Synthesis of 7-Azaindoles by Chichibabin Cyclization: Reversible Base-Mediated Dimerization of 3-Picolines

Yun Ma, Sean Breslin, Ivan Keresztes, Emil Lobkovsky and David B. Collum*†

Contribution from the Department of Chemistry and Chemical Biology Baker Laboratory, Cornell University, Ithaca, New York 14853-1301

Supporting Information

I	¹ H and ¹³ C NMR spectra of 2 in DMSO- d_6 .	S5
Π	19 F NMR spectra of 1 with LDA in neat THF showing reaction to form 5 .	S6
III	⁶ Li and ¹⁹ F NMR spectra of 1 with LDA in neat THF showing reaction to form 5 .	S7
IV	⁶ Li NMR spectra of 1 with $[{}^{6}Li, {}^{15}N]LDA$ in neat THF after aging to form 5 .	S8
V	¹ H NMR and ¹³ C NMR spectra of 1 with LDA in neat THF- d_8 showing reat to form 5 .	action S9
VI	¹ H NMR spectra of 1 with LDA in neat THF- d_8 showing reaction to form a Only aromatic and vinylic regions are displayed.	5. S10
VII	$[^{1}H, ^{1}H]COSY$ spectrum of 1 with LDA in neat THF- d_{8} showing reaction to form 5 .	o S11
VIII	[¹ H, ¹³ C]HMBC spectrum of 1 with LDA in neat THF- d_8 showing reaction to form 5 .	S12
IX	$J{^{1}H, ^{19}F}$ resolved spectrum of 1 with LDA in neat THF- d_8 showing reaction form 5.	on to S13
X	¹⁹ F NMR spectra of 5 in neat THF- d_8 after H ₂ O/THF quench to form 7 .	S14
XI	$[^{1}H, ^{1}H]COSY$ spectrum of 7 in neat THF- d_{8} .	S15
XII	$[^{1}H, ^{13}C]HSQC$ spectrum of 7 in neat THF- d_{8} .	S16
XIII	$[^{1}H, ^{13}C]HMBC$ spectrum of 7 in neat THF- d_{8} .	S17
XIV	¹ H NMR spectra of 8a and 8b in acetone- d_6 .	S18

XV	$[^{1}H, ^{13}C]HMBC$ spectrum of 8a and 8b in acetone- d_{6} .	S19
XVI	[¹ H, ¹³ C]HMBC spectrum of 8a and 8b in acetone- d_6 with zoom on methyl region.	S20
XVII	¹ H and ¹³ C NMR spectra of 9 in acetone- d_6 .	S21
XVIII	¹ H and ¹³ C NMR spectra of 10 in acetone- d_6 .	S22
XIX	$[^{1}H, ^{1}H]COSY$ spectrum of 10 in acetone- d_{6} .	S23
XX	$[^{1}\text{H}, ^{13}\text{C}]\text{HSQC}$ spectrum of 10 in acetone- d_{6} .	S24
XXI	$[^{1}H, ^{13}C]HMBC$ spectrum of 10 in acetone- d_{6} .	S25
XXII	¹⁹ F NMR spectra of 1 with LDA in neat THF showing reaction to form 5 and 13 .	S26
XXIII	¹ H and ¹³ C NMR spectra of 23 in neat THF- d_8	S27
XXIV	$[^{1}H^{1}H]COSY$ spectrum of 23 in neat THF- d_{8} .	S28
XXV	$[^{1}H, ^{13}C]HMBC$ spectrum of 23 in neat THF- d_{8} .	S29
XXVI	$[^{1}H, ^{13}C]$ HSQC spectrum of 23 in neat THF- d_{8} .	S30
XXVII	Mass spectra of 9 and 9 - d_5 .	S31
XXVIII	Mass spectra of 9, 9- d_2 , 9- d_3 , and 9- d_5 with zoom on M+ peak region.	S32
XXIX	⁶ Li NMR spectra of 6 in neat THF showing reaction to form 18 , 19 and 14 recorded at -90 °C.	S33
XXX	⁶ Li NMR spectra of 6 in neat THF showing reaction to form 17 , 18 , and 14 recorded at -50 and -40 $^{\circ}$ C.	S34
XXXI	⁶ Li NMR spectra of [⁶ Li, ¹⁵ N]LDA plus PhCN in neat THF.	S35
XXXII	⁶ Li NMR spectra of 6 and $[^{6}Li]LDA$ in neat THF with the addition of 1 .	S36
XXXIII	19 F NMR spectra of 6 with LDA in neat THF with the addition of 1 at -40	°C. S37

XXXIV	Plot of k_{obsd} vs [THF] in pentane for the deprotonation of 1 by LDA.	S38
XXXV	Plot of k_{obsd} vs [THF] in 2,2,5,5-Me ₄ THF for the deprotonation of 1 by LDA.	S39
XXXVI	Plot of k_{obsd} vs [LDA] in THF/pentane for the deprotonation of 1 by LDA.	S40
XXXVI	[Plot of k_{obsd} vs [THF] in pentane for the deprotonation of 1 by LDA as determined following product formation via in situ IR.	S41
XXXVI	II Plot of k_{obsd} vs [LDA] in THF for the deprotonation of 1 by LDA as determined following product formation via in situ IR.	S42
XXXIX	Plot of k_{obsd} vs [LDA] in THF/pentane for the lithiation of PhCN by LDA as determined following product formation via in situ IR.	S43
XL	Plot of k_{obsd} vs [THF] in pentane for the lithiation of PhCN by LDA as determined following product formation via in situ IR.	S44
XLI	X-Ray structure of compound 9.	S45

F

7

6

Ph

N(*i*-Pr)₂

9

14

8

νH

13

23

I. NMR spectra of **2** in DMSO- d_6 : (A) ¹H NMR; and (B) ¹³C NMR.

II. ¹⁹F NMR spectra of 0.10 M **1** with 0.10 M LDA in neat THF at -78 °C showing reaction to form **5**. Hexafluorobenzene (0.60 M in neat THF) is included as an internal standard in a sealed capillary tube. Spectra were recorded (**A**) after 30 s aging at -40 °C; and (**B**) after 10 min aging at -40 °C.

III. ⁶Li and ¹⁹F NMR spectra of 0.30 M **1** with 0.30 M [⁶Li]LDA in neat THF at $-78 \,^{\circ}$ C showing reaction to form **5**. Spectra were recorded as follows: (**A**) ⁶Li spectrum at $-40 \,^{\circ}$ C after 10 s aging; (**B**) ⁶Li spectrum at $-40 \,^{\circ}$ C after 3 min aging; (**C**) ¹⁹F spectrum at $-40 \,^{\circ}$ C after 10 s aging; and (**D**) ¹⁹F spectrum at $-40 \,^{\circ}$ C after 3 min aging.

IV. ⁶Li NMR spectra of 0.30 M **1** with 0.30 M [⁶Li, ¹⁵N]LDA in neat THF recorded at – 78 °C after aging at -55 °C for 1 h showing no ⁶Li-¹⁵N coupling of **5**. (A) ⁶Li spectrum and (B) ⁶Li {¹⁵N} spectrum.

V. ¹H NMR spectra of 0.10 M **1** with 0.10 M LDA in neat THF at -78 °C showing reaction to form **5**. (A) ¹H NMR spectra were recorded after 30 min aging at -40 °C; and (B) ¹³C NMR spectra were recorded after 30 min aging at -40 °C.

VI. ¹H NMR spectra of 0.30 M **1** with 0.30 M LDA in neat THF at -78 °C showing reaction to form **5**. Only aromatic and vinylic regions are included for clarity. Spectra were recorded (**A**) after 30 s aging at -40 °C; and (**B**) after 10 min aging at -40 °C.

VII. $[{}^{1}H, {}^{1}H]COSY$ NMR spectrum of 0.10 M **1** with 0.10 M LDA in neat THF- d_{8} at -78 °C showing reaction to form **5**. The spectrum was recorded after 30 min aging at -40 °C.

VIII. $[{}^{1}H, {}^{13}C]$ HMBC NMR spectrum of **5** revealing long range ${}^{1}H-{}^{13}C$ heteronuclear correlation. The sample was prepared with 0.10 M **1** with 0.10 M LDA in neat THF at - 78 °C. The spectrum was recorded after 30 min aging at -40 °C.

IX. $J{^{1}H, ^{19}F}$ -resolved spectrum of **5**. The sample was prepared with 0.10 M **1** with 0.10 M LDA in neat THF at -78 °C. The spectrum was recorded after 30 min aging at - 40 °C.

X. ¹⁹F NMR spectra: (**A**) after complete reaction of **1** with LDA to form **5** at –40 °C; and (**B**) immediately after quench of sample with H_2O/THF at –40 °C to form dihydropyridine **7**.

XI. [1 H, 1 H]COSY NMR spectrum of **7** recorded in neat THF- d_{8} at -70 °C.

XII. $[{}^{1}\text{H}, {}^{13}\text{C}]\text{HSQC NMR}$ spectrum of **7** recorded in neat THF- d_8 at -70 °C.

XIII. [¹H,¹³C]HMBC NMR spectrum of **7** recorded in neat THF- d_8 at -70 °C.

XIV. ¹H NMR spectra of major and minor diasteromers **8a** and **8b** in acetone- d_6 . (A) pure **8a**; (B) expansion of methylene region of (A); (C) pure **8b**; and (D) expansion of methylene region of (C).

XV. $[^{1}H, ^{13}C]$ HMBC NMR spectrum revealing long range $^{1}H-^{13}C$ heteronuclear correlation in a 3:1 mixture of diastereomer **8a** and **8b** in acetone- d_{6} .

XVI. $[{}^{1}\text{H}, {}^{13}\text{C}]\text{HMBC}$ NMR spectrum revealing long range ${}^{1}\text{H}-{}^{13}\text{C}$ heteronuclear correlation in a 3:1 mixture of diastereomer **8a** and **8b** in acetone- d_6 . ${}^{1}\text{H}$ dimension zoomed in on methyl region to highlight lack of ${}^{1}\text{H}$ methyl- ${}^{13}\text{C}$ vinyl long range correlation.

XVII. NMR spectra of aromatized 1,4-dimer 9 in acetone- d_6 : (A) ¹H spectrum; and (B) ¹³C spectrum.

XVIII. NMR spectra of **10** in acetone- d_6 : (**A**) ¹H spectrum; and (**B**) ¹³C spectrum.

XIX. [¹H, ¹H]COSY NMR spectrum of **10** recorded in acetone- d_6 at 20 °C.

XX. $[^{1}H, ^{13}C]$ HSQC NMR spectrum of **10** recorded in acetone- d_{6} at 20 °C.

XXI. [¹H,¹³C]HMBC NMR spectrum of **10** recorded in acetone- d_6 at 20 °C.

XXII. ¹⁹F NMR spectra of 0.10 M **1** with 0.10 M LDA in neat THF at -78 °C showing reaction to form **5** and **13**. (A) Before aging; (B) after aging at 0 °C for 1 min; (C) after aging at 0 °C for 3 min; and (D) after aging at 0 °C for 15 min.

XXIII. (A) ¹H NMR spectrum of 23 was recorded in THF- d_8 after 30 min aging at -40 °C; and (B) ¹³C NMR spectrum of 23 was recorded in THF- d_8 after 30 min aging at -40 °C.

XXIV. [¹H, ¹H]COSY NMR spectrum of **23** recorded in neat THF- d_8 at 20 °C.

XXV. $[^{1}H, ^{13}C]$ HMBC NMR spectrum of **23** recorded in neat THF- d_{8} at 20 °C.

XXVI. $[^{1}H, ^{13}C]$ HSQC NMR spectrum of **23** recorded in neat THF- d_{8} at 20 °C

XXVII. Mass spectra of (A) 9; and (B) $9-d_5$.

XXVIII. Expasion of M+ peak region of mass spectra. (A) $9-d_0$; (B) $9-d_5$; (C) $9-d_0$ and $9-d_5$ resulting from quench of independently prepared solutions of $5-d_0$ and $5-d_5$ mixed together and aged at -78 °C for 7 min; (D) $9-d_0$ and $9-d_5$ resulting from quench of independently prepared solutions of $5-d_0$ and $5-d_5$ mixed together and aged at -78 °C for 1.5 min; and (E) $9-d_0$ and $9-d_5$ resulting from quench of independently prepared solutions of $5-d_0$ and $5-d_5$ mixed together and aged at -78 °C for 1.5 min; and (E) $9-d_0$ and $9-d_5$ resulting from quench of independently prepared solutions of $5-d_0$ and $5-d_5$ mixed together and aged at -40 °C for 60 min.

XXIX. ⁶Li NMR spectra of 0.20 M **6** in neat THF. (**A**) Recorded at -90 °C after addition of 0.20 M PhCN to 0.20 M ⁶Li LDA and 2 hours aging at -90 °C; (**B**) recorded at -90 °C after 1 hr aging at -60 °C; (**C**) recorded at -90 °C after 4 min aging at -40 °C; and (**D**) recorded at -90 °C after 4 hours aging at -40 °C.

XXX. ⁶Li NMR spectra of 0.20 M **6** in neat THF. (A) Recorded at $-50 \,^{\circ}$ C; (B) recorded at $-40 \,^{\circ}$ C after 4 min aging at $-40 \,^{\circ}$ C; (C) recorded at $-40 \,^{\circ}$ C after 8 min aging at $-40 \,^{\circ}$ C; (D) recorded at $-40 \,^{\circ}$ C after 12 min aging at $-40 \,^{\circ}$ C; (E) recorded at $-40 \,^{\circ}$ C after 25 min aging at $-40 \,^{\circ}$ C; and (F) recorded at $-40 \,^{\circ}$ C after 30 min aging at $-40 \,^{\circ}$ C.

XXXI. ⁶Li NMR spectra of 0.20 M [⁶Li,¹⁵N]LDA plus 0.26 M PhCN in neat THF at –90 °C. After (**A**) 5 min at -78 °C and 9 min at -90 °C; (**B**) 3 additional min at -90 °C; (**C**) 27 additional min at -90 °C; (**D**) 4 min after addition of 0.20 M [⁶Li]LDA; (**E**) 13 min after addition; (**F**)18 min after addition; (**G**) warming to -40 °C for 9 min; (**H**) warming to -40 °C for 49 min; and (**I**) warming to -40 °C for 110 min.

XXXII. ⁶Li spectra of 0.10 M **6** and 0.10 M [⁶Li]LDA in neat THF recorded at -40 °C showing reaction with 1.0 eq **1**. (**A**) Before addition of **1**; after (**B**) 8 min reaction; (**C**) 16 min reaction; (**D**) 35 min reaction; (**E**) 45 min reaction; (**F**) after 73 min reaction; (**G**) 101 min reaction; (**H**) 129 min reaction; (**I**) 157 min reaction; (**J**) 185 min reaction; (**K**) 241 min reaction; (**E**) 353 min reaction; and (**E**) 465 min reaction.

XXXIII. ¹⁹F NMR spectra of 0.10 M **6** with 0.10 M LDA in neat THF at -40 °C showing reaction with 1.0 equivof **1**. After (**A**) 20 seconds reaction; (**B**) 16 min reaction; (**C**)32 min reaction; (**D**) 49.1 min reaction; (**E**) 65 min reaction; (**F**) 98 min reaction; and (**G**) 108 min reaction.

XXXIV. Plot of k_{obsd} vs [THF] in pentane for the deprotonation of 2-fluoro-3methylpyridine (1, 0.01 M) by LDA (0.20 M) as determined by following loss of 1 at -20 °C by ¹⁹F NMR. The curve depicts an unweighted least-squares fit to $k_{obsd} = a + k$ [THF]ⁿ ($a = 1.50 \pm 0.28$, $k = (9.08 \pm 4.36) \times 10^{-3}$, $n = 2.91 \pm 0.19$).

[THF] (M)	$k_{\rm obsd} 1 ({\rm s}^{-1})$	$k_{\rm obsd}2~({\rm s}^{-1})$	$k_{\rm obsd} {\rm avg} ({\rm s}^{-1})$
3.9	$0.00169 \pm 3E-5$	0.00215 ± 2E-5	$0.00192 \pm 3E-4$
6.0 8 0	$0.00304 \pm 5E-5$ $0.00511 \pm 9E-5$	$0.00369 \pm 3E-5$ $0.00513 \pm 6E-5$	$0.00337 \pm 5E-4$ $0.00512 \pm 2E-5$
10.1 11.1	0.00811 ± 92.5 $0.00889 \pm 2E-4$ $0.0115 \pm 4E-4$	$0.00930 \pm 4E-5$ $0.0119 \pm 2E-4$	$0.00312 \pm 22-3$ $0.00909 \pm 3E-4$ $0.0117 \pm 3E-4$
12.1	$0.0142 \pm 1E-3$	$0.0143 \pm 1E-3$	$0.0142 \pm 6E-5$

XXXV. Plot of k_{obsd} vs [THF] in 2,2,5,5-tetramethyltetrahydrofuran for the deprotonation of 2-fluoro-3-methylpyridine (1, 0.01 M) by LDA (0.20 M) as determined by following loss of 1 at -20 °C. The curve depicts an unweighted least-squares fit to $k_{obsd} = a + k$ [THF]^{*n*} ($a = 0.541 \pm 0.757$, $k = 0.0150 \pm 0.0163$, $n = 2.75 \pm 0.43$).

$k_{\rm obsd} ({\rm s}^{-1})$
$0.000948 \pm 5E-6$
$0.00267 \pm 4E-5$
$0.00565 \pm 7\text{E-5}$
$0.00877 \pm 1E-4$
$0.0112 \pm 2E-4$
$0.0151 \pm 5E-4$

XXXVI. Plot of k_{obsd} vs [LDA] in 4.1 M THF/pentane for the deprotonation of 2-fluoro-3-methylpyridine (1, 0.01 M) by LDA as determined by following loss of 1at -20 °C by ¹⁹F NMR. The curve depicts an unweighted least-squares fit to $k_{obsd} = k[LDA]^n$ ($k = 4.90 \pm 0.24$, $n = 0.41 \pm 0.05$).

[LDA] (M)	$k_{\rm obsd} 1 ({\rm s}^{-1})$	$k_{\rm obsd}2~({\rm s}^{-1})$	$k_{\text{obsd}} \text{avg}(s^{-1})$
0.075	0.00130 + 1E-5	0.00178 + 2E-5	
0.15	0.00180 = 12.5 $0.00187 \pm 2E-5$	$0.00232 \pm 3E-5$	$0.00210 \pm 3E-4$
0.30	$0.00305 \pm 3E-5$	$0.00365 \pm 3E-5$	$0.00335 \pm 4E-4$
0.45	$0.00325 \pm 3E-5$	$0.00407 \pm 4E-5$	$0.00366 \pm 6E-4$
0.60	$0.00394 \pm 5E-5$	$0.00367 \pm 6E-5$	$0.00381 \pm 2E-4$
0.75	$0.00468 \pm 6E-5$	$0.00386 \pm 6E-5$	$0.00427\pm 6\text{E-4}$

XXXVII. Plot of k_{obsd} vs [THF] in pentane for the deprotonation of 2-fluoro-3methylpyridine (1, 0.01 M) by LDA (0.20 M) as determined by following formation of **5** at -40 °C via in situ IR. The curve depicts an unweighted least-squares fit to $k_{obsd} = a + k$ [THF]^{*n*} ($a = 1.75 \pm 0.13$, $k = (0.012 \pm 0.003)$, $n = 2.59 \pm 0.11$).

[THF] (M)	$k_{\rm obsd} ({\rm s}^{-1})$
4.0	$0.000220 \pm 6E-6$
6.1	$0.000300 \pm 1E-6$
8.1	$0.000435 \pm 9E-6$
9.6	$0.000599 \pm 4E-5$
12.2	$0.000946 \pm 5E-5$

XXXVIII. Plot of k_{obsd} vs [LDA] in 12.3 M THF for the deprotonation of 2-fluoro-3methylpyridine (1, 0.01 M) by LDA as determined by following product formation at -40 °C via in situ IR. The curve depicts an unweighted least-squares fit to $k_{obsd} = k[LDA]^n (k = (4.53 \pm 0.47) \times 10^{-3}, n = 0.52 \pm 0.09).$

[LDA] (M)	$k_{\rm obsd}~({\rm s}^{-1})$
0.10	$0.00118 \pm 7E-5$
0.20	$0.00209 \pm 2E-4$
0.30	$0.00268 \pm 2E-4$
0.40	$0.00268 \pm 2E-4$
0.50	$0.00311 \pm 3E-4$

XXXIX. Plot of k_{obsd} vs [LDA] in 10.0 M THF/pentane for the condensation of PhCN (0.01 M) by LDA as determined by following loss of starting material at -78 °C via in situ IR. The curve depicts an unweighted least-squares fit to $k_{obsd} = k[LDA]^n$ ($k = 1.45 \pm 0.24$, $n = 0.93 \pm 0.05$).

.5
4
,
,
5
5
- - -

L. Plot of k_{obsd} vs [THF] in pentane for the the condensation of PhCN (0.01 M) by LDA (0.20 M) as determined by following product formation at -78 °C via in situ IR. The curve depicts an unweighted least-squares fit to $k_{obsd} = a + k$ [THF]ⁿ ($a = 1.76 \pm 0.5$, $k = 0.16 \pm 0.26$, $n = -1.07 \pm 0.07$).

[THF] (M)	$k_{\rm obsd} 1 ({\rm s}^{-1})$	$k_{\rm obsd}2~({\rm s}^{-1})$	$k_{\rm obsd} {\rm avg} ({\rm s}^{-1})$
2.0	$0.0085 \pm 3E-4$	$0.008 / \pm 2E-4$	$0.0086 \pm 2E-4$
4.0	$0.0041 \pm 4E-4$	$0.0039 \pm 3E-4$	$0.0040 \pm 1E-4$
6.0	$0.0031 \pm 2E-4$	$0.0030 \pm 1E-4$	$0.0031 \pm 1E-4$
8.0	$0.0019 \pm 1E-4$	$0.0020 \pm 2E-4$	$0.00195 \pm 1E-4$
10.0	$0.0017 \pm 1E-4$	$0.0016 \pm 4E-4$	$0.00165 \pm 7E-5$
12.1	$0.0013 \pm 3E-4$	$0.0014 \pm 3E-4$	$0.00135 \pm 9E-5$

Table 1. Crystal data and structure refinement.				
Identification code	9			
Empirical formula	C12 H10 F2 N2			
Formula weight	220.22			
Temperature	173(2) K			
Wavelength	0.71073 Å			
Crystal system	Triclinic			
Space group	P-1			
Unit cell dimensions	a = 7.3370(8) Å	α= 92.050(4)°.		
	b = 10.6664(11) Å	β=95.711(4)°.		
	c = 13.1655(14) Å	$\gamma = 94.074(4)^{\circ}$.		
Volume	1021.67(19) Å ³			
Ζ	4			
Density (calculated)	1.432 Mg/m ³			
Absorption coefficient	0.112 mm ⁻¹			
F(000)	456			
Crystal size	0.50 x 0.45 x 0.40 mm ³			
Theta range for data collection	1.56 to 28.49°.			
Index ranges	-9<=h<=9, -14<=k<=13, -	17<=1<=17		
Reflections collected	21945			
Independent reflections	5007 [R(int) = 0.0339]			
Completeness to theta = 28.49°	96.7 %			
Absorption correction	Semi-empirical from equivalents			
Max. and min. transmission	0.9565 and 0.9461			
Refinement method	Full-matrix least-squares on F ²			
Data / restraints / parameters	5007 / 0 / 291			
Goodness-of-fit on F ²	1.513			
Final R indices [I>2sigma(I)]	R1 = 0.0767, wR2 = 0.213	57		
R indices (all data)	R1 = 0.1012, wR2 = 0.230	01		
Largest diff. peak and hole	0.743 and -0.316 e.Å ⁻³			

	Х	У	Z	U(eq)	
$\overline{\mathbf{F}(1)}$	1200(1)	1264(1)	9719 (1)	22(1)	
F(1)	1209(1) 1831(2)	6726(1)	6081(1)	33(1)	
$\Gamma(2)$	4031(2) 1072(1)	$\frac{0720(1)}{1148(1)}$	6266(1)	42(1) 29(1)	
$\Gamma(3)$	19/2(1)	1140(1) 4222(1)	0200(1) 0015(1)	30(1)	
$\Gamma(4)$	-1300(2)	-4333(1)	9013(1) 9942(1)	$\frac{4}{(1)}$	
N(1) N(2)	3972(2)	303(1)	0043(1)	52(1) 22(1)	
N(2)	4/73(2)	$\frac{7370(1)}{1820(1)}$	7700(1)	33(1) 24(1)	
N(3)	-842(2)	1829(1)	5982(1)	34(1)	
N(4)	-1502(2)	-4951(1)	/390(1)	32(1)	
C(1)	3050(2)	1482(2)	8695(1)	24(1)	
C(2)	5790(3)	694(2)	8810(1)	36(1)	
C(3)	6639(2)	1850(2)	8624(1)	34(1)	
C(4)	5564(2)	2858(2)	8467(1)	28(1)	
C(5)	3691(2)	2710(1)	8506(1)	22(1)	
C(6)	2371(2)	3720(1)	8362(1)	28(1)	
C(7)	3247(2)	4981(1)	8124(1)	26(1)	
C(8)	3699(2)	5217(2)	7153(1)	26(1)	
C(9)	4428(2)	6445(2)	7027(1)	29(1)	
C(10)	4350(2)	7095(2)	8645(2)	35(1)	
C(11)	3595(2)	5943(2)	8894(1)	30(1)	
C(12)	3432(3)	4257(2)	6284(1)	36(1)	
C(13)	137(2)	895(2)	6236(1)	25(1)	
C(14)	-2666(3)	1594(2)	5952(1)	38(1)	
C(15)	-3479(2)	451(2)	6172(1)	35(1)	
C(16)	-2361(2)	-512(2)	6439(1)	29(1)	
C(17)	-490(2)	-306(1)	6479(1)	21(1)	
C(18)	872(2)	-1271(1)	6756(1)	26(1)	
C(19)	-2(2)	-2542(2)	6992(1)	25(1)	
C(20)	-438(2)	-2793(2)	7963(1)	27(1)	
C(21)	-1159(2)	-4031(2)	8074(1)	29(1)	
C(22)	-1087(2)	-4654(2)	6451(1)	33(1)	
C(23)	-342(2)	-3496(2)	6212(1)	27(1)	
C(24)	-192(3)	-1867(2)	8844(2)	42(1)	

Table 2. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å²x 10^3) U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

F(1)-C(1)	1.3577(18)
F(2)-C(9)	1.347(2)
F(3)-C(13)	1.3504(18)
F(4)-C(21)	1.347(2)
N(1)-C(1)	1.292(2)
N(1)-C(2)	1.340(2)
N(2)-C(9)	1.306(2)
N(2)-C(10)	1.344(2)
N(3)-C(13)	1.304(2)
N(3)-C(14)	1.340(2)
N(4)-C(21)	1.301(2)
N(4)-C(22)	1.345(2)
C(1)-C(5)	1.400(2)
C(2)-C(3)	1.383(3)
C(3)-C(4)	1.388(2)
C(4)-C(5)	1.378(2)
C(5)-C(6)	1.503(2)
C(6)-C(7)	1.506(2)
C(7)-C(8)	1.380(2)
C(7)-C(11)	1.407(2)
C(8)-C(9)	1.402(2)
C(8)-C(12)	1.495(2)
C(10)-C(11)	1.376(2)
C(13)-C(17)	1.389(2)
C(14)-C(15)	1.372(3)
C(15)-C(16)	1.393(2)
C(16)-C(17)	1.370(2)
C(17)-C(18)	1.514(2)
C(18)-C(19)	1.514(2)
C(19)-C(20)	1.379(2)
C(19)-C(23)	1.411(2)
C(20)-C(21)	1.406(2)
C(20)-C(24)	1.485(3)
C(22)-C(23)	1.375(2)
C(1)-N(1)-C(2)	115.61(14)
C(9)-N(2)-C(10)	114.15(15)
C(13)-N(3)-C(14)	115.70(15)
C(21)-N(4)-C(22)	114.15(15)
N(1)-C(1)-F(1)	114.56(13)
N(1)-C(1)-C(5)	128.80(15)
F(1)-C(1)-C(5)	116.64(13)
N(1)-C(2)-C(3)	122.73(16)
C(2)-C(3)-C(4)	118.65(16)
C(5)-C(4)-C(3)	120.53(15)

Table 3. Bond lengths [Å] and angles [°].

C(4)-C(5)-C(1)	113.67(14)
C(4)-C(5)-C(6)	126.10(14)
C(1)-C(5)-C(6)	120.24(14)
C(5)-C(6)-C(7)	114.32(13)
C(8)-C(7)-C(11)	119.16(15)
C(8)-C(7)-C(6)	120.77(15)
C(11)-C(7)-C(6)	120.06(16)
C(7)-C(8)-C(9)	114.86(15)
C(7)-C(8)-C(12)	123.70(15)
C(9)-C(8)-C(12)	121.44(16)
N(2)-C(9)-F(2)	114.40(14)
N(2)-C(9)-C(8)	128.84(17)
F(2)-C(9)-C(8)	116.76(15)
N(2)-C(10)-C(11)	124.38(16)
C(10)-C(11)-C(7)	118.58(17)
N(3)-C(13)-F(3)	114.99(13)
N(3)-C(13)-C(17)	127.58(15)
F(3)-C(13)-C(17)	117.44(14)
N(3)-C(14)-C(15)	123.12(17)
C(14)-C(15)-C(16)	118.58(17)
C(17)-C(16)-C(15)	119.96(16)
C(16)-C(17)-C(13)	115.06(14)
C(16)-C(17)-C(18)	125.11(14)
C(13)-C(17)-C(18)	119.82(14)
C(19)-C(18)-C(17)	114.19(13)
C(20)-C(19)-C(23)	119.36(15)
C(20)-C(19)-C(18)	121.13(15)
C(23)-C(19)-C(18)	119.49(15)
C(19)-C(20)-C(21)	114.46(15)
C(19)-C(20)-C(24)	124.74(16)
C(21)-C(20)-C(24)	120.80(17)
N(4)-C(21)-F(4)	114.08(14)
N(4)-C(21)-C(20)	129.21(17)
F(4)-C(21)-C(20)	116.71(15)
N(4)-C(22)-C(23)	124.31(16)
C(22)-C(23)-C(19)	118.48(16)

Symmetry transformations used to generate equivalent atoms:

	U11	U ²²	U33	U23	U13	U12	
F(1)	23(1)	24(1)	51(1)	2(1)	6(1)	-6(1)	
F(2)	45(1)	38(1)	45(1)	13(1)	10(1)	2(1)	
F(3)	26(1)	27(1)	60(1)	10(1)	7(1)	-9(1)	
F(4)	54(1)	44(1)	46(1)	12(1)	12(1)	-2(1)	
N(1)	33(1)	22(1)	42(1)	6(1)	6(1)	5(1)	
N(2)	22(1)	26(1)	50(1)	5(1)	3(1)	4(1)	
N(3)	39(1)	26(1)	39(1)	11(1)	8(1)	7(1)	
N(4)	21(1)	29(1)	46(1)	7(1)	2(1)	4(1)	
C(1)	21(1)	22(1)	28(1)	-1(1)	3(1)	0(1)	
C(2)	36(1)	33(1)	44(1)	10(1)	9(1)	18(1)	
C(3)	20(1)	40(1)	43(1)	8(1)	4(1)	9(1)	
C(4)	23(1)	24(1)	35(1)	4(1)	2(1)	-1(1)	
C(5)	21(1)	20(1)	23(1)	2(1)	1(1)	0(1)	
C(6)	20(1)	17(1)	48(1)	6(1)	5(1)	2(1)	
C(7)	17(1)	19(1)	43(1)	5(1)	1(1)	5(1)	
C(8)	19(1)	22(1)	37(1)	0(1)	-1(1)	6(1)	
C(9)	18(1)	26(1)	44(1)	9(1)	3(1)	4(1)	
C(10)	27(1)	24(1)	51(1)	-6(1)	-3(1)	0(1)	
C(11)	26(1)	26(1)	38(1)	1(1)	2(1)	6(1)	
C(12)	36(1)	32(1)	39(1)	-2(1)	0(1)	4(1)	
C(13)	26(1)	22(1)	27(1)	1(1)	6(1)	-2(1)	
C(14)	39(1)	36(1)	40(1)	10(1)	6(1)	15(1)	
C(15)	22(1)	41(1)	44(1)	6(1)	4(1)	7(1)	
C(16)	22(1)	26(1)	39(1)	4(1)	3(1)	0(1)	
C(17)	22(1)	19(1)	21(1)	-2(1)	1(1)	0(1)	
C(18)	19(1)	21(1)	39(1)	5(1)	4(1)	-1(1)	
C(19)	14(1)	21(1)	41(1)	5(1)	1(1)	3(1)	
C(20)	21(1)	25(1)	36(1)	1(1)	1(1)	3(1)	
C(21)	19(1)	28(1)	42(1)	10(1)	3(1)	1(1)	
C(22)	27(1)	25(1)	44(1)	-4(1)	-3(1)	0(1)	
C(23)	21(1)	23(1)	37(1)	2(1)	1(1)	0(1)	
C(24)	42(1)	39(1)	44(1)	-5(1)	7(1)	4(1)	

Table 4. Anisotropic displacement parameters (Å²x 10³). The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h²a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

	Х	У	Z	U(eq)	
H(2)	6527	4	8919	44	
H(3)	7932	1953	8605	40	
H(4)	6123	3658	8332	33	
H(6A)	1753	3817	8992	34	
H(6B)	1416	3443	7798	34	
H(10)	4586	7735	9171	42	
H(11)	3314	5799	9571	36	
H(12A)	4164(9)	3582(8)	6439(2)	54	
H(12B)	3780(5)	4630(4)	5685(7)	54	
H(12C)	2182(14)	3954(4)	6180(2)	54	
H(14)	-3431	2249	5771	45	
H(15)	-4778	319	6142	42	
H(16)	-2895	-1311	6593	35	
H(18A)	1628	-1384	6182	31	
H(18B)	1705	-941	7359	31	
H(22)	-1325	-5287	5918	39	
H(23)	-62	-3341	5536	33	
H(24A)	987(15)	-1713(3)	9041(3)	63	
H(24B)	-750(7)	-2175(4)	9352(7)	63	
H(24C)	-667(7)	-1164(9)	8662(3)	63	

Table 5. Hydrogen coordinates ($x\ 10^4$) and isotropic displacement parameters (Å $^{2}x\ 10^{3}$)