Asymmetric Epoxidation of 1,1-Disubstituted Terminal Olefins by Chiral

Dioxirane via a Planar-like Transition State

Bin Wang, O. Andrea Wong, Mei-Xin Zhao, and Yian Shi*

Department of Chemistry Colorado State University Fort Collins, CO 80523

Supporting Information

Table of Contents

Synthesis and characterization of ketones 3a-c	S-1
Synthesis and characterization of ketones 3d-h	S-4
Representative Epoxidation Procedure	S-8
Characterization data of epoxides	S-9
The X-ray structure of ketone 3 c	S-19
The X-ray structure of ketone 3d	S-29
The X-ray structure of ketone 3g	S-38
NMR spectra of ketones and epoxides	S-46
HPLC and GC data for the determination of the ee's	S-114

Synthesis and characterization of ketones 3a-c

To a mixture of the crude amino salt **4** (prepared from D-glucose as previously reported^a) (14.47 g, 52.0 mmol) in THF (250 mL) was added NaHCO₃ (8.7 g, 104.0 mmol). After the resulting mixture was stirred at rt for 1 h, Et₃N (6.83 g, 9.46 mL, 67.6 mmol) was added, followed by a dropwise addition of 2-bromoacetyl bromide (13.65 g, 67.6 mmol) in THF (20 mL) at rt within 1 h. Upon stirring at rt for 6 h, the reaction mixture was filtered and concentrated to give a brown crude syrup which was purified by flash chromatography (silica gel, hexanes /EtOAc = 1/4 to 0/1) to give diol **5** as a light brown solid (6.4 g, 36% yield): mp 89-91 °C; $[\alpha]_D^{25} = -105.0$ (*c* 0.60, MeOH); IR (film) 3343, 1733 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 4.28-4.17 (m, 4H), 3.98 (d, *J* = 13.6 Hz, 1H), 3.92 (s, 2H), 3.62 (dd, *J* = 14.0, 7.2 Hz, 1H), 3.57-3.48 (m, 2H), 1.53 (s, 3H), 1.38 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.7, 109.4, 96.8, 76.4, 73.4, 71.7, 60.3, 47.4, 28.6, 28.2, 26.2; HRMS Calcd for C₁₁H₁₆BrNO₅ (M-H₂O): 321.0212; Found: 321.0211. (^a Shu, L.; Shen, Y-M.; Burke, C.; Goeddel, D.; Shi, Y. *J. Org. Chem.* **2003**, 68, 4963.)

To a solution of diol **5** (1.85 g, 5.4 mmol) in THF (30 mL) was carefully added NaH (95%, 0.301 g, 11.9 mmol) in portions. Upon stirring at rt for 0.5 h, the reaction mixture was quenched with MeOH (0.58 mL), concentrated, and dried under vaccum to give a yellow syrup.

To a mixture of the above yellow syrup in dry DCM (50 mL) was added PDC (4.06 g, 10.8 mmol), 3Å MS (2.5 g), and 4 drops of AcOH. Upon stirring at rt for 4 d (TLC showed no

alcohol left), the reaction mixture was filtered through a pad of silica gel, and the filter cake was washed by EtOAC/MeOH (10/1). Upon removal of solvent, the mixture was purified by flash chromatography (silica gel, EtOAc) to give ketone **3a** as a white solid (0.327 g, 23% yield): mp 186-187 °C; $[\alpha]_D^{25} = -61.3$ (*c* 0.50, CHCl₃); IR (film) 3200, 1749, 1692 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 6.01 (s, 1H), 4.82 (d, *J* = 5.6 Hz, 1H), 4.63 (d, *J* = 5.6, Hz, 1H), 4.32 (d, *J* = 16.4 Hz, 1H), 4.26 (d, *J* = 16.4 Hz, 1H), 4.21 (s, 2H), 4.03 (d, *J* = 13.2 Hz, 1H), 3.37 (dd, *J* = 13.2, 4.4 Hz, 1H), 1.48 (s, 3H), 1.42 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 197.6, 166.7, 111.0, 95.1, 78.4, 75.6, 62.5, 59.9, 44.1, 27.4, 26.3; Anal. Calcd. for C₁₁H₁₅NO₆: C, 51.36; H, 5.88. Found: C, 51.52; H, 5.88.

To a solution of ketone **3a** (0.171 g, 0.67 mmol) and DMAP (0.0008 g, 0.0065 mmol) in THF (10 mL) was added Boc anhydride (0.160 g, 0.737 mmol). After the resulting mixture was stirred at rt for 1 d, additional amount of Boc anhydride (0.160 g, 0.737 mmol) was added, and the mixture was stirred for another day at rt (TLC showed most of SM disappeared). The reaction mixture was concentrated and purified by flash chromatography (silica gel, first hexanes/EtOAc = 2/1, then EtOAc) to give ketone **3b** as a colorless syrup (0.1 g, 41% yield) plus some recovered ketone **3a**: $[\alpha]_D^{25} = -68.0$ (*c* 2.0, CHCl₃); IR (film) 1781, 1731 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 4.80 (d, *J* = 5.6 Hz, 1H), 4.60 (ddd, *J* = 5.6, 2.0, 0.8 Hz, 1H), 4.35 (d, *J* = 14.4 Hz, 1H), 4.33 (d, *J* = 16.4 Hz, 1H), 4.28 (d, *J* = 16.4 Hz, 1H), 4.27 (dd, *J* = 12.4, 2.0 Hz, 1H), 4.19 (d, *J* = 12.4 Hz, 1H), 3.75 (d, *J* = 14.4 Hz, 1H), 1.55 (s, 9H) 1.49 (s, 3H), 1.42 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 197.1, 166.8, 150.4, 111.1, 97.0, 84.7, 78.2, 75.6, 64.0, 60.1, 46.0, 28.1, 27.4, 26.3; HRMS Calcd for C₁₆H₂₄NO₈ (M+H): 358.1502; Found: 358.1498.

To a solution of ketone **3a** (0.138 g, 0.54 mmol) and DMAP (0.0066 g, 0.054 mmol) in THF (20 mL) was added acetic anhydride (1.1 g, 10.8 mmol). Upon stirring at rt for 12 h, the reaction mixture was concentrated and purified by flash chromatography (silica gel, hexanes/EtOAc = 1/1) to give ketone **3c** as a white solid (0.106 g, 66% yield): mp 159-160 °C; $[\alpha]_D^{25} = -109.1$ (*c* 0.80, CHCl₃); IR (film) 1753, 1732, 1693 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 4.78 (d, J = 5.6 Hz, 1H), 4.59 (d, J = 5.6 Hz, 1H), 4.39 (d, J = 16.4 Hz, 1H), 4.33 (d, J = 16.4

Hz, 1H), 4.23 (dd, J = 13.2, 2.0 Hz, 1H), 4.22 (d, J = 14.8 Hz, 1H), 4.18 (d, J = 13.2 Hz, 1H), 3.99 (d, J = 14.8 Hz, 1H), 2.60 (s, 3H), 1.48 (s, 3H), 1.41 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 197.0, 171.8, 168.2, 111.2, 96.9, 77.9, 75.5, 63.8, 60.2, 44.1, 27.4, 27.3, 26.2; Anal.Calcd. for C₁₃H₁₇NO₇: C, 52.17; H, 5.73. Found: C, 52.06; H, 5.89.

Synthesis and characterization of ketones 3d-h

Ketone **3d**: To a solution of amino alcohol **7d** (prepared from D-glucose in two steps)^a (3.09 g, 10.0 mmol) and Et₃N (1.11 g, 1.54 mL, 11.0 mmol) in dry THF (50 mL), a solution of 2-bromoacetyl bromide (2.22 g, 0.95 mL, 11.0 mmol) in dry THF (10 mL) was added dropwise at rt over 2 h. After the resulting mixture was stirred at rt for 3 h, NaH (95%, 0.6 g, 23.7 mmol) was added into the reaction mixture carefully. Upon stirring at rt for 0.5 h, the reaction mixture was quenched with MeOH (0.25 mL) and filtered. The filtrate was concentrated and purified by flash chromatography (silica gel, hexanes/EtOAc = 1/6) to give lactam **8d** as a white solid (1.42 g, 41% yield): mp 198-199 °C; $[\alpha]_D^{25} = -144.6$ (*c* 1.0, CHCl₃); IR (film) 3410, 1661 cm⁻¹; ⁻¹H NMR (400 MHz, CDCl₃) δ 7.21-7.14 (m, 4H), 4.40-4.36 (m, 1H), 4.30-4.21 (m, 4H), 4.12 (d, *J* = 13.2 Hz, 1H), 3.96 (dd, *J* = 13.2, 2.8 Hz, 1H), 3.62-3.59 (m, 1H), 3.53-3.48 (m, 1H), 3.10-2.88 (m, 1H), 2.33 (s, 3H), 1.51 (s, 3H), 1.37 (s, 3H); ⁻¹³C NMR (100 MHz, CDCl₃) δ 165.6, 138.4, 137.4, 130.1, 125.8, 109.7, 96.2, 76.5, 73.4, 71.7, 62.7, 60.5, 54.2, 28.2, 26.2, 21.2;

HRMS Calcd for C₁₈H₂₄O₆N (M+H): 350.1604; Found: 350.1607. (^a Shu, L.; Wang, P.; Gan, Y.; Shi, Y. *Org. Lett.* **2003**, *5*, 293.)

AcOH (0.15 mL) was added to a slurry of lactam **8d** (4.8 g, 13.76 mmol), PDC (10.3 g, 27.5 mmol), and 3Å MS (6.5 g) in CH₂Cl₂ (300 mL). Upon stirring at rt for 3 d (no SM left as judged by TLC), the reaction mixture was filtered through a pad of silica gel, and the filter cake was washed with EtOAc. The filtrate was concentrated and purified by flash chromatography (silica gel, hexanes/EtOAc = 3/1) to give ketone **3d** as a white solid (4.5 g, 95% yield): mp 184-185 °C; $[\alpha]_D^{25} = -86.5$ (*c* 1.0, CHCl₃); IR (film) 1753, 1674 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.24-7.18 (m, 4H), 4.86 (d, *J* = 5.7 Hz, 1H), 4.66-4.64 (m, 1H), 4.49-4.23 (m, 5H), 3.64 (d, *J* = 13.8 Hz, 1H), 2.36 (s, 3H), 1.47 (s, 3H), 1.43 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 197.7, 165.2, 138.2, 137.7, 130.2, 125.8, 111.0, 96.1, 78.4, 75.7, 63.2, 59.9, 51.9, 27.3. 26.2, 21.3; HRMS Calcd for C₁₈H₂₂NO₆ (M+H): 348.1447; Found: 348.1447; Anal. Calcd. for C₁₈H₂₁NO₆: C, 62.24; H, 6.09. Found: C, 62.02; H, 6.01.

Ketone **3e** prepared by a reaction sequence similar to **3d**: White solid; mp 84-86 °C; $[\alpha]_D^{25}$ = -87.0 (*c* 1.1, CHCl₃); IR (film) 1753, 1675 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.23-7.22 (m, 4H), 4.85 (d, *J* = 5.6 Hz, 1H), 4.65 (d, *J* = 5.6 Hz, 1H), 4.48-4.23 (m, 5H), 3.64 (d, *J* = 13.6 Hz, 1H), 2.61 (t, *J* = 8.0 Hz, 2H), 1.63-1.55 (m, 2H), 1.46 (s, 3H), 1.42 (s, 3H), 1.40-1.31 (m, 2H), 0.93 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 197.7, 165.2, 142.6, 138.3, 129.6, 125.7, 111.0, 96.2, 78.5, 75.7, 63.3, 59.9, 51.9, 35.4, 33.7, 27.3, 26.3, 22.5, 14.1; Anal. Calcd. for C₂₁H₂₇NO₆: C, 64.77; H, 6.99; N, 3.60. Found: C, 64.57; H, 6.86; N, 3.50.

Ketone **3f** prepared by a reaction sequence similar to **3d**: White solid; mp 153-155 °C; $[\alpha]_D^{25} = -95.1 \ (c \ 0.70, \text{CHCl}_3);$ IR (film) 1754, 1675 cm⁻¹; ¹H NMR (300 M Hz, CDCl₃) δ 6.94 (s, 1H), 6.93 (s, 2H), 4.85 (d, J = 5.4 Hz, 1H), 4.65 (d, J = 5.4 Hz, 1H), 4.48-4.23 (m, 5H), 3.62 (d, J = 13.5 Hz, 1H), 2.32 (s, 6H), 1.46 (s, 3H), 1.42 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 197.7, 165.1, 140.6, 139.4, 129.7, 123.8, 111.0, 96.1, 78.5, 75.7, 63.2, 59.9, 52.0, 27.4, 26.3, 21.4; Anal. Calcd. for C₁₉H₂₃NO₆: C, 63.15; H, 6.41. Found: C, 63.41; H, 6.60. Ketone **3g**: To a slurry of 9-aminoflurene hydrochloride (25.0 g, 115.0 mmol) in CHCl₃ (500 mL), a solution of NaOH (5.52 g, 138.0 mmol) in water (50 mL) was added. The resulting mixture was stirred at rt overnight. The layers were separated, and the aqueous layer was extracted by CHCl₃ (80 mL). The combined organic layers were dried over Na₂SO₄ and concentrated to give a light yellow solid (20.3 g, 98% yield) which was directly used for next step without further purification.

To a mixture of D-Glucose (24.1 g, 134.0 mmol) and 9-aminoflurene (20.3 g, 112.0 mmol) were added acetic acid (3.2 g, 3.1 mL, 53.0 mmol), EtOH (21 mL), and water (13.4 mL). The mixture was rotated on a rotary evaporator open to air at rt for 6 h (a spatula was occasionally used to break the hard clumps). Upon standing at rt overnight, the mixture was diluted with EtOAc (70 mL) and stirred at rt for 1 h. The resulting slurry was filtered and washed by a mixture of hexanes and EtOAc (1/1, v/v, 60 mL). The filter cake was dried under vacuum to give a white solid (28.0 g, 72% yield) which is directly used in next step without further purification.

To a solution of the above white solid (27.0 g, 78.6 mmol) in isopropanol (195 mL), a solution of oxalic acid (10.6 g, 117.9 mmol) in isopropanol (130 mL) was added. Upon stirring at 70 °C for 5 h, the reaction mixture was cooled to rt, filtered, and washed with ether. The filter cake was dried under vacuum to get a crude light brown solid (26.0 g, 96% yield) which is directly used in next step without further purification. (Hodge, J. E.; Fisher, B. E. *Methods Carbohydr. Chem.* **1963**, *2*, 99.)

Concentrated H_2SO_4 (3.64 mL, 65.6 mmol) was added to a suspension of the above compound (15.0 g, 43.7 mmol) and trimethyl orthoformate (9.26 g, 9.56 mL, 87.4 mmol) in acetone (300 mL) at 0 °C. Upon stirring at 0 °C (ice-water bath) for 40 min, the reaction mixture was quenched with NH₄OH (9.0 mL), diluted with acetone (about 500 mL), and dried over excess Na₂SO₄ with stirring at rt for 1 h. The reaction mixture was filtered through a pad of silica gel, and the filtrate was concentrated until small amount of solution was left (10 mL). A solid was crystallized, filtered, and washed by acetone to give diol **7g** as a white solid (7.0 g, 42% yield): mp 139-140 °C (decompose); $[\alpha]_D^{25} = -136.0$ (*c* 1.0, CHCl₃); IR (film) 3068, 1601 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.97 (t, *J* = 7.2 Hz, 2H), 7.70 (t, *J* = 7.2 Hz, 2H), 7.45 (t, *J* = 7.2 Hz, 1H), 7.42 (t, *J* = 7.2 Hz, 1H), 7.34 (t, *J* = 7.2 Hz, 1H), 7.25 (t, *J* = 7.2 Hz, 1H), 5.83 (s, 1H), 4.45 (t, *J* = 6.0 Hz, 1H), 4.15-4.12 (m, 2H), 3.72 (d, *J* = 13.2 Hz, 1H), 3.56 (d, *J* = 6.4 Hz, 1H), 2.69 (d, *J* = 12.8 Hz, 1H), 2.45 (d, *J* = 12.8 Hz, 1H), 2.18 (s, 1H), 1.29 (s, 3H), 1.23 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.9, 142.0, 141.8, 138.2, 137.9, 130.1, 128.5, 128.4, 126.4, 126.1, 120.6, 109.1, 93.9, 75.8, 73.2, 60.6, 60.0, 48.6, 27.7, 25.8; HRMS. Calcd. for C₂₂H₂₆NO₅ (M+H): 384.1805; Found: 384.1810.

To a solution of diol 7g (1.5 g, 3.92 mmol) and Et₃N (0.435 g, 0.60 mL, 4.31 mmol) in dry THF (125 mL), 2-bromoacetyl bromide (0.87 g, 0.375 mL, 4.31 mmol) was added dropwise at rt within 5 min. After the resulting mixture was stirred at rt for 2 h and 10 min (TLC showed diol 7g gone), NaH (60%, 0.627 g, 15.7 mmol) was added slowly. Upon stirring at rt for 2 d, the slurry mixture was quenched with saturated aqueous NaHCO₃ (5 mL), diluted with Et₂O (100 mL), washed with H₂O (3×15 mL). The organic layers was dried over Na₂SO₄, concentrated, dissolved in DCM, washed with H₂O, and dried over Na₂SO₄, filtered, concentrated, and recrystallized in DCM-Et₂O-Hexanes to give alcohol 8g as a white solid (0.905 g, 55% yield): mp 197-198 °C; $[\alpha]_{D}^{25} = -163.5$ (c 0.5, CHCl₃); IR (film) 3364, 1646 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.74-7.69 (m, 2H), 7.52-7.29 (m, 6H), 6.91 (s, 1H), 4.50 (d, J = 16.5 Hz, 1H), 4.38 (d, J = 16.5 Hz, 1H), 4.22 (dd, J = 6.0, 2.1 Hz, 1H), 4.15 (t, J = 6.3 Hz, 1H), 4.00 (d, J = 6.3 Hz, 13.5 Hz, 1H), 3.90 (dd, J = 13.5, 2.4 Hz, 1H), 3.34 (t, J = 6.3 Hz, 1H), 3.32 (d, J = 12.6 Hz, 1H), 2.43 (d, J = 12.6 Hz, 1H), 2.20 (d, J = 6.3 Hz, 1H), 1.29 (s, 3H), 1.23 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 166.4, 141.6, 141.1, 140.9, 129.1, 129.0, 128.3, 127.9, 125.7, 125.1, 120.5, 120.1, 109.7, 95.6, 75.9, 73.2, 71.0, 62.5, 60.7, 58.1, 45.8, 27.6, 26.0; HRMS. Calcd. for $C_{24}H_{26}NO_6(M+H)$: 424.1755; Found: 424.1766.

To a slurry of alcohol **8g** (0.905 g, 2.14 mmol), PDC (1.609 g, 4.28 mmol), and 3Å MS (1.127 g) in DCM (80 mL), AcOH (0.05 mL) was added. Upon stirring at rt for 2 d (TLC showed no alcohol left), the reaction mixture was filtered through a pad of silica gel, and the

filter cake was washed by EtOAc. The filtrate was concentrated and purified by flash chromatography (silica gel, hexanes/EtOAc = 2/1 to 1/1) to give ketone **3g** as a white solid (0.67 g, 74% yield): mp 225-226 °C; $[\alpha]_D^{25} = -114.4$ (*c* 0.80, CHCl₃); IR (film) 1755, 1661 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.73 (t, *J* = 6.8 Hz, 2H), 7.48-7.41 (m, 4H), 7.33 (t, *J* = 7.3 Hz, 2H), 6.91 (s, 1H), 4.72 (d, *J* = 5.6 Hz, 1H), 4.58 (d, *J* = 5.6 Hz, 1H), 4.54 (d, *J* = 16.4 Hz, 1H), 4.45 (d, *J* = 16.4 Hz, 1H), 4.22-4.10 (m, 2H), 3.40 (d, *J* = 13.2 Hz, 1H), 4.51 (d, *J* = 13.2 Hz, 1H), 1.33 (s, 3H), 1.27 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 197.6, 165.8, 141.7, 141.6, 140.8, 140.6, 129.3, 129.2, 128.2, 128.0, 125.5, 125.1, 120.6, 120.3, 111.0, 95.9, 78.4, 75.6, 62.6, 60.1, 58.1, 43.5, 27.1, 26.1; Anal. Calcd. for C₂₄H₂₃NO₆: C, 68.40; H, 5.50. Found: C, 68.55; H, 5.71.

Ketone **3h** prepared by a reaction sequence similar to **3g**: White solid; mp 74-75 °C; $[\alpha]_D^{25}$ = -72.9 (*c* 0.70, CHCl₃); IR (film) 1755, 1663 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 4.82 (d, *J* = 5.4 Hz, 1H), 4.62 (dd, *J* = 5.4, 1.5 Hz, 1H), 4.32-4.16 (m, 4H), 3.98 (d, *J* = 13.5 Hz, 1H), 3.41 (t, *J* = 7.5 Hz, 2H), 3.25 (d, *J* = 13.5 Hz, 1H), 1.62-1.26 (m, 8H), 1.49 (s, 3H), 1.42 (s, 3H), 0.89 (t, *J* = 6.6 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 197.9, 164.7, 110.9, 95.9, 78.5, 75.7, 62.6, 59.7, 48.1, 46.6, 31.7, 27.4, 26.8, 26.5, 26.3, 22.7, 14.2; Anal. Calcd. for C₁₇H₂₇NO₆: C, 59.81; H, 7.97. Found: C, 59.87; H, 8.12.

Representative Epoxidation Procedure (Table 2, Entry 19). To a solution of the olefin (0.032 g, 0.20 mmol), tetrabutylammonium hydrogen sulfate (0.0038 g, 0.010 mmol), and ketone (0.0208 g, 0.06 mmol) in dioxane (3 mL) was added buffer (0.1 M K₂CO₃-AcOH in 4 x 10⁻⁴ M aqueous EDTA, pH = 9.3)(2 mL) with stirring. After the mixture was cooled to -10 °C (bath temperature), a solution of Oxone (0.20 M in 4 x 10⁻⁴ M aqueous EDTA, 1.6 mL) (0.197 g, 0.32 mmol) and a solution of K₂CO₃ (0.84 M in 4 x 10⁻⁴ M aqueous EDTA, 1.6 mL) (0.185 g, 1.344 mmol) were added separately and simultaneously via a syringe pump over a period of 2 h. The reaction mixture was quenched with hexanes, extracted with EtOAc, dried over Na₂SO₄, filtered, concentrated, and purified by flash chromatography (silica gel was buffered with 1% Et₃N in

organic solvent; hexanes/Et₂O=5/1 as eluent) to give the epoxide as white solid (0.027 g, 76% yield, 87% ee).

Table 2, Entry 1

Colorless oil; $[\alpha]_D^{25} = +13.0$ (*c* 0.80, CHCl₃) (62% ee); ¹H NMR (300 MHz, CDCl₃) δ 7.41-7.27 (m, 5H), 2.99 (d, J = 5.4 Hz, 1H), 2.82 (d, J = 5.4 Hz, 1H), 1.74 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 141.4, 128.5, 127.7, 125.5, 57.3, 57.0, 22.0.

Capriati, V.; Florio, S.; Luisi, R.; Salomone, A. Org. Lett. 2002, 4, 2445.

Table 2, Entry 2

Colorless oil; $[\alpha]_D^{25} = +26.1 (c \ 0.70, \text{CHCl}_3) (78\% \text{ ee});$ IR (film) 1496, 1463, 1448 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.41-7.29 (m, 5H), 3.00 (d, J = 5.7 Hz, 1H), 2.76 (d, J = 5.7 Hz, 1H), 2.28-2.16 (m, 1H), 1.89-1.77 (m, 1H), 0.96 (t, J = 7.2 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 140.2, 128.5, 127.5, 126.2, 61.1, 55.6, 28.5, 9.2; HRMS Calcd for C₁₀H₁₂O (M): 148.0888; found: 148.0889.

Capriati, V.; Florio, S.; Luisi, R.; Salomone, A. Org. Lett. 2002, 4, 2445.

Table 2, Entry 3

Colorless oil; $[\alpha]_D^{25} = +26.1 \ (c \ 1.4, \ CHCl_3) \ (75\% \ ee);$ IR (film) 1496, 1465, 1448 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.40-7.25 (m, 5H), 2.96 (d, $J = 5.4 \ Hz, 1H$), 2.74 (d, $J = 5.4 \ Hz, 1H$), 2.21-2.11 (m, 1H), 1.77-1.67 (m, 1H), 1.47-1.32 (m, 2H), 0.93 (t, J = 7.5 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 140.4, 128.5, 127.5, 126.2, 60.6, 55.6, 37.8, 18.5, 14.4; HRMS Calcd for C₁₁H₁₄O (M): 162.1045; found: 162.1046; Anal. Calcd. for C₁₁H₁₄O: C, 81.44; H, 8.70. Found: C, 81.22; H, 8.80.

Table 2, Entry 4

Colorless oil; $[\alpha]_D^{25} = +31.1 \ (c \ 0.90, \text{CHCl}_3) \ (74\% \text{ ee});$ IR (film) 1496, 1466, 1448 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.41-7.25 (m, 5H), 2.87 (d, J = 5.7 Hz, 1H), 2.72 (d, J = 5.7 Hz, 1H), 2.14 (dd, J = 13.8, 6.0 Hz, 1H), 1.66 (septet, J = 6.6 Hz, 1H), 1.55 (dd, J = 13.8, 8.1 Hz, 1H), 0.93 (d, J = 6.6 Hz, 3H), 0.90 (d, J = 6.6 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 140.4, 128.5, 127.5, 126.3, 60.2, 55.1, 44.8, 25.6, 23.6, 22.9. HRMS Calcd for C₁₂H₁₆O (M): 176.1201; found: 176.1206; Anal. Calcd. for C₁₂H₁₆O: C, 81.77; H, 9.15. Found: C, 81.69; H, 9.30.

Table 2, Entry 5

Colorless oil; $[\alpha]_D^{25} = +35.2$ (*c* 1.0, CHCl₃) (77% ee); IR (film) 1495, 1447 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.37-7.26 (m, 5 H), 3.02 (d, *J* = 5.7 Hz, 1 H), 2.70 (d, *J* = 5.7 Hz, 1H), 1.82-1.56 (m, 6H), 1.26-0.95 (m, 5H); ¹³C NMR (75 MHz, CDCl₃) δ 139.9, 128.1, 127.51, 127.46, 64.5, 53.1, 43.2, 29.0, 28.3, 26.5, 26.3, 26.2; Anal. Calcd. for C₁₄H₁₈O: C, 83.12; H, 8.97. Found: C, 83.33; H, 8.74.

Table 2, Entry 6

Colorless oil; $[\alpha]_D^{25} = +53.3 (c \ 0.90, \text{CHCl}_3) (86\% \text{ ee});$ IR (film) 1480, 1462, 1447 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.38-7.25 (m, 5H), 3.12 (d, J = 5.2 Hz, 1H), 2.66 (d, J = 5.2 Hz, 1H), 0.99 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 139.7, 129.0, 127.5, 127.4, 67.0, 51.0, 34.0, 26.5; Anal. Calcd. for C₁₂H₁₆O: C, 81.77; H, 9.15. Found: C, 81.53; H, 9.10. Lodge, E. P.; Heathcock, C. H. *J. Am. Chem. Soc.* **1987**, *109*, 3353.

Table 2, Entry 7

Colorless oil; $[\alpha]_D^{25} = +33.5 (c \ 1.1, CHCl_3) (84\% ee);$ IR (film) 1496, 1468 cm⁻¹; ¹H NMR (300 MHz, CDCl_3) δ 7.39-7.26 (m, 5H), 3.00 (d, J = 5.4 Hz, 1H), 2.73 (d, J = 5.4 Hz, 1H), 2.10 (septet, J = 6.9 Hz, 1H), 0.98 (d, J = 3.6 Hz, 3H), 0.95 (d, J = 3.6 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 139.6, 128.1, 127.6, 127.5, 64.7, 53.4, 33.3, 18.7, 18.0; Anal. Calcd. for C₁₁H₁₄O: C, 81.44; H, 8.70. Found: C, 81.62; H, 8.62.

Table 2, Entry 8

Colorless oil; $[\alpha]_D^{25} = +23.6 (c \ 1.0, \text{CHCl}_3) (82\% \text{ ee});$ IR (film) 1512, 1464 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.28 (d, J = 8.4 Hz, 2H), 7.19 (d, J = 8.4 Hz, 2H), 2.98 (d, J = 5.1 Hz, 1H), 2.90 (septet., J = 6.9 Hz, 1H), 2.72 (d, J = 5.1 Hz, 1H), 2.08 (septet., J = 6.9 Hz, 1H), 1.25 (d, J = 6.9 Hz, 6H), 0.96 (d, J = 6.9 Hz, 3H), 0.95 (d, J = 6.9 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 148.2, 136.9, 127.4, 126.1, 64.6, 53.3, 34.0, 33.4, 24.2, 18.7, 18.1; HRMS Calcd for C₁₄H₂₁O (M+H): 205.1592; found: 205.1588. Anal. Calcd. for C₁₄H₂₀O: C, 82.30; H, 9.87.

Found: C, 82.42; H, 9.69.

Table 2, Entry 9

Colorless oil; $[\alpha]_D^{25} = +22.2$ (*c* 1.1, CHCl₃) (84% ee); IR (film) 1612 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.30-7.27 (m, 2H), 6.88-6.86 (m, 2H), 3.81 (s, 3H), 2.97 (d, J = 5.2 Hz, 1H), 2.71 (d, J = 5.2 Hz, 1H), 2.03 (septet, J = 6.8 Hz, 1H), 0.95 (d, J = 6.8 Hz, 3H), 0.94 (d, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 159.0, 131.6, 128.7, 113.5, 64.4, 55.5, 53.5, 33.6, 18.8, 18.1; Anal. Calcd. for C₁₂H₁₆O₂: C, 74.97; H, 8.39. Found: C, 74.78; H, 8.22.

Table 2, Entry 10

Colorless oil; $[\alpha]_D^{25} = +28.2$ (*c* 1.1 CHCl₃) (74% ee); IR (film) 1606 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.35-7.32 (m, 2H), 7.04-7.00 (m, 2H), 2.99 (d, *J* = 5.2 Hz, 1H), 2.69 (d, *J* = 5.2 Hz, 1H), 2.69 (d, *J* = 5.2 Hz, 1H), 2.04 (septet, *J* = 6.8 Hz, 1H), 0.95 (d, *J* = 6.8 Hz, 3H), 0.94 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 163.5, 161.0, 135.3, 129.2, 129.1, 115.1, 114.9, 64.3, 53.5, 33.4, 18.7, 18.0; Anal. Calcd. for C₁₁H₁₃FO: C, 73.31; H, 7.27. Found: C, 73.53; H, 7.42.

Table 2, Entry 11

Colorless oil; $[\alpha]_D^{25} = +21.7$ (*c* 1.2, CHCl₃) (78% ee); IR (film) 1593 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.48-7.45 (m, 2H), 7.26-7.23 (m, 2H), 3.00 (d, *J* = 5.2 Hz, 1H), 2.66 (d, *J* = 5.2 Hz, 1H), 2.07 (septet, *J* = 6.8 Hz, 1H), 0.95 (d, *J* = 6.8 Hz, 3H), 0.93 (d, *J* = 6.8 Hz, 3H); ¹³C

NMR (100 MHz, CDCl₃δ 138.7, 131.3, 129.2, 121.6, 64.2, 53.5, 33.1, 18.7, 17.9; Anal. Calcd. for C₁₁H₁₃BrO: C, 54.79; H, 5.43. Found: C, 54.72; H, 5.34.

Table 2, Entry 12

Colorless oil; $[\alpha]_D^{25} = +30.9$ (*c* 1.0, CHCl₃) (82% ee); IR (film) 1608 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.24-7.09 (m, 4H), 2.99 (d, *J* = 5.2 Hz, 1H), 2.71 (d, *J* = 5.2 Hz, 1H), 2.36 (s, 3H), 2.09 (septet, *J* = 6.8 Hz, 1H), 0.96 (d, *J* = 7.2 Hz, 3H), 0.95 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 139.5, 137.7, 128.3, 128.1, 128.0, 124.6, 64.7, 53.4, 33.3, 21.7, 18.7, 18.1; Anal. Calcd. for C₁₂H₁₆O: C, 81.77; H, 9.15. Found: C, 81.96; H, 8.97.

Table 2, Entry 13

Colorless oil; $[\alpha]_D^{25} = +35.7$ (*c* 1.4, CHCl₃) (81% ee); IR (film) 1616 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.33-7.27 (m, 1H), 7.15 (dd, *J* = 7.6, 0.8 Hz, 1H), 7.10-7.07 (m, 1H), 7.00-6.95 (ddd, *J* = 8.4, 2.8, 0.8 Hz, 1H), 3.01 (d, *J* = 5.2 Hz, 1H), 2.69 (d, *J* = 5.2 Hz, 1H), 2.12 (septet, *J* = 6.8 Hz, 1H), 0.97 (d, *J* = 7.2 Hz, 3H), 0.95 (d, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.0, 161.6, 142.43, 142.36, 129.8, 129.7, 122.9, 114.6, 114.5, 114.4, 114.3, 64.1, 53.6, 32.9, 18.7, 17.8; Anal. Calcd. for C₁₁H₁₃FO: C, 73.31; H, 7.27. Found: C, 73.50; H, 7.39.

Table 2, Entry 14

Colorless oil; $[\alpha]_{D}^{25} = +53.1$ (c 1.5, CHCl₃) (88% ee); IR (film) 1617 cm⁻¹; ¹H NMR (400

MHz, CDCl₃) δ 7.41-7.37 (td, J = 7.2, 1.2 Hz, 1H), 7.32-7.26 (m, 1H), 7.15-7.11 (td, J = 7.6, 1.2 Hz, 1H), 7.06-7.01 (m, 1H), 3.05 (d, J = 5.2 Hz, 1H), 2.81 (d, J = 5.2 Hz, 1H), 2.02 (septet, J = 6.8 Hz, 1H), 0.98-0.94 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 161.8, 159.4, 130.5, 130.4, 129.6, 129.5, 126.8, 126.7, 123.9, 123.9, 115.5, 115.3, 61.4, 52.5, 33.9, 18.2, 17.9; Anal. Calcd. for C₁₁H₁₃FO: C, 73.31; H, 7.27. Found: C, 73.12; H, 6.93.

Table 2, Entry 15

Colorless oil; $[\alpha]_D^{25} = -34.9$ (*c* 0.80, CHCl₃) (66% ee); IR (film) 1744, 1708 cm⁻¹; ¹H NMR (400 MHz) δ 7.93-7.73 (m, 4H), 7.11-6.99 (m, 3H), 6.82 (s, 1H), 2.84 (d, *J* = 5.2 Hz, 1H), 2.77 (d, *J* = 14.0 Hz, 1H), 2.56 (d, *J* = 14.0 Hz, 1H), 2.48 (d, *J* = 5.2 Hz, 1H), 1.80 (q, *J* = 7.6 Hz, 2H), 0.65 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (100 MHz) δ 203.4, 203.1, 142.4, 141.4, 135.7, 135.6, 134.2, 129.6, 128.1, 126.3, 124.9, 123.0, 122.9, 58.0, 57.2, 56.3, 40.1, 30.1, 8.9; Anal. Calcd. for C₂₀H₁₇O₃Cl: C, 70.49; H, 5.03. Found: C, 70.26; H, 5.21.

Tanaka, K.; Yoshida, K.; Sasaki, C.; Osano, Y. T. J. Org. Chem. 2002, 67, 3131.

Table 2, Entry 16

Colorless oil; $[\alpha]_D^{25} = +27.4$ (*c* 1.3, CHCl₃) (77% ee); IR (film) 3420 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.41-7.33 (m, 5H), 4.12 (dd, *J* = 12.3, 4.5 Hz, 1H), 4.03 (dd, *J* = 12.6, 9.0 Hz, 1H), 3.29 (d, *J* = 5.1 Hz, 1H), 2.84 (d, *J* = 5.1 Hz, 1H), 1.91 (dd, *J* = 9.0, 6.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 137.5, 128.8, 128.4, 126.2, 63.2, 60.6, 52.7; HRMS Calcd for C₉H₉O₂ (M-H): 149.0603. Found: 149.0601

Adam, W.; Alsters, P. L.; Neumann, R.; Saha-Möller, C. R.; Seebach, D.; Zhang, R. Org. Lett.

2003, *5*, 725.

Table 2, Entry 17

Colorless oil; $[\alpha]_D^{25} = +17.5$ (*c* 1.3, CHCl₃) (72% ee); IR (film) 3411 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.41-7.28 (m, 5 H), 3.80-3.68 (m, 2H), 3.14 (d, *J* = 4.8 Hz, 1H), 2.79 (d, *J* = 4.8 Hz, 1 H), 2.52 (ddd, *J* = 14.4, 6.8, 5.6 Hz, 1H), 2.12 (ddd, *J* = 14.4, 6.8, 5.6 Hz, 1H), 2.04 (t, *J* = 5.6 Hz, 1 H); ¹³C NMR (100 MHz, CDCl₃) δ 139.9, 128.7, 128.0, 125.9, 59.7, 59.4, 55.0, 37.2; HRMS Calcd for C₁₀H₁₂O₂ (M): 164.0837. Found: 164.0836.

Table 2, Entry 18

Colorless oil; $[\alpha]_D^{25} = +19.8$ (*c* 2.1, CHCl₃) (74% ee); IR (film) 3396 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.39-7.20 (m, 5H), 3.62 (t, *J* = 6.0 Hz, 2H), 2.99 (d, *J* = 5.1 Hz, 1H), 2.75 (d, *J* = 5.1 Hz, 1H), 2.45-2.36 (m, 1H), 2.09 (s, 1H), 1.82-1.72 (m, 1H), 1.67-1.58 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 139.6, 128.6, 127.6, 126.0, 62.4, 60.3, 56.3, 31.8, 28.0; HRMS Calcd for C₁₁H₁₄O₂ (M): 178.0994. Found: 178.0991; Anal. Calcd. for C₁₁H₁₄O₂: C, 74.13; H, 7.92. Found: C, 74.33; H, 7.90.

Table 2, Entry 19

White solid; mp 55-56 °C; $[\alpha]_D^{25} = +55.3$ (*c* 1.1, CHCl₃) (87% ee); IR (film) 3477 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.44-7.31 (m, 5 H), 3.37 (d, *J* = 5.2 Hz, 1H), 2.75 (d, *J* = 5.2 Hz, 1 H), 2.14 (s, 1 H), 1.36 (s, 3 H), 1.22 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 138.1, 128.5, 128.1, 128.0, 70.4, 67.0, 51.1, 26.9, 25.7; HRMS Calcd for $C_{11}H_{12}O(M-H_2O)$: 160.0888; found: 160.0890.

Capriati, V.; Florio, S.; Luisi, R.; Salomone, A. Org. Lett. 2002, 4, 2445.

Table 2, Entry 20

Colorless oil; $[\alpha]_D^{25} = +38.1 \ (c \ 1.4, \ CHCl_3) \ (87\% \ ee);$ IR (film) 3505 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.45-7.40 (m, 2H), 7.40-7.30 (m, 3H), 3.33 (d, $J = 5.6 \ Hz, 1H$), 2.68 (d, $J = 5.6 \ Hz, 1H$), 2.06 (s, 1H), 1.83-1.73 (m, 1H), 1.70-1.61 (m, 1H), 1.57-1.48 (m, 1H), 1.46-1.37 (m, 1H), 1.10 (t, $J = 7.6 \ Hz, 3H$), 0.94 (t, $J = 7.6 \ Hz, 3H$); ¹³C NMR (100 MHz, CDCl₃) δ 138.4, 128.2, 128.0, 127.8, 73.7, 64.8, 50.6, 30.9, 28.9, 8.4, 7.6; Anal. Calcd. for C₁₃H₁₈O₂: C, 75.69; H, 8.80. Found: C, 75.55; H, 8.60.

Table 2, Entry 21

Colorless oil; $[\alpha]_D^{25} = +48.6 \ (c \ 1.0, \ CHCl_3) \ (88\% \ ee);$ IR (film) 3465 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.48-7.45 (m, 2H), 7.37-7.29 (m, 3H), 3.30 (d, $J = 5.6 \ Hz, 1H$), 2.78 (d, $J = 5.6 \ Hz, 1H$), 1.92-1.70 (m, 4H), 1.65-1.52 (m, 4H); ¹³C NMR (75 MHz, CDCl₃) δ 138.2, 128.7, 128.1, 82.5, 64.5, 51.4, 36.30, 36.27, 23.6, 23.5; Anal. Calcd. for C₁₃H₁₆O₂: C, 76.44; H, 7.90. Found: C, 76.33; H, 7.76.

Capriati, V.; Florio, S.; Luisi, R.; Salomone, A. Org. Lett. 2002, 4, 2445.

Table 2, Entry 22

Colorless oil; $[\alpha]_D^{25} = +4.3$ (*c* 0.80, CHCl₃) (60% ee); IR (film) 3473 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 2.99 (d, J = 4.8 Hz, 1H), 2.69 (d, J = 4.8 Hz, 1H), 2.07 (s, 1H), 1.88-1.60 (m, 2H), 1.31 (s, 3H), 1.27 (s, 3H), 1.34-1.23 (m, 8H), 0.90 (t, J = 6.9 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 70.3, 64.6, 48.4, 31.9, 29.8, 29.4, 26.5, 25.6, 24.6, 22.8, 14.3; Anal. Calcd. for C₁₁H₂₂O₂: C, 70.92; H, 11.90. Found: C, 71.09; H, 11.94.

Table 3, Entry 1

Colorless oil; $[\alpha]_D^{25} = -40.8$ (*c* 0.75, CHCl₃) (85% ee); ¹H NMR (300 MHz, CDCl₃) δ 7.38-7.26 (m, 5H), 3.07 (d, *J* = 4.2 Hz, 1H), 3.34 (qd, *J* = 5.4, 4.5 Hz, 1H), 1.09 (d, *J* = 5.4 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 135.7, 128.2, 127.7, 126.8, 57.8, 55.4, 12.7. (1) Tian, H.; She, X.; Shu, L.; Yu, H.; Shi, Y. *J. Am. Chem. Soc.* **2000**, *122*, 11551. (2) Tian, H.; She, X.; Yu, H.; Shu, L.; Shi, Y. *J. Org. Chem.* **2002**, *67*, 2435.

Table 3, Entry 2

Colorless oil; $[\alpha]_D^{25} = +61.3$ (*c* 1.6, CHCl₃) (84% ee); ¹H NMR (300 MHz, CDCl₃) δ 7.66 (d, J = 2.1 Hz, 1H), 7.53 (dd, J = 8.4, 2.1 Hz, 1H), 6.87 (d, J = 8.4 Hz, 1H), 3.91 (d, J = 4.2 Hz, 1H), 3.54 (d, J = 4.5 Hz, 1H), 1.60 (s, 3H). 1.30 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 156.7, 134.6, 134.0, 121.3, 119.2, 118.9, 104.5, 74.9, 62.5, 50.1, 25.7, 23.2.

Tian, H.; She, X.; Yu, H.; Shu, L.; Shi, Y. J. Org. Chem. 2002, 67, 2435.

Table 3, Entry 3

Colorless oil; $[\alpha]_{D}^{25} = -56.3$ (c 1.4, CHCl₃) (80% ee); ¹H NMR (300 MHz, CDCl₃)

δ 7.40-7.22 (m, 5H), 3.07 (s, 1H), 2.33-2.24 (m, 1H), 2.12 (td, *J* = 14.7, 5.4 Hz, 1H), 2.02-1.96 (m, 2H), 1.64-1.41 (m, 3H), 1.38-1.26 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 142.7, 128.5, 127.4, 125.5, 62.1, 60.4, 29.0, 24.9, 20.3, 20.0.

Tian, H.; She, X.; Yu, H.; Shu, L.; Shi, Y. J. Org. Chem. 2002, 67, 2435.

Table 3, Entry 4

Colorless oil; $[\alpha]_D^{25} = +54.0$ (*c* 1.2, CHCl₃) (89% ee); ¹H NMR (300 MHz, CDCl₃) δ 7.53-7.49 (m, 2H), 7.46-7.38 (m, 3H), 7.24 (dd, J = 7.2, 1.2 Hz, 1H), 7.18 (d, J = 7.2 Hz, 1H), 7.09 (td, J = 7.8, 1.2 Hz, 1H), 7.01 (dd, J = 7.8, 1.2 Hz, 1H), 3.65 (d, J = 3.0 Hz, 1H), 3.03-2.92 (m, 1H), 2.72 (dd, J = 15.9, 5.7 Hz, 1H), 2.55-2.46 (m, 1H), 2.06 (td, J = 13.8, 6.0 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 138.8, 137.3, 135.0, 130.0, 128.8, 128.4, 128.3, 128.1, 127.9, 126.1, 63.2, 60.7, 25.6, 22.3.

Wang, Z. X.; Tu, Y.; Frohn, M.; Zhang, J. R.; Shi, Y. J. Am. Chem. Soc. 1997, 119, 11224.

The X-ray structure of ketone 3c

Identification code	ys143	
Empirical formula	C13 H17 N O7	
Formula weight	299.28	
Temperature	100 K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P2(1)	
Unit cell dimensions	a = 7.6742(2) Å	α= 90°.
	b = 13.4254(3) Å	β= 94.302(2)°.
	c = 13.2089(3) Å	$\gamma = 90^{\circ}$.
Volume	1357.07(6) Å ³	
Z	4	
Density (calculated)	1.465 Mg/m ³	
Absorption coefficient	0.120 mm ⁻¹	
F(000)	632	
Crystal size	0.09 x 0.09 x 0.04 mm ³	
Theta range for data collection	2.17 to 30.50°.	
Index ranges	-10<=h<=10, -19<=k<=17, -8	<=1<=18
Reflections collected	18744	
Independent reflections	7871 [R(int) = 0.0653]	
Completeness to theta = 30.50°	99.9 %	
Absorption correction	multi-scans	
Max. and min. transmission	0.9955 and 0.9894	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	7871 / 1 / 379	
Goodness-of-fit on F ²	0.855	
Final R indices [I>2sigma(I)]	R1 = 0.0545, wR2 = 0.1298	
R indices (all data)	R1 = 0.0929, wR2 = 0.1590	
Largest diff. peak and hole	0.315 and -0.256 e.Å ⁻³	

Table 1. Crystal data and structure refinement for **3c**.

	x	у	Z	U(eq)
N(1)	-3182(3)	861(2)	3436(2)	16(1)
O(1)	944(2)	-28(2)	4181(1)	16(1)
O(2)	2894(3)	1545(2)	6581(2)	18(1)
O(3)	4190(2)	458(1)	5521(1)	16(1)
O(4)	580(3)	2236(2)	5068(2)	27(1)
O(5)	-1554(2)	83(2)	5105(1)	16(1)
O(6)	-5066(3)	-492(2)	3306(2)	21(1)
O(7)	-3609(3)	2413(2)	2812(2)	32(1)
C(1)	-391(3)	601(2)	4523(2)	15(1)
C(2)	1802(4)	-630(2)	4972(2)	17(1)
C(3)	2645(3)	-20(2)	5834(2)	16(1)
C(4)	1598(3)	887(2)	6152(2)	16(1)
C(5)	569(4)	1356(2)	5237(2)	16(1)
C(6)	4569(4)	1249(2)	6231(2)	16(1)
C(7)	5729(4)	888(2)	7135(2)	22(1)
C(8)	5352(4)	2105(2)	5676(2)	20(1)
C(9)	-1308(4)	1084(2)	3574(2)	21(1)
C(10)	-3751(3)	-94(2)	3679(2)	16(1)
C(11)	-2590(4)	-610(2)	4491(2)	17(1)
C(12)	-4248(4)	1611(2)	2989(2)	22(1)
C(13)	-6167(4)	1395(3)	2760(3)	36(1)
N(1A)	-8060(3)	-1567(2)	-1054(2)	15(1)
O(1A)	-3994(2)	-2448(1)	-460(1)	16(1)
O(2A)	-1819(3)	-1168(2)	2088(1)	19(1)
O(3A)	-648(2)	-2068(2)	832(1)	16(1)
O(4A)	-4290(3)	-310(2)	764(2)	24(1)
O(5A)	-6388(2)	-2461(1)	545(2)	18(1)
O(6A)	-9803(3)	-2951(2)	-1346(2)	24(1)
O(7A)	-8565(3)	-30(2)	-1687(2)	28(1)
C(1A)	-5250(4)	-1868(2)	7(2)	15(1)
C(2A)	-3051(4)	-3127(2)	232(2)	17(1)

Table 2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å²x 10³)for ys143. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(3A)	-2127(3)	-2617(2)	1135(2)	16(1)
C(4A)	-3134(4)	-1779(2)	1614(2)	16(1)
C(5A)	-4256(4)	-1203(2)	808(2)	16(1)
C(6A)	-190(4)	-1392(2)	1643(2)	16(1)
C(7A)	528(4)	-455(2)	1198(2)	24(1)
C(8A)	1054(4)	-1867(3)	2446(2)	25(1)
C(9A)	-6237(4)	-1258(2)	-832(2)	20(1)
C(10A)	-8556(4)	-2554(2)	-905(2)	17(1)
C(11A)	-7403(4)	-3113(2)	-127(2)	21(1)
C(12A)	-9162(4)	-842(2)	-1515(2)	24(1)
C(13A)	-11048(5)	-1069(3)	-1744(4)	51(1)

Table 3. Bond lengths [Å] and angles [°] for ys143.

N(1)-C(10)	1.399(4)
N(1)-C(12)	1.401(4)
N(1)-C(9)	1.467(3)
O(1)-C(1)	1.427(3)
O(1)-C(2)	1.441(3)
O(2)-C(4)	1.416(3)
O(2)-C(6)	1.453(3)
O(3)-C(6)	1.432(3)
O(3)-C(3)	1.436(3)
O(4)-C(5)	1.203(4)
O(5)-C(1)	1.405(3)
O(5)-C(11)	1.435(3)
O(6)-C(10)	1.213(3)
O(7)-C(12)	1.213(4)
C(1)-C(5)	1.534(4)
C(1)-C(9)	1.534(4)
C(2)-C(3)	1.508(4)
C(3)-C(4)	1.535(4)
C(4)-C(5)	1.528(4)
C(6)-C(8)	1.511(4)

C(6)-C(7)	1.515(4)
C(10)-C(11)	1.510(4)
C(12)-C(13)	1.509(4)
N(1A)-C(10A)	1.397(4)
N(1A)-C(12A)	1.399(4)
N(1A)-C(9A)	1.468(3)
O(1A)-C(1A)	1.416(3)
O(1A)-C(2A)	1.446(3)
O(2A)-C(4A)	1.410(3)
O(2A)-C(6A)	1.452(3)
O(3A)-C(6A)	1.428(3)
O(3A)-C(3A)	1.435(3)
O(4A)-C(5A)	1.200(3)
O(5A)-C(1A)	1.412(3)
O(5A)-C(11A)	1.435(3)
O(6A)-C(10A)	1.207(3)
O(7A)-C(12A)	1.211(4)
C(1A)-C(9A)	1.531(4)
C(1A)-C(5A)	1.543(4)
C(2A)-C(3A)	1.506(4)
C(3A)-C(4A)	1.529(4)
C(4A)-C(5A)	1.528(4)
C(6A)-C(7A)	1.509(4)
C(6A)-C(8A)	1.514(4)
C(10A)-C(11A)	1.505(4)
C(12A)-C(13A)	1.488(5)
C(10)-N(1)-C(12)	125.0(2)
C(10)-N(1)-C(9)	118.6(2)
C(12)-N(1)-C(9)	116.2(2)
C(1)-O(1)-C(2)	113.7(2)
C(4)-O(2)-C(6)	108.29(19)
C(6)-O(3)-C(3)	105.97(19)
C(1)-O(5)-C(11)	111.05(19)
O(5)-C(1)-O(1)	112.3(2)
O(5)-C(1)-C(5)	106.6(2)
O(1)-C(1)-C(5)	105.2(2)

O(5)-C(1)-C(9)	112.7(2)
O(1)-C(1)-C(9)	106.7(2)
C(5)-C(1)-C(9)	113.1(2)
O(1)-C(2)-C(3)	112.9(2)
O(3)-C(3)-C(2)	110.1(2)
O(3)-C(3)-C(4)	100.6(2)
C(2)-C(3)-C(4)	115.7(2)
O(2)-C(4)-C(5)	111.4(2)
O(2)-C(4)-C(3)	103.8(2)
C(5)-C(4)-C(3)	111.1(2)
O(4)-C(5)-C(4)	122.7(3)
O(4)-C(5)-C(1)	123.0(2)
C(4)-C(5)-C(1)	114.2(2)
O(3)-C(6)-O(2)	105.7(2)
O(3)-C(6)-C(8)	108.4(2)
O(2)-C(6)-C(8)	109.9(2)
O(3)-C(6)-C(7)	110.9(2)
O(2)-C(6)-C(7)	108.5(2)
C(8)-C(6)-C(7)	113.2(2)
N(1)-C(9)-C(1)	113.6(2)
O(6)-C(10)-N(1)	125.1(3)
O(6)-C(10)-C(11)	121.0(3)
N(1)-C(10)-C(11)	113.9(2)
O(5)-C(11)-C(10)	112.1(2)
O(7)-C(12)-N(1)	119.2(3)
O(7)-C(12)-C(13)	122.3(3)
N(1)-C(12)-C(13)	118.5(3)
C(10A)-N(1A)-C(12A)	124.0(2)
C(10A)-N(1A)-C(9A)	120.3(2)
C(12A)-N(1A)-C(9A)	115.3(2)
C(1A)-O(1A)-C(2A)	113.3(2)
C(4A)-O(2A)-C(6A)	108.02(19)
C(6A)-O(3A)-C(3A)	105.87(19)
C(1A)-O(5A)-C(11A)	111.1(2)
O(5A)-C(1A)-O(1A)	112.1(2)
O(5A)-C(1A)-C(9A)	112.0(2)

107.2(2)
105.8(2)
107.5(2)
112.3(2)
113.4(2)
110.4(2)
99.9(2)
116.1(2)
111.2(2)
104.2(2)
111.1(2)
123.3(3)
122.4(3)
114.1(2)
105.3(2)
108.4(2)
109.6(2)
111.4(2)
108.7(2)
113.2(2)
114.0(2)
124.4(3)
120.9(3)
114.6(2)
112.5(2)
118.9(3)
121.5(3)
119.5(3)

Symmetry transformations used to generate equivalent atoms:

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
N(1)	12(1)	19(1)	16(1)	-1(1)	-2(1)	-3(1)
O(1)	13(1)	19(1)	16(1)	-4(1)	1(1)	0(1)
O(2)	14(1)	21(1)	20(1)	-9(1)	1(1)	-1(1)
O(3)	15(1)	15(1)	20(1)	-3(1)	3(1)	-3(1)
O(4)	30(1)	14(1)	37(1)	-1(1)	-6(1)	3(1)
O(5)	15(1)	16(1)	16(1)	1(1)	-1(1)	-3(1)
O(6)	18(1)	24(1)	22(1)	-6(1)	1(1)	-4(1)
O(7)	29(1)	29(1)	36(1)	15(1)	1(1)	4(1)
C(1)	14(1)	14(1)	18(1)	2(1)	2(1)	-1(1)
C(2)	16(1)	12(1)	23(1)	-2(1)	-3(1)	2(1)
C(3)	15(1)	14(1)	17(1)	2(1)	-2(1)	2(1)
C(4)	13(1)	16(1)	17(1)	-3(1)	0(1)	-3(1)
C(5)	14(1)	15(1)	18(1)	-5(1)	2(1)	2(1)
C(6)	16(1)	15(1)	18(1)	-4(1)	-2(1)	1(1)
C(7)	20(1)	24(2)	22(1)	-1(1)	-5(1)	-1(1)
C(8)	20(1)	20(2)	19(1)	-4(1)	2(1)	-1(1)
C(9)	14(1)	25(2)	22(1)	6(1)	-1(1)	-2(1)
C(10)	14(1)	17(1)	18(1)	-2(1)	4(1)	2(1)
C(11)	16(1)	11(1)	23(1)	1(1)	0(1)	-1(1)
C(12)	20(1)	26(2)	20(1)	8(1)	4(1)	2(1)
C(13)	16(2)	43(2)	48(2)	21(2)	-3(1)	2(1)
N(1A)	14(1)	14(1)	17(1)	-1(1)	-2(1)	-4(1)
D(1A)	16(1)	15(1)	18(1)	-2(1)	1(1)	1(1)
D(2A)	15(1)	22(1)	19(1)	-8(1)	2(1)	1(1)
D(3A)	16(1)	16(1)	14(1)	-3(1)	0(1)	-2(1)
D(4A)	29(1)	15(1)	28(1)	0(1)	-2(1)	-2(1)
D(5A)	17(1)	15(1)	22(1)	2(1)	2(1)	-3(1)
O(6A)	22(1)	26(1)	23(1)	-9(1)	5(1)	-10(1)
O(7A)	29(1)	25(1)	29(1)	13(1)	-5(1)	-2(1)
C(1A)	16(1)	11(1)	18(1)	1(1)	3(1)	0(1)
C(2A)	16(1)	13(1)	22(1)	-2(1)	2(1)	0(1)

Table 4.Anisotropic displacement parameters (Ųx 10³)for ys143.The anisotropicdisplacement factor exponent takes the form: $-2\pi^2$ [$h^2a^{*2}U^{11} + ... + 2 h k a^* b^* U^{12}$]

C(3A)	18(1)	15(1)	16(1)	0(1)	1(1)	2(1)
C(4A)	16(1)	16(1)	16(1)	-1(1)	2(1)	-1(1)
C(5A)	14(1)	15(1)	20(1)	-2(1)	6(1)	-3(1)
C(6A)	16(1)	16(1)	16(1)	-6(1)	1(1)	1(1)
C(7A)	27(2)	19(2)	28(2)	-9(1)	7(1)	-4(1)
C(8A)	24(2)	32(2)	19(1)	-2(1)	-3(1)	11(1)
C(9A)	18(1)	14(1)	26(1)	4(1)	-3(1)	-4(1)
C(10A)	18(1)	16(1)	19(1)	-4(1)	7(1)	-1(1)
C(11A)	18(1)	12(1)	32(2)	2(1)	2(1)	-2(1)
C(12A)	24(2)	29(2)	20(1)	11(1)	-1(1)	-3(1)
C(13A)	24(2)	50(3)	77(3)	40(2)	-19(2)	-11(2)

Table 5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10^3) for ys143.

	X	у	Z	U(eq)		
H(2A)	2688	-1035	4685	21		
H(2B)	952	-1077	5237	21		
H(3A)	2941	-448	6423	19		
H(4A)	803	693	6664	19		
H(7A)	5174	340	7450	33		
H(7B)	5916	1420	7616	33		
H(7C)	6831	674	6913	33		
H(8A)	4566	2299	5111	29		
H(8B)	6446	1901	5435	29		
H(8C)	5542	2659	6131	29		
H(9A)	-1156	1801	3619	25		
H(9B)	-750	856	2981	25		
H(11A)	-3309	-994	4921	20		
H(11B)	-1822	-1069	4172	20		
H(13A)	-6733	1970	2453	53		
H(13B)	-6687	1237	3379	53		

H(13C)	-6303	841	2302	53
H(2AA)	-2197	-3486	-133	20
H(2AB)	-3865	-3611	470	20
H(3AA)	-1748	-3111	1652	20
H(4AA)	-3869	-2052	2123	20
H(7AA)	-313	-188	696	36
H(7AB)	1589	-608	889	36
H(7AC)	766	27	1728	36
H(8AA)	529	-2456	2700	38
H(8AB)	1301	-1405	2993	38
H(8AC)	2122	-2041	2154	38
H(9AA)	-6216	-563	-633	23
H(9AB)	-5629	-1315	-1447	23
H(11C)	-8125	-3533	268	25
H(11D)	-6621	-3542	-473	25
H(13D)	-11621	-504	-2066	77
H(13E)	-11573	-1216	-1124	77
H(13F)	-11168	-1634	-2189	77

The X-ray structure of ketone 3d

5		
Identification code	ys113	
Empirical formula	C18 H21 N O6	
Formula weight	347.36	
Temperature	373(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P2(1)	
Unit cell dimensions	a = 9.5204(3) Å	α= 90°.
	b = 6.5582(2) Å	β= 91.632(2)°.
	c = 13.2707(4) Å	$\gamma = 90^{\circ}$.
Volume	828.24(4) Å ³	
Z	2	
Density (calculated)	1.393 Mg/m ³	
Absorption coefficient	0.105 mm ⁻¹	
F(000)	368	
Crystal size	0.40 x 0.31 x 0.16 mm ³	
Theta range for data collection	2.60 to 49.01°.	
Index ranges	-20<=h<=20, -13<=k<=13, -2	7<=1<=24
Reflections collected	28445	
Independent reflections	14322 [R(int) = 0.0247]	
Completeness to theta = 49.01°	96.5 %	
Absorption correction	multi-scan	
Max. and min. transmission	0.9835 and 0.9597	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	14322 / 1 / 226	
Goodness-of-fit on F ²	0.825	
Final R indices [I>2sigma(I)]	R1 = 0.0382, wR2 = 0.1066	
R indices (all data)	R1 = 0.0492, wR2 = 0.1184	
Largest diff. peak and hole	0.471 and -0.262 e.Å ⁻³	

Table 1. Crystal data and structure refinement for **3d**.

	Х	У	Z	U(eq)
O(1)	11973(1)	3563(1)	4665(1)	16(1)
O(2)	14032(1)	4785(1)	5387(1)	15(1)
O(3)	10314(1)	3072(1)	6537(1)	14(1)
O(4)	12435(1)	7059(1)	6685(1)	17(1)
O(5)	11824(1)	2872(1)	7974(1)	14(1)
O(6)	8883(1)	2038(1)	9582(1)	18(1)
C(1)	11136(1)	4151(1)	7262(1)	12(1)
C(2)	11063(1)	1496(1)	6024(1)	16(1)
C(3)	12348(1)	2281(1)	5501(1)	14(1)
C(4)	13207(1)	4731(1)	4447(1)	15(1)
C(5)	12765(1)	6870(1)	4153(1)	20(1)
C(6)	14067(1)	3676(1)	3658(1)	22(1)
C(7)	13260(1)	3767(1)	6125(1)	13(1)
C(8)	12319(1)	5222(1)	6703(1)	12(1)
C(9)	10169(1)	5643(1)	7776(1)	15(1)
C(10)	9566(1)	2823(1)	8912(1)	14(1)
C(11)	10873(1)	1724(1)	8566(1)	16(1)
C(12)	7863(1)	5524(1)	8608(1)	13(1)
C(13)	7843(1)	7525(1)	8958(1)	14(1)
C(14)	6558(1)	8507(1)	9091(1)	14(1)
C(15)	5284(1)	7519(1)	8874(1)	14(1)
C(16)	5327(1)	5484(1)	8554(1)	15(1)
C(17)	6602(1)	4491(1)	8413(1)	14(1)
C(18)	3904(1)	8636(1)	8945(1)	19(1)
N(1)	9178(1)	4549(1)	8411(1)	13(1)

Table 2.Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Å2x 103)for ys113.U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

O(1)-C(3)	1.4298(8)
O(1)-C(4)	1.4386(7)
O(2)-C(7)	1.4090(7)
O(2)-C(4)	1.4547(7)
O(3)-C(1)	1.4131(7)
O(3)-C(2)	1.4379(7)
O(4)-C(8)	1.2099(7)
O(5)-C(1)	1.4103(7)
O(5)-C(11)	1.4300(8)
O(6)-C(10)	1.2292(8)
C(1)-C(9)	1.5182(7)
C(1)-C(8)	1.5361(7)
C(2)-C(3)	1.5136(9)
C(2)-H(2A)	0.9700
C(2)-H(2B)	0.9700
C(3)-C(7)	1.5324(8)
C(3)-H(3A)	0.9800
C(4)-C(5)	1.5131(9)
C(4)-C(6)	1.5148(9)
C(5)-H(5A)	0.9600
C(5)-H(5B)	0.9600
C(5)-H(5C)	0.9600
C(6)-H(6A)	0.9600
C(6)-H(6B)	0.9600
C(6)-H(6C)	0.9600
C(7)-C(8)	1.5302(7)
C(7)-H(7A)	0.9800
C(9)-N(1)	1.4700(7)
C(9)-H(9A)	0.9700
C(9)-H(9B)	0.9700
C(10)-N(1)	1.3584(7)
C(10)-C(11)	1.5202(8)
C(11)-H(11A)	0.9700
C(11)-H(11B)	0.9700

Table 3.Bond lengths [Å] and angles [°] for ys113.

C(12)-C(13)	1.3931(8)
C(12)-C(17)	1.3958(8)
C(12)-N(1)	1.4359(7)
C(13)-C(14)	1.3980(7)
С(13)-Н(13А)	0.9300
C(14)-C(15)	1.3975(8)
C(14)-H(14A)	0.9300
C(15)-C(16)	1.4015(9)
C(15)-C(18)	1.5097(8)
C(16)-C(17)	1.3947(8)
C(16)-H(16A)	0.9300
C(17)-H(17A)	0.9300
C(18)-H(18A)	0.9600
C(18)-H(18B)	0.9600
C(18)-H(18C)	0.9600
C(3)-O(1)-C(4)	106.36(4)
C(7)-O(2)-C(4)	107.77(4)
C(1)-O(3)-C(2)	114.20(4)
C(1)-O(5)-C(11)	113.10(4)
O(5)-C(1)-O(3)	113.26(4)
O(5)-C(1)-C(9)	111.05(5)
O(3)-C(1)-C(9)	107.29(4)
O(5)-C(1)-C(8)	105.22(4)
O(3)-C(1)-C(8)	107.43(5)
C(9)-C(1)-C(8)	112.63(4)
O(3)-C(2)-C(3)	113.02(5)
O(3)-C(2)-H(2A)	109.0
C(3)-C(2)-H(2A)	109.0
O(3)-C(2)-H(2B)	109.0
C(3)-C(2)-H(2B)	109.0
H(2A)-C(2)-H(2B)	107.8
O(1)-C(3)-C(2)	111.67(5)
O(1)-C(3)-C(7)	99.81(5)
C(2)-C(3)-C(7)	114.91(5)
O(1)-C(3)-H(3A)	110.0
C(2)-C(3)-H(3A)	110.0

C(7)-C(3)-H(3A)	110.0
O(1)-C(4)-O(2)	105.35(5)
O(1)-C(4)-C(5)	108.80(5)
O(2)-C(4)-C(5)	109.76(5)
O(1)-C(4)-C(6)	110.86(6)
O(2)-C(4)-C(6)	108.38(5)
C(5)-C(4)-C(6)	113.38(6)
C(4)-C(5)-H(5A)	109.5
C(4)-C(5)-H(5B)	109.5
H(5A)-C(5)-H(5B)	109.5
C(4)-C(5)-H(5C)	109.5
H(5A)-C(5)-H(5C)	109.5
H(5B)-C(5)-H(5C)	109.5
C(4)-C(6)-H(6A)	109.5
C(4)-C(6)-H(6B)	109.5
H(6A)-C(6)-H(6B)	109.5
C(4)-C(6)-H(6C)	109.5
H(6A)-C(6)-H(6C)	109.5
H(6B)-C(6)-H(6C)	109.5
O(2)-C(7)-C(8)	112.17(5)
O(2)-C(7)-C(3)	102.97(5)
C(8)-C(7)-C(3)	109.67(4)
O(2)-C(7)-H(7A)	110.6
C(8)-C(7)-H(7A)	110.6
C(3)-C(7)-H(7A)	110.6
O(4)-C(8)-C(7)	123.79(5)
O(4)-C(8)-C(1)	122.20(5)
C(7)-C(8)-C(1)	113.90(4)
N(1)-C(9)-C(1)	110.50(5)
N(1)-C(9)-H(9A)	109.6
C(1)-C(9)-H(9A)	109.6
N(1)-C(9)-H(9B)	109.6
C(1)-C(9)-H(9B)	109.6
H(9A)-C(9)-H(9B)	108.1
O(6)-C(10)-N(1)	124.10(5)
O(6)-C(10)-C(11)	118.29(5)

N(1)-C(10)-C(11)	117.46(5)
O(5)-C(11)-C(10)	116.91(5)
O(5)-C(11)-H(11A)	108.1
C(10)-C(11)-H(11A)	108.1
O(5)-C(11)-H(11B)	108.1
C(10)-C(11)-H(11B)	108.1
H(11A)-C(11)-H(11B)	107.3
C(13)-C(12)-C(17)	119.90(5)
C(13)-C(12)-N(1)	120.06(5)
C(17)-C(12)-N(1)	120.00(5)
C(12)-C(13)-C(14)	119.79(5)
C(12)-C(13)-H(13A)	120.1
C(14)-C(13)-H(13A)	120.1
C(15)-C(14)-C(13)	121.18(5)
C(15)-C(14)-H(14A)	119.4
C(13)-C(14)-H(14A)	119.4
C(14)-C(15)-C(16)	118.11(5)
C(14)-C(15)-C(18)	120.93(6)
C(16)-C(15)-C(18)	120.93(6)
C(17)-C(16)-C(15)	121.22(5)
C(17)-C(16)-H(16A)	119.4
C(15)-C(16)-H(16A)	119.4
C(16)-C(17)-C(12)	119.74(5)
C(16)-C(17)-H(17A)	120.1
C(12)-C(17)-H(17A)	120.1
C(15)-C(18)-H(18A)	109.5
C(15)-C(18)-H(18B)	109.5
H(18A)-C(18)-H(18B)	109.5
C(15)-C(18)-H(18C)	109.5
H(18A)-C(18)-H(18C)	109.5
H(18B)-C(18)-H(18C)	109.5
C(10)-N(1)-C(12)	120.56(5)
C(10)-N(1)-C(9)	121.14(5)
C(12)-N(1)-C(9)	117.63(4)

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²	
O(1)	12(1)	20(1)	15(1)	-1(1)	-1(1)	-1(1)	
O(2)	9(1)	22(1)	13(1)	-1(1)	1(1)	0(1)	
O(3)	10(1)	15(1)	18(1)	-2(1)	0(1)	0(1)	
O(4)	17(1)	13(1)	22(1)	-2(1)	5(1)	-1(1)	
O(5)	11(1)	16(1)	16(1)	2(1)	2(1)	3(1)	
O(6)	16(1)	19(1)	20(1)	5(1)	6(1)	2(1)	
C(1)	10(1)	12(1)	15(1)	-1(1)	2(1)	1(1)	
C(2)	16(1)	13(1)	19(1)	-3(1)	1(1)	-1(1)	
C(3)	14(1)	14(1)	15(1)	-3(1)	0(1)	2(1)	
C(4)	11(1)	21(1)	13(1)	-1(1)	1(1)	2(1)	
C(5)	14(1)	23(1)	23(1)	5(1)	2(1)	2(1)	
C(6)	19(1)	33(1)	15(1)	-4(1)	3(1)	6(1)	
C(7)	10(1)	16(1)	13(1)	-2(1)	1(1)	2(1)	
C(8)	10(1)	13(1)	13(1)	-2(1)	1(1)	0(1)	
C(9)	13(1)	12(1)	19(1)	1(1)	6(1)	2(1)	
C(10)	12(1)	14(1)	15(1)	1(1)	2(1)	2(1)	
C(11)	15(1)	16(1)	18(1)	3(1)	4(1)	5(1)	
C(12)	10(1)	14(1)	14(1)	0(1)	2(1)	2(1)	
C(13)	11(1)	14(1)	16(1)	-1(1)	2(1)	1(1)	
C(14)	13(1)	15(1)	15(1)	-1(1)	2(1)	3(1)	
C(15)	11(1)	20(1)	11(1)	0(1)	2(1)	3(1)	
C(16)	11(1)	20(1)	14(1)	-1(1)	1(1)	0(1)	
C(17)	12(1)	16(1)	15(1)	-2(1)	2(1)	1(1)	
C(18)	13(1)	28(1)	17(1)	-2(1)	2(1)	7(1)	
N(1)	11(1)	13(1)	16(1)	2(1)	4(1)	3(1)	

Table 4.Anisotropic displacement parameters $(Å^2x \ 10^3)$ for ys113.The anisotropicdisplacement factor exponent takes the form: $-2\pi^2$ [$h^2 \ a^{*2}U^{11} + \ldots + 2 \ h \ k \ a^* \ b^* \ U^{12}$]
	Х	У	Z	U(eq)
H(2A)	10436	861	5529	19
H(2B)	11352	459	6509	19
H(3A)	12919	1134	5275	17
H(5A)	12224	7455	4680	30
H(5B)	12205	6824	3540	30
H(5C)	13585	7689	4052	30
H(6A)	14314	2331	3886	33
H(6B)	14906	4446	3548	33
H(6C)	13524	3583	3038	33
H(7A)	13892	3022	6590	15
H(9A)	10723	6582	8188	18
H(9B)	9651	6429	7270	18
H(11A)	11386	1231	9160	19
H(11B)	10574	539	8178	19
H(13A)	8681	8206	9103	16
H(14A)	6550	9842	9327	17
H(16A)	4490	4783	8434	18
H(17A)	6612	3147	8191	17
H(18A)	4074	10002	9177	29
H(18B)	3317	7940	9410	29
H(18C)	3443	8675	8292	29

Table 5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for ys113.

The X-ray structure of ketone 3g

Identification code	ys155r_0m	
Empirical formula	C24 H23 N O6	
Formula weight	421.43	
Temperature	100(2) K	
Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	P2(1)2(1)2(1)	
Unit cell dimensions	a = 6.7640(3) Å	α= 90°.
	b = 10.3317(3) Å	β= 90°.
	c = 28.5745(12) Å	$\gamma = 90^{\circ}$.
Volume	1996.89(14) Å ³	
Z	4	
Density (calculated)	1.402 Mg/m^3	
Absorption coefficient	0.101 mm ⁻¹	
F(000)	888	
Crystal size	0.20 x 0.14 x 0.10 mm ³	
Theta range for data collection	3.47 to 33.12°.	
Index ranges	-10<=h<=4, -12<=k<=15	, - 37<=l<=43
Reflections collected	15723	
Independent reflections	7334 [R(int) = 0.0831]	
Completeness to theta = 33.12°	98.0 %	
Absorption correction	multi-scan	
Max. and min. transmission	0.9899 and 0.9799	
Refinement method	Full-matrix least-squares of	on F ²
Data / restraints / parameters	7334 / 0 / 280	
Goodness-of-fit on F ²	0.967	
Final R indices [I>2sigma(I)]	R1 = 0.0678, wR2 = 0.11	.94
R indices (all data)	R1 = 0.1245, WR2 = 0.14	42
Absolute structure parameter	1.1(11)	
Largest diff. peak and hole	0.370 and -0.335 e.Å ⁻³	

Table 1. Crystal data and structure refinement for **3g**.

	х	V	Z	U(ea)
N(1)	4172(3)	1002(2)	783(1)	17(1)
O(1)	353(2)	2092(2)	1079(1)	17(1)
O(2)	-2644(3)	2875(2)	1810(1)	21(1)
O(3)	-503(3)	3892(2)	2318(1)	19(1)
O(4)	2347(3)	2072(2)	2122(1)	24(1)
O(5)	3118(2)	3470(2)	1091(1)	19(1)
O(6)	4462(3)	1731(2)	36(1)	26(1)
C(1)	2184(4)	2387(2)	1295(1)	15(1)
C(2)	-998(4)	3168(3)	1065(1)	19(1)
C(3)	-1432(4)	3732(3)	1541(1)	19(1)
C(4)	354(4)	3877(2)	1868(1)	16(1)
C(5)	1741(3)	2732(2)	1804(1)	17(1)
C(6)	-2372(4)	3202(2)	2295(1)	19(1)
C(7)	-3953(4)	4111(3)	2468(1)	23(1)
C(8)	-2269(4)	1944(3)	2565(1)	24(1)
C(9)	3497(4)	3279(2)	598(1)	19(1)
C(10)	4082(4)	1920(3)	451(1)	19(1)
C(11)	3473(3)	1204(3)	1262(1)	17(1)
C(12)	4671(4)	-329(2)	651(1)	16(1)
C(13)	2884(4)	-1195(2)	589(1)	17(1)
C(14)	1218(4)	-1008(3)	316(1)	19(1)
C(15)	-198(4)	-1974(3)	298(1)	21(1)
C(16)	51(4)	-3123(3)	548(1)	23(1)
C(17)	1704(4)	-3318(3)	828(1)	19(1)
C(18)	3119(4)	-2338(2)	850(1)	18(1)
C(19)	4956(3)	-2229(2)	1125(1)	17(1)
C(20)	5785(4)	-3049(3)	1457(1)	19(1)
C(21)	7467(4)	-2647(3)	1693(1)	22(1)
C(22)	8330(4)	-1455(3)	1600(1)	23(1)
C(23)	7539(4)	-649(2)	1259(1)	20(1)
C(24)	5840(4)	-1037(2)	1024(1)	16(1)

Table 2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for ys155r_0m. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

N(1)-C(10)	1.343(3)
N(1)-C(11)	1.463(3)
N(1)-C(12)	1.466(3)
O(1)-C(1)	1.417(3)
O(1)-C(2)	1.439(3)
O(2)-C(3)	1.431(3)
O(2)-C(6)	1.438(3)
O(3)-C(4)	1.411(3)
O(3)-C(6)	1.453(3)
O(4)-C(5)	1.209(3)
O(5)-C(1)	1.411(3)
O(5)-C(9)	1.444(3)
O(6)-C(10)	1.231(3)
C(1)-C(11)	1.505(3)
C(1)-C(5)	1.527(3)
C(2)-C(3)	1.509(3)
C(3)-C(4)	1.534(3)
C(4)-C(5)	1.521(3)
C(6)-C(7)	1.507(4)
C(6)-C(8)	1.514(3)
C(9)-C(10)	1.518(4)
C(12)-C(13)	1.514(3)
C(12)-C(24)	1.517(3)
C(13)-C(14)	1.384(3)
C(13)-C(18)	1.405(3)
C(14)-C(15)	1.385(4)
C(15)-C(16)	1.395(4)
C(16)-C(17)	1.390(3)
C(17)-C(18)	1.395(3)
C(18)-C(19)	1.474(3)
C(19)-C(20)	1.390(3)
C(19)-C(24)	1.399(3)
C(20)-C(21)	1.387(4)

Table 3. Bond lengths [Å] and angles $[\circ]$ for ys155r_0m.

C(21)-C(22)	1.389(4)
C(22)-C(23)	1.388(3)
C(23)-C(24)	1.390(3)
C(10)-N(1)-C(11)	123.1(2)
C(10)-N(1)-C(12)	119.42(19)
C(11)-N(1)-C(12)	116.72(19)
C(1)-O(1)-C(2)	113.66(18)
C(3)-O(2)-C(6)	107.37(18)
C(4)-O(3)-C(6)	108.12(17)
C(1)-O(5)-C(9)	111.94(17)
O(5)-C(1)-O(1)	112.49(18)
O(5)-C(1)-C(11)	111.05(18)
O(1)-C(1)-C(11)	107.78(19)
O(5)-C(1)-C(5)	107.23(18)
O(1)-C(1)-C(5)	107.06(18)
C(11)-C(1)-C(5)	111.20(19)
O(1)-C(2)-C(3)	113.33(18)
O(2)-C(3)-C(2)	110.9(2)
O(2)-C(3)-C(4)	100.66(18)
C(2)-C(3)-C(4)	115.7(2)
O(3)-C(4)-C(5)	111.79(19)
O(3)-C(4)-C(3)	103.42(19)
C(5)-C(4)-C(3)	109.70(19)
O(4)-C(5)-C(4)	123.9(2)
O(4)-C(5)-C(1)	121.3(2)
C(4)-C(5)-C(1)	114.61(19)
O(2)-C(6)-O(3)	105.69(18)
O(2)-C(6)-C(7)	111.9(2)
O(3)-C(6)-C(7)	107.30(19)
O(2)-C(6)-C(8)	107.2(2)
O(3)-C(6)-C(8)	111.0(2)
C(7)-C(6)-C(8)	113.6(2)
O(5)-C(9)-C(10)	116.26(19)
O(6)-C(10)-N(1)	124.0(2)
O(6)-C(10)-C(9)	118.0(2)
N(1)-C(10)-C(9)	118.03(19)

N(1)-C(11)-C(1)	111.13(19)
N(1)-C(12)-C(13)	113.6(2)
N(1)-C(12)-C(24)	112.99(19)
C(13)-C(12)-C(24)	102.32(19)
C(14)-C(13)-C(18)	120.6(2)
C(14)-C(13)-C(12)	129.3(2)
C(18)-C(13)-C(12)	110.1(2)
C(13)-C(14)-C(15)	118.9(2)
C(14)-C(15)-C(16)	120.7(2)
C(17)-C(16)-C(15)	121.0(2)
C(16)-C(17)-C(18)	118.2(2)
C(17)-C(18)-C(13)	120.6(2)
C(17)-C(18)-C(19)	131.1(2)
C(13)-C(18)-C(19)	108.3(2)
C(20)-C(19)-C(24)	120.3(2)
C(20)-C(19)-C(18)	131.1(2)
C(24)-C(19)-C(18)	108.5(2)
C(21)-C(20)-C(19)	118.8(2)
C(20)-C(21)-C(22)	121.1(2)
C(23)-C(22)-C(21)	120.4(2)
C(22)-C(23)-C(24)	119.0(2)
C(23)-C(24)-C(19)	120.6(2)
C(23)-C(24)-C(12)	129.2(2)
C(19)-C(24)-C(12)	110.2(2)

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters (Å²x 10³)for ys155r_0m. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [$h^2a^{*2}U^{11} + ... + 2 h k a^* b^* U^{12}$]

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
N(1)	22(1)	15(1)	14(1)	1(1)	0(1)	1(1)
O(1)	16(1)	18(1)	18(1)	-1(1)	-4(1)	1(1)
O(2)	21(1)	25(1)	18(1)	-3(1)	-1(1)	-4(1)
O(3)	20(1)	21(1)	17(1)	-3(1)	1(1)	-4(1)

O(4)	28(1)	26(1)	16(1)	2(1)	-2(1)	4(1)
O(5)	24(1)	16(1)	16(1)	2(1)	2(1)	-2(1)
O(6)	32(1)	28(1)	16(1)	3(1)	4(1)	6(1)
C(1)	16(1)	15(1)	14(1)	1(1)	0(1)	-1(1)
C(2)	20(1)	20(1)	18(1)	2(1)	-1(1)	3(1)
C(3)	21(1)	16(1)	20(1)	0(1)	0(1)	1(1)
C(4)	20(1)	15(1)	14(1)	-1(1)	1(1)	-1(1)
C(5)	16(1)	19(1)	15(1)	-3(1)	0(1)	-6(1)
C(6)	20(1)	19(1)	17(1)	-1(1)	-1(1)	-4(1)
C(7)	23(1)	22(2)	25(1)	-3(1)	5(1)	3(1)
C(8)	28(1)	21(1)	23(1)	2(1)	0(1)	-3(1)
C(9)	21(1)	20(1)	17(1)	5(1)	-1(1)	-1(1)
C(10)	18(1)	19(1)	19(1)	2(1)	0(1)	-2(1)
C(11)	18(1)	20(1)	13(1)	-1(1)	2(1)	2(1)
C(12)	20(1)	14(1)	15(1)	-1(1)	1(1)	1(1)
C(13)	19(1)	17(1)	14(1)	-4(1)	1(1)	1(1)
C(14)	22(1)	19(1)	17(1)	-2(1)	1(1)	5(1)
C(15)	21(1)	25(2)	18(1)	-5(1)	-4(1)	4(1)
C(16)	21(1)	25(2)	23(1)	-6(1)	1(1)	-2(1)
C(17)	20(1)	18(1)	18(1)	-1(1)	1(1)	1(1)
C(18)	19(1)	19(1)	14(1)	-3(1)	2(1)	3(1)
C(19)	17(1)	18(1)	17(1)	-4(1)	1(1)	4(1)
C(20)	19(1)	19(1)	19(1)	1(1)	3(1)	3(1)
C(21)	22(1)	28(2)	17(1)	3(1)	-1(1)	9(1)
C(22)	21(1)	29(2)	19(1)	-2(1)	-3(1)	5(1)
C(23)	18(1)	21(1)	22(1)	-1(1)	2(1)	1(1)
C(24)	19(1)	16(1)	15(1)	-2(1)	2(1)	3(1)

	Х	У	Z	U(eq)
H(2A)	-2255	2880	921	23
H(2B)	-434	3854	863	23
H(3A)	-2110	4586	1505	23
H(4A)	1062	4708	1805	20
H(7A)	-3939	4903	2280	35
H(7B)	-3700	4327	2797	35
H(7C)	-5248	3692	2441	35
H(8A)	-1215	1400	2436	37
H(8B)	-3536	1489	2539	37
H(8C)	-1991	2128	2895	37
H(9A)	4565	3879	503	23
H(9B)	2294	3526	423	23
H(11A)	4623	1304	1474	20
H(11B)	2715	436	1366	20
H(12A)	5450	-317	353	20
H(14A)	1048	-229	144	23
H(15A)	-1352	-1854	114	25
H(16A)	-923	-3783	526	27
H(17A)	1865	-4097	1000	23
H(20A)	5210	-3869	1520	23
H(21A)	8038	-3196	1923	27
H(22A)	9468	-1191	1769	28
H(23A)	8148	156	1188	24

Table 5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10^3) for ys155r_0m.

S47

S53

S68

S79

S80

S86

13C OBSERVE

S100

S108

The chromatograms for the determination of enantioselectivity

GC Cond.: Column: Chiraldex B-DM (Cat. No. 77023), Adv. Separation Technologies, Inc. Oven: 100 °C; Carrier: Helium, head pressure 25 psi; Detection: FID 250 °C. Racemic Chiral

Table 2, Entry 3 Do `*n-*Pr

Peak

Name

Totals

No

1

2

GC Cond.: Column: Chiraldex B-DM (Cat. No. 77023), Adv. Separation Technologies, Inc. Oven: 105 °C; Carrier: Helium, head pressure 25 psi; Detection: FID 250 °C.

Result

0

50.5073

49.4927

100.0000

Ret.

Time

(min)

12.648

13.016

Area

(counts)

186641

182892

369533

_2

Chiral

12.8645 13.091 41024	Totals	100.0000		318891
	 	12.8645	13.091	41024

41024

S115

Table 2, Entry 8

i-Pr HPLC Cond.: Column: Chiralcel OD (Column No. OD00CE-DL010), Daicel Chemical Industries, Ltd. Eluent: Hexanes/IPA (98/2); Flow rate: 0.75 mL/min; Detection: UV220 nm. Racemic Chiral

Peak No	Ret. Time (min)	Result ()	Minutes Area (counts)		
1	7.347	49.7765	12321675		
2	8.561	50.2235	12432322		
		100.0000	24753996		

Peak No	Ret. Time (min)	Result ()	Area (counts)		
1	7.589	90.7719	18586268		
_2	8.924	9.2281	1889533		
		100.0000	20475800		

Table 2, Entry 12

FO

GC Cond.: Column: Chiraldex B-DM (Cat. No. 77023), Adv. Separation Technologies, Inc. Oven: 80 °C; Carrier: Helium, head pressure 25 psi; Detection: FID 250 °C. Racemic Chiral

Peak No	Peak Name	Result ()	Ret. Time (min)	Area (counts)	
1		94.1314	21.194	38159	
2		5.8686	22.849	2379	
	Totals	100.0000		40538	

GC Cond.: Column: Chiraldex B-DM (Cat. No. 77023), Adv. Separation Technologies, Inc. Oven: 125 °C; Carrier: Helium, head pressure 25 psi; Detection: FID 250 °C. Racemic Chiral

	Minutes					Minutes			
Peak No	Peak Name	Result ()	Ret. Time (min)	Area (counts)	Peak No	Peak Name	Result ()	Ret. Time (min)	Area (counts)
1		50.0562	7.894	136401	1		20.0045	7.959	20973
2		49.9438	8.526	136095	2		79.9955	8.574	83869
	Totals	100.0000		272496		Totals	100.0000		104842

HPLC Cond.: Column: Chiralcel OD (Column No. OD00CE-DL010), Daicel Chemical Industries, Ltd. Eluent: Hexanes/IPA (90/10); Flow rate: 1.0 mL/min; Detection: UV254 nm. Racemic Chiral

Table 3, Entry 4

HPLC Cond.: Column: Chiralcel OD (Column No. OD00CE-DL010), Daicel Chemical Industries, Ltd. Eluent: Hexanes/IPA (90/10); Flow rate: 1.0 mL/min; Detection: UV220 nm. Racemic Chiral

S126