 49; males, n = 50; *let-7*, *miR-125* (-/-) females, n = 29; males, n = 30; -/-, $ab^{1/}ab^{1D}$ females, n = 50; males, n = 49.

Table S1. Phenotype of let-7 or miR-125 Misexpression

Gal 4 Driver	Expression Pattern	Timing ^a	UAS-let-7	UAS-miR-125
tub Gal 4	Ubiquitous	E, L, P	Larval lethal (L1/L2)	Larval lethal (L1/L2)
en Gal4	All posterior cells	E, L, P	Larval lethal (L1/L2)	ND
dpp Gal 4	Anterior, imaginal discs	L, P ^b	Pupal lethal ^d	Pupal lethal ^e
vg Gal 4	Wing imaginal disc	L, P ^b	Viable, small wings	viable
A ct5C > Gal4	Clonal	L ^c	Viable, cell-cycle arrest	ND

^a Expression during E = embryonic, L = larval, and P = pupal stages.

^b Mid-second instar.

^c Clones induced early third instar.

^d Predifferentiation.

^e Postdifferentiation.

Please cite this article in press as: Caygill and Johnston, Temporal Regulation of Metamorphic Processes in Drosophila by the let-7 and miR-125 Heterochronic MicroRNAs, Current Biology (2008), doi:10.1016/j.cub.2008.06.020

S3

Table S2. Tissue-Specific Misexpression of abrupt				
Gal 4 Driver	Expression	UAS-abrupt		
MEF2	Muscle	Larval lethal (L3)		
24B	Muscle	Larval lethal (L2)		
C155	Pan neuronal	Eclose		
OK6	Motoneuron	Eclose		
CHA	CNS (Ach+ neurons)	Larval lethal (L3)		

Gal 4 drivers (column 1) were used to express UAS-*abrupt* in the tissues indicated (column 2). The resulting phenotype is listed in column 3. References for each driver are as follows: MEF2 Gal 4 [S1], 24B Gal 4 [S2], C155 Gal 4 [S3], OK6 Gal 4 [S4], and CHA Gal 4 [S5].