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2 Modeling groups contributing to IPCC database

At the time this research was conducted, 15 modeling groups had performed a wide

range of simulations in support of the Fourth Assessment Report of the Intergovern-

mental Panel on Climate Change (IPCC AR4). Climate data from these simulations

were made available to the scientific community through the U.S. Dept. of Energy’s

Program for Climate Model Diagnosis and Intercomparion (PCMDI). Six modeling

groups provided column-integrated water vapor and SST results for at least two dif-

ferent model configurations. Results from a total of 22 different climate models were

analyzed.

We considered two sets of simulations here: pre-industrial control runs, and

20CEN experiments with historical changes in a number of different anthropogenic

and natural forcings. In IPCC terminology, these integrations are referred to as “pic-

ntrl” and “20c3m” (respectively).

Official designations of the 15 modeling groups that supplied W data are listed

below (with model acronyms in brackets):

1. Bjerknes Center for Climate Research, Norway [BCCR-BCM2.0].

2. Canadian Centre for Climate Modelling and Analysis, Canada [CCCma-CGCM3.1(T47)

and CCCma-CGCM3.1(T63)].

3. National Center for Atmospheric Research, U.S.A. [CCSM3 and PCM].
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4. Météo-France/Centre National de Recherches Météorologiques, France [CNRM-CM3].

5. Commonwealth Scientific and Industrial Research Organization (CSIRO) Atmospheric

Research, Australia [CSIRO-Mk3.0].

6. Max-Planck Institute for Meteorology, Germany [ECHAM5/MPI-OM].

7. Meteorological Institute of the University of Bonn, Meteorological Research Institute

of the Korean Meteorological Agency, and Model and Data group, Germany/Korea

[MIUB/ECHO-G].

8. Institute for Atmospheric Physics, China [FGOALS-g1.0].

9. Geophysical Fluid Dynamics Laboratory, U.S.A. [GFDL-CM2.0 and GFDL-CM2.1].

10. Goddard Institute for Space Studies, U.S.A. [GISS-AOM, GISS-EH, and GISS-ER].

11. Institute for Numerical Mathematics, Russia [INM-CM3.0].

12. Institute Pierre Simon Laplace, France [IPSL-CM4].

13. Center for Climate System Research, National Institute for Environmental Studies,

and Frontier Research Center for Global Change, Japan [MIROC-CGCM2.3.2(medres)

and MIROC-CGCM2.3.2(hires)].

14. Meteorological Research Institute, Japan [MRI-CGCM2.3.2].

15. Hadley Centre for Climate Prediction and Research, U.K. [UKMO-HadCM3 and

UKMO-HadGEM1].
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3 Forcings used in 20CEN runs

Details of the natural and anthropogenic forcings used by differing modeling groups

in their IPCC 20CEN simulations are given in Table S1. This Table was compiled

using information that participating modeling centers provided to PCMDI.1 All model

acronyms used in the Table are defined in the previous Section.

A total of 11 different forcings are listed in Table S1. A letter ‘Y’ denotes inclusion

of a specific forcing. As used here, ‘inclusion’ signifies the specification of time-varying

forcings, with changes on interannual and longer timescales. Forcings that were varied

over the annual cycle only, or not at all, are identified with a dash. A question mark

indicates a case where there is uncertainty regarding inclusion of the forcing.

Results in Table S1 are stratified by inclusion or omission of volcanic forcing (V

or No-V, respectively). Ten of the twelve V models explicitly incorporated volcanic

aerosols. Two V models – MRI-CGCM2.3.2 and MIUB/ECHO-G – represented vol-

canic effects in a more indirect manner, using estimated volcanic forcing data from

(S5) and (S6) (respectively) to adjust the solar irradiance at the top of the model

atmosphere. The V versus No-V partitioning also separates models with ‘total’ exter-

nal forcing (natural plus anthropogenic) from models with primarily anthropogenic

forcing.

1See http://www-pcmdi.llnl.gov/ipcc/model documentation/ipcc model documentation.php.
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While all 15 modeling groups used very similar changes in well-mixed greenhouse

gases, the changes in other forcings were not prescribed as part of the experimental

design. In practice, each group employed different combinations of 20th century

forcings, and often used different datasets for specifying individual forcings. End

dates for the experiment varied among groups, and ranged from 1999 to 2003.

4 Calculation of Model Quality Metrics

Model quality metrics were calculated after regridding model water vapor and SST

data to the target grids of the SSM/I and ERSST observational data. This regridding

step also involves masking (see Section 5.1).

Comparisons between modeled and observed quantities are based on model data

from the 20CEN experiments rather than the pre-industrial control runs. This choice

was made because model-versus-observed variability comparisons can be influenced by

the neglect of historical changes in external forcings, particularly the volcanic aerosol

forcing. Such forcing changes are included in many of the 20CEN simulations, but

are not incorporated in the control runs.2

2Our results suggest that the inclusion of combined natural and anthropogenic external forcings

in 20CEN runs leads to closer agreement with observed water vapor and SST data (relative to the

agreement obtained in 20CEN runs with anthropogenic forcing only). In all six sets of rankings

shown in Fig. 4, at least 7 of the top 10 models included volcanic forcing. These results are
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In the following, we provide a brief introduction to the statistical notation used

in the discussion of metrics.

4.1 Statistical notation

Subscripts

m Subscript denoting model data

o Subscript denoting observational data

W Subscript denoting metric computed with water vapor data

T Subscript denoting metric computed with SST data

Indices

i Index over number of 20CEN realizations for jth model

j Index over number of models

k Index over number of regions

l Index over number of timescales in variability analysis

x Index over number of grid-points

t Index over time (months or years)

consistent with previous work that has demonstrated the existence of volcanically-induced signals in

the temporal variability of ocean heat content, SSTs, and precipitation (S7–S9). It is more difficult

to interpret why the inclusion of volcanic forcing information appears to enhance model performance

in simulating the observed mean state and annual cycle (Fig. 4A). It is unclear whether this is a

real physical effect, or a reflection of systematic differences in the quality of the V and No-V models.
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Summation limits

Nr(j) Number of 20CEN realizations for jth model (varies from 1-9)

Nm Number of models (22)

Nk Number of regions (5)

Nl Number of timescales for variability analysis (3 for SST, 2 for W )

Nx(k) Number of grid-points (varies with region k)

Np(k) Number of grid-points ×12 (Np(k) = Nx(k) × 12)

Nt Number of time points (months or years)

Averaging notation

<> Spatial average

Average over 20CEN realizations (single overbar)

Average over 20CEN realizations and models (double overbar)

̂ Average over statistics (hat)

• Average over time

Anomalies

′ Monthly-mean anomalies w.r.t. climatological annual means (prime)

′′ Monthly-mean anomalies w.r.t. climatological monthly means (double prime)

Metrics

α Bias metric

β Annual cycle metric

φ Variability amplitude metric
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ϕ Variability pattern metric

α̂ Average of 10 different bias metrics

β̂ Average of 10 different annual cycle metrics

φ̂ Average of 25 different variability amplitude metrics

ϕ̂ Average of 25 different variability pattern metrics

Q̂1 Average of 20 different mean state and annual cycle metrics

Q̂2 Average of 50 different variability amplitude and variability pattern metrics

Q̂3 Average of 70 different mean state, annual cycle, and variability metrics

4.2 Mean State Metrics

As described in the main text, we calculated 10 mean state metrics (two variables ×

five regions). Each mean state metric is a normalized measure of the absolute value of

the model bias. We refer to these bias metrics subsequently as α
W

(for water vapor)

and α
T

(for SST). Here, we limit the discussion to α
W

, and note that αT is calculated

in an analogous way.

For the ith 20CEN realization of the jth model, the absolute bias in water vapor

is defined as:

δ
W
(i, j, k) = | <Wm(i, j, k)> − <Wo(k)> | (1)

i = 1, . . . , Nr(j); j = 1, . . . , Nm; k = 1, . . . , Nk
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where < Wm(i, j, k) > and < Wo(k) > are values of modeled and observed climato-

logical annual mean water vapor, spatially-averaged over the kth region. The period

used for calculating climatological annual means is January 1988 to December 1999

for water vapor3 and January 1961 to December 1990 for SST.4 We then compute (for

each model for which multiple 20CEN realizations are available) the ensemble-mean

absolute bias:

δ
W

(j, k) =
1

Nr(j)

Nr(j)∑
i=1

δ
W
(i, j, k) (2)

j = 1, . . . , Nm; k = 1, . . . , Nk

The multi-model average bias, δ
W

(k), is defined as:

δ
W

(k) =
1

Nm

Nm∑
j=1

δ
W

(j, k) (3)

k = 1, . . . , Nk

The inter-model standard deviation of the ensemble-mean absolute bias is given by:

s{δ
W

(k)} =

 1

Nm − 1

Nm∑
j=1

(
δ

W
(j, k) − δ

W
(k)

)2
1/2

(4)

k = 1, . . . , Nk

3This is the period of maximum overlap between the 20CEN simulations and the SSM/I obser-

vational dataset.

4This is a frequently-used observational reference period, and a time of relatively stable observa-

tional coverage.
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Next, we normalize the absolute bias for the jth model and kth region by the inter-

model standard deviation of the bias:

α
W

(j, k) = δ
W

(j, k) / s{δ
W

(k)} (5)

j = 1, . . . , Nm; k = 1, . . . , Nk

This normalization step enables us to combine information from two different climate

variables (water vapor and SSTs), and will later allow us to combine different types of

statistical information (on model performance in simulating the mean state, annual

cycle, and variability).

Finally, for each model, we compute the average normalized bias over the five

regions and two variables:

α̂(j) =
1

Nk × 2

 Nk∑
k=1

α
W
(j, k) +

Nk∑
k=1

α
T
(j, k)

 (6)

j = 1, . . . , Nm

where the ̂ indicates an average over statistics. By definition, α̂(j) does not provide

information about the direction of model biases.

4.3 Annual Cycle Metrics

As in the case of the mean state, there are 10 annual cycle metrics, one for each

variable (W and SST) and region. At each grid-point in the kth region, climatolog-
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ical monthly means are computed over the same time periods used to estimate the

absolute biases (i.e., over 1988-1999 for W and 1961-1990 for SST). This yields 12

climatological monthly-mean patterns. The climatological annual-mean pattern is

subtracted from each of the 12 climatological monthly-mean patterns, and the result-

ing 12 anomaly fields are then concatenated. To simplify the notation, the model

and observed concatenated anomaly patterns are represented by W
′
m(i, j, k, x) and

W
′
o(k, x), where the prime denotes monthly anomalies relative to the climatological

annual mean, the index x runs from 1 to Np(k), and Np(k) = Nx(k) × 12, where

Nx(k) is the number of grid-points for the kth region.

Next, we compute the pattern correlation r
W
(i, j, k) between the modeled and

observed anomaly fields:

r
W

(i, j, k) =

∑Np(k)
x=1 W

′
m(i, j, k, x) W

′
o(k, x)

[
∑Np(k)

x=1 W
′
m(i, j, k, x)2]1/2 [

∑Np(k)
x=1 W

′
o(k, x)2]1/2

(7)

i = 1, . . . , Nr(j); j = 1, . . . , Nm; k = 1, . . . , Nk

Note that since the (local) climatological annual mean has been subtracted at each

grid-point, the overall spatio-temporal mean of the concatenated monthly-mean anomaly

field is zero for both the model and observational fields.

As in the case of the absolute bias, we calculate the ensemble-mean value of the pat-

tern correlation statistic for each individual model, r
W

(j, k), the multi-model average

pattern correlation statistic, r
W

(k), and the inter-model standard deviation of the
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ensemble-mean pattern correlation, s{r
W

(k)} [see equations (2)-(4)].

The normalized pattern correlation statistic for the jth model and kth region is

given by:

β
W

(j, k) = [ r
W

(k) − r
W

(j, k)] / s{r
W

(k)} (8)

j = 1, . . . , Nm; k = 1, . . . , Nk

Unlike α
W

, β
W

provides directional information – i.e., a negative (positive) value of

β
W

indicates that the pattern correlation between the simulated and observed spatial

anomaly fields is larger (smaller) than r
W

(k), the multi-model average value of the

pattern correlation.

The average normalized pattern correlation over the five regions and two variables,

β̂
W

(j, k), is then defined in a similar way to the average of the normalized bias statistic

[see equation (6)].

4.4 Variability Amplitude Metrics

Variability amplitude metrics are calculated with monthly-mean values of modeled

and observed water vapor and SST, spatially-averaged over the kth region. We define

anomalies relative to climatological monthly means over January 1988 to December

1999 for water vapor and over January 1961 to December 1990 for SST. The raw

anomalies provide information on the monthly variability of W and SST. We also
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smooth the raw anomalies with a digital filter frequently used in data assimilation

studies (S10). The selected half-power points for the filter were at two and ten years,

which allows us to obtain information on model errors in simulating the observed

interannual and decadal timescale variability.

In the following, the index l denotes the timescale of the variability analysis, with

l = 1, 2 for water vapor (1 = monthly, 2 = interannual) and l = 1, 2, 3 for SST (3 =

decadal). We compare simulated and observed decadal-timescale variability for SST

data only, since the SSM/I water vapor data are of insufficient length to obtain a

meaningful estimate of the observed decadal variability.

The temporal standard deviation of the raw or digitally filtered model anomalies

is given by:

s{<W ′′
m(i, j, k, l)>} =

[
1

Nt − 1

Nt∑
t=1

(<W ′′
m(i, j, k, l, t)> − <W ′′

m(i, j, k, l, •)>)
2

]1/2

(9)

i = 1, . . . , Nr(j); j = 1, . . . , Nm; k = 1, . . . , Nk; l = 1, . . . , Nl

where the • denotes an average over time, and the double primes indicate anomalies

relative to climatological monthly means. Here, Nt (the total number of months used

for calculating temporal standard deviations) is 144 for water vapor (January 1988 to

December 1999) and 1200 for SST (January 1900 to December 1999). The temporal

standard deviation of the observed water vapor data, s{< W
′′
o (k, l) >}, is defined

similarly.
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As in the study by Gleckler et al. (S11), we calculate a ‘symmetric’ variability

statistic, which has the same numeric values for a model that simulates half and twice

the observed variability:

φ
W

(i, j, k, l) =

s{<W
′′
m(i, j, k, l)>}

s{<W
′′
o (k, l)>}

− s{<W
′′
o (k, l)>}

s{<W
′′
m(i, j, k, l)>}


2

(10)

i = 1, . . . , Nr(j); j = 1, . . . , Nm; k = 1, . . . , Nk; l = 1, . . . , Nl

This property is particularly desirable in the context of detection and attribution

studies, where systematic model underestimation of the observed variability is of more

concern than overestimation of observed variability (since underestimation enhances

the likelihood of incorrect identification of an anthropogenic fingerprint). If we had

applied a more traditional variance ratio statistic (such as an F ratio), the fractional

error in the variance for a model with twice the observed variability would be twice

as large as the fractional error for a model with half the observed variability. Use

of such a statistic would have resulted in a different ranking of model performance.

Note that φ
W

does not provide directional information on model variability errors,

and has a value of zero if the model and observed temporal standard deviations are

identical.

Calculation of the ensemble-mean, the multi-model average, and the inter-model

standard deviation of the statistic values ( φ
W

(j, k, l), φ
W

(k, l), and s{φ
W

(k, l)}, re-

spectively) proceeds as described for the absolute bias [see equations (2)-(4)]. Normal-
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ization of the variability amplitude statistic is also as in the case of the bias statistic

[see equation (5)]:

φ
W

(j, k, l) = φ
W

(j, k, l) / s{φ
W

(k, l)} (11)

j = 1, . . . , Nm; k = 1, . . . , Nk; l = 1, . . . , Nl

For each model, values of the variability amplitude statistic are then averaged over

variables, regions, and timescales:

φ̂(j) =
1

[Nk ×Nl(W )] + [Nk ×Nl(T )]

 Nk∑
k=1

Nl(W )∑
l=1

φ
W

(j, k, l) +
Nk∑
k=1

Nl(T )∑
l=1

φ
T
(j, k, l)


(12)

j = 1, . . . , Nm

As noted above, the number of timescales considered is not the same for water vapor

and SST, so that Nl(W ) = 2 and Nl(T ) = 3. Since Nk (the number of regions con-

sidered) is 5, φ̂(j) represents an average over 25 different sets of variability amplitude

statistics.

4.5 Variability Pattern Metrics

These metrics provide information on the similarity between modeled and observed

spatial fields of temporal variability. The anomalies used for calculating temporal

standard deviation fields are defined exactly as for the variability amplitude metrics.
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In the case of the variability pattern metrics, however, anomalies are defined at indi-

vidual grid-points (relative to local climatological monthly means) rather than for the

spatial average. For metrics involving patterns of interannual and decadal variability,

the digital filtering of anomaly data was performed as described in Section 4.4.

At each grid-point in the kth region, we compute the temporal standard deviation

of the raw or filtered anomaly data [see equation (9)]. The resulting standard devia-

tion patterns are ‘centered’ on the spatial means of the two fields being compared, and

the pattern correlation between these fields is calculated as in equation (7).5 As for

the bias, annual cycle, and variability amplitude statistics, we normalize each model’s

variability pattern correlation metric by a measure of the inter-model variability in

the metric values:

ϕ
W

(j, k, l) = [ r
W

(k, l) − r
W

(j, k, l)] / s{r
W

(k, l)} (13)

j = 1, . . . , Nm; k = 1, . . . , Nk; l = 1, . . . , Nl

where the ensemble-mean, multi-model average, and inter-model standard deviation

of the pattern correlation statistic are given by r
W

(j, k, l), r
W

(k, l), and s{r
W

(k, l)},

respectively [see equations (2)-(4)]. This is the same normalization that was used

for the correlation between the simulated and observed annual cycle patterns [see

equation (8)]. For each model, the average of the 25 sets of normalized variability

5With the exception that the summation is now over Nx(k) rather than over Np(k) spatial points,

since we are no longer dealing with 12 concatenated monthly-mean fields.
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pattern statistics, ϕ̂(j), is then determined as in equation (12).

4.6 Combining Metrics

As noted in the main text, our detection and attribution analysis is performed with

different subsets of the full 22 models used by Santer et al. in their original D&A

study (S12). These subsets of ‘top ten’ and ‘bottom ten’ models are determined on

the basis of three different sets of model quality metrics (and on two different ranking

approaches).

The first metric used in our overall ranking of models, Q̂1, is based on the mean

state and annual cycle metrics:

Q̂1(j) =
1

2

[
α̂(j) + β̂(j)

]
(14)

j = 1, . . . , Nm

where α̂(j) and β̂(j) are (respectively) the averages of the normalized statistic values

of the 10 mean state and 10 annual cycle metrics for the jth model (see Sections 4.2

and 4.3).

Our second ranking metric, Q̂2, is a measure of overall model performance in

simulating the observed amplitude and pattern of variability:

Q̂2(j) =
1

2

[
φ̂(j) + ϕ̂(j)

]
(15)
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j = 1, . . . , Nm

where φ̂(j) and ϕ̂(j) are (respectively) the averages of the normalized statistic values

of the 25 variability amplitude and 25 variability pattern metrics (see Sections 4.4

and 4.5).

The third and final overall ranking metric, Q̂3, is simply the average of the nor-

malized statistic values of the 70 individual model quality metrics – i.e., the metrics

for the mean state (10), annual cycle (10), variability amplitude (25), and variability

pattern (25):

Q̂3(j) =
1

70

 Nk∑
k=1

α
W

(j, k) +
Nk∑
k=1

α
T
(j, k) +

Nk∑
k=1

β
W

(j, k) +
Nk∑
k=1

β
T
(j, k) +

Nk∑
k=1

Nl(W )∑
l=1

φ
W

(j, k, l) +
Nk∑
k=1

Nl(T )∑
l=1

φ
T
(j, k, l) +

Nk∑
k=1

Nl(W )∑
l=1

ϕ
W

(j, k, l) +
Nk∑
k=1

Nl(T )∑
l=1

ϕ
T
(j, k, l)


(16)

j = 1, . . . , Nm

In what we refer to as our ‘parametric ranking’ procedure, the 22 CMIP-3 models

are ranked in three different ways, based on their values of Q̂1, Q̂2, and Q̂3. To

determine the ‘top ten’ and ‘bottom ten’ models in each of the three parametric
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ranking cases, values of the ranking statistics are sorted and arranged from smallest

to largest. The ten models with the smallest (largest) values of the ranking statistic

are designated as the ‘top ten’ (‘bottom ten’).6

In our non-parametric ranking procedure, models are ranked from 1 to 22 for

each of the 70 model quality metrics. Next, we average the ranks (rather than the

statistic values) for the same three sets of metrics used in the parametric ranking:

i.e., for the 20 mean state and annual cycle diagnostics, the 50 variability amplitude

and variability pattern diagnostics, and the 70 combined diagnostics. In each of

these three cases, the average rank is used to sort the individual models, and thus to

determine the three sets of ‘top ten’ and ‘bottom ten’ models.

As discussed in the main text, the parametric and non-parametric ranking ap-

proaches yield similar but not identical results. The former is more sensitive to

outliers, so that poor model performance in a relatively small number of metrics can

have a large impact on the model’s overall parametric rank.

Three general points should be made regarding our strategy for ranking models.

First, we emphasize that the metrics used in our ranking strategy were selected for a

very specific application – determining which models were most skillful in capturing

6The bias statistic α and variability amplitude statistic φ were defined so that smaller statistic

values denote smaller model errors (see Sections 4.2 and 4.4). Similarly, negative values of the annual

cycle statistic β and variability pattern statistic ϕ indicate smaller model errors in simulating the

observed annual cycle and variability patterns (see Sections 4.3 and 4.5).
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aspects of the observed climate that are likely to be important in a water vapor D&A

study. Other sets of metrics would be required for other applications, and would yield

different model rankings.

Second, we have not made any explicit judgements about the importance of the

individual metrics we have used. All are assigned equal weight. There is, however,

an implicit weighting of metrics in the model ranking based on the 70 combined

diagnostics, since we are considering more variability diagnostics (50) than mean

state (10) or annual cycle diagnostics (10). We believe that this implicit weighting is

justifiable, since model errors in the amplitude and/or structure of natural internal

variability are of particular concern in D&A studies.

Third, rankings determined with absolute model errors would be different from

those shown here. Our decision to base rankings on normalized errors was motivated

by the desire to combine information on model performance from different variables,

regions, timescales, and statistical quantities. Combining such diverse information

would have been much more difficult to achieve (at least in a parametric ranking

scheme) with 70 different sets of absolute errors.
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5 Fingerprint analysis

5.1 Regridding and masking of data

Model results were available on different grids (Table S2). To calculate fingerprints

from the multi-model averages of the water vapor changes in the 20CEN runs, and

to obtain ‘pooled’ noise estimates from the concatenated control integrations, we

regridded 20CEN and control run W data from all 22 models to a common 10◦× 10◦

latitude/longitude grid. Regridding to a relatively coarse-resolution grid reduces the

spatial dimensionality of the input datasets, which is of benefit in the estimation of

Empirical Orthogonal Functions (EOFs) used in the fingerprint analysis. Because

changes in W tend to be smoothly varying, regridding does not lead to appreciable

loss of information on the spatial structure of the leading signal or noise modes.

Each model has a ‘mask’, Mm(j, x), of the ocean fraction on the original model

grid. We use the same statistical terminology employed in the discussion of metrics:

j is an index over the number of models, and x is an index over the total number

of model grid-points (see Section 4.1). Since observed W data were available over

ocean only, each model’s land W values had to be appropriately masked out in the

regridding process – i.e., any land grid-points within a given 10◦ × 10◦ ‘target’ grid

cell were excluded from the calculation of the ocean W value for the target grid cell.

For each model, we calculated the ocean fraction at every target grid cell. Global-
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mean values of these fractions are generally different across models, reflecting differ-

ences in the original land/sea masks. Observed W data and their associated ocean

fraction were also transformed to the same 10◦ × 10◦ target grid.

5.2 Definition of fingerprint

Let S(i, j, x, t) represent annual-mean W data at grid-point x and time t from the

ith realization of the jth model’s 20CEN experiment. Here, i = 1, . . . Nr(j), j =

1, . . . Nm, x = 1, . . . Nx, and t = 1, . . . Nt. Data are expressed as anomalies relative

to the smoothed initial state (1900-1909) of the experiment.

The total time in years is Nt = 100 (since all 20CEN experiments cover the

common period 1900 to 1999), and the total number of model grid points for the

50◦N-50◦S domain used in the D&A analysis is Nx = 287 (after regridding to the

common 10◦× 10◦ latitude/longitude grid and masking out land points). Because we

are dealing with 10-member subsets of the 22 CMIP-3 models, Nm = 10.

The multi-model average water vapor change, S(x, t), was calculated by first av-

eraging over an individual model’s 20CEN realizations (where multiple realizations

were available; see Table S2), and then averaging over models [see equations (2) and

(3)]. Since the individual model land/sea masks are not identical after regridding,

the number of models contributing to the multi-model averages varies near coastlines

and in the vicinity of islands.
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Finally, we calculated the EOFs of S(x, t). The fingerprint F (x) is simply the first

EOF of the multi-model average water vapor change. F (x) explains at least 88% of the

overall variance in each of the 12 fingerprints shown in Fig. 5, and primarily captures

the large simulated increase in water vapor over the 20th century (not shown).

In calculating the EOFs of S(x, t), we had to account for inter-model differences

in Mm(j, x), the regridded ocean fraction. We did this in the following way. First, the

regridded Mm(j, x) values were set to zero at any grid cell with less than 1% ocean

coverage. We then computed Mm(x), the geometrical mean of the ocean fraction for

the current 10-member subset of models. Use of the geometrical mean excludes areas

in which any model has zero ocean fraction.

Since the regridded ocean fraction for the observations, Mo(x), may differ from

that of Mm(x), we also need to calculate the ‘overall’ geometrical mean ocean fraction,

Mtot(x), which is the geometrical mean of Mm(x) and Mo(x). Use of Mtot(x) ensures

that all EOF calculations (and all calculations in the subsequent determination of

detection time) are performed on a common grid, with a common land/sea mask.

Appropriate weights are carried throughout the EOF analysis. For each grid cell, the

weight is the product of the ‘overall’ geometrical mean ocean fraction and the grid

cell’s area weight.
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5.3 Calculation of concatenated noise datasets

As described in the main text, we generated 12 different noise datasets by concate-

nating W data from individual control runs. For example, consider ‘Test 1’ in Fig. 6,

which involves the models identified as being within the “top ten” using the M+AC

metrics and the non-parametric ranking procedure. For each of the 10 model control

runs, we first regridded annual-mean W data to the same target 10◦×10◦ grid used for

fingerprint estimation. Inspection of the spatially-averaged W values revealed that a

number of control runs show evidence of residual non-physical drift (S12). Since this

drift can bias D&A results, its removal is advisable.

Various drift removal strategies are possible. Here, we assume that drift behavior

of column-integrated precipitable water can be well-approximated by a least-squares

linear trend. This assumption is not unreasonable for most control runs. In the

case of the GISS-EH control run, however, the drift is strongly non-linear, with very

large precipitable water changes in the first 20 years, and much smaller drift over

the remaining 380 years of integration (Fig. S1A). Since this initial drift is clearly

unphysical and unrepresentative of real-world natural internal variability, we decided

to discard the first 20 years of the GISS-EH control run. A linear trend fitted to the

remaining 380 years of control run data then provides a much better representation

of overall drift behavior (Fig. S1B).

After removing the overall linear trend at each grid point in each model control
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run, we concatenated the regression residuals to form the noise dataset C(x, tj). The

index tj indicates that there is now a single concatenated time dimension, with time

as a function of the model number j. In the ‘Test 1’ example, there are a total of

4,267 years of control run data.

In calculating the EOFs of C(x, tj), we used the geometrical mean ocean fraction

mask appropriate for this specific subset of 10 models (see Section 5.2). The first

EOF of C(x, tj) (which is displayed in Fig. S2A) explains 35% of the total variance

of the concatenated control run data.

5.4 Method for estimating signal-to-noise ratios and detec-

tion time

In the following, we assume for illustrative purposes that both the fingerprint and

the concatenated noise data have been obtained from the above-described ‘Test 1’

models (i.e., the “top ten” models selected on the basis of the M+AC metrics and

non-parametric ranking; see Fig. 6). Note also that our discussion deals solely with

fingerprints that have not been optimized in order to enhance S/N ratios.7

We begin with regridded annual-mean observational data, O(x, t) (from SSM/I),

and the concatenated noise data, C(x, tj). Observed data are expressed as anomalies

7This is because the focus of our original multi-model water vapor D&A study was on non-

optimized fingerprints (S12).



B. D. Santer et al. 26

relative to climatological annual means over the entire period for which we have

SSM/I data (1988 to 2008); control runs are detrended and concatenated as described

in Section 5.3. O(x, t) and C(x, tj) are then projected onto the fingerprint F (x),

yielding (respectively) a test statistic time series Z(t) and a ‘signal free’ time series

N(t). Z(t) has a length of 21 years, while N(t) in ‘Test 1’ is of length 4,267 years.

This projection step is performed 12 times, each time using the same observations

and the same C(x, tj) noise data from ‘Test 1’, but with a different estimate of the

fingerprint F (x) (see Fig. 5). In the results displayed in Fig. 6, we fit least-squares

linear trends of length L = 21 years to each of the 12 Z(t) time series, and then

compare these with the standard error of the distribution of non-overlapping L-length

trends in N(t). This is the S/N ratio. Because there are 12 different Z(t) time series

in ‘Test 1’, there are 12 different values of the S/N ratio. The colored bar in ‘Test 1’

represents the average of these 12 S/N ratios. The black error bar denotes the range

of the maximum and minimum S/N ratio values.

Comparing the size of the error bars with the size of the 12 colored bars provides

information on the relative contributions of fingerprint and noise uncertainty to the

estimated S/N ratios (Fig. 6). In the case of model ranking with the ‘ALLD’ perfor-

mance metrics, the effect of noise uncertainty is much larger than that of fingerprint

uncertainty. For ranking with the M+AC and VAVP metrics, however, fingerprint

and noise uncertainty are of comparable importance in terms of their impact on S/N.
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As in our previous work (S13), we estimate the detection time by fitting least-

squares linear trends of increasing length L to Z(t), and then comparing these with

the standard error of the distribution of non-overlapping L-length trends in N(t).

Detection is stipulated to occur when the trend in Z(t) exceeds and remains above the

5% significance level. The test is one-tailed, and we assume a Gaussian distribution

of trends in N(t). The start date for fitting linear trends to Z(t) is 1988, the first

complete year of the SSM/I data. We use a minimum trend length of ten years, so

the earliest possible detection time is in 1997. Our estimated detection times in the

12 sensitivity studies vary from 1999 to 2003. Full details of the detection method

are given elsewhere (S13).
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Fig. S1. Secular behavior of column-integrated water vapor anomalies in the GISS-EH control run. 
Results are monthly-mean anomalies of < W >, the spatial average of total atmospheric moisture over 
near-global oceans (50N-50S). Anomalies were defined with respect to climatological monthly means 
over the first 10 years of the integration. The drift over the entire 400 years of control run (A) is not well-
represented by an overall least-squares linear trend (the black line). After removal of the first 20 years of 
data, the slow residual drift over the remaining 380 years is well-described by a linear trend (B). 
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Fig. S2. As for Fig. 5, but for the leading water vapor noise mode estimated from the 12 different sets of 
concatenated control runs. The length of concatenated control run used for estimating the leading noise EOF 
varies from 3,820 to 4,267 years. The variance explained by the leading mode ranges from 30% to 43%. 
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Fig. S3. Leading EOF of water vapor calculated from 10 individual model control runs. Results are for Test 12 in 
Fig. 6, which involves the models identified as being within the “bottom ten” using the “ALLD” metrics and 
parametric ranking. The explained variance ranges from 11.9% to 69.5%. 
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Fig. S4. Comparison of water vapor principal component time series for “top ten” and “bottom ten” 
models. Results in A and B are for Test 9 and Test 10, respectively, in Fig. 6, which involves the models 
identified as being within the “top ten” and “bottom ten”, respectively, using the “ALLD” metrics and 
nonparametric ranking. The principal component time series are the projections of the Test 9 and Test 10 
concatenated control runs onto the multimodel fingerprints in Fig. 5 I and J, respectively. The time index is 
nominal. The dashed horizontal lines are measures of the observed variability, and represent the 1 temporal 
standard deviation of the projection of the SSM/I water vapor anomaly data onto the multimodel 
fingerprints. The brown vertical lines and numbers are visual aids to identify the 10 individual control runs 
that have been concatenated. 
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Table S1: Forcings used in IPCC simulations of 20th century climate change.

Model G O SD SI BC OC MD SS LU SO VL

1 CCSM3 Y Y Y - Y Y - - - Y Y

2 GFDL-CM2.0 Y Y Y - Y Y - - Y Y Y

3 GFDL-CM2.1 Y Y Y - Y Y - - Y Y Y

4 GISS-EH Y Y Y Y Y Y Y Y Y Y Y

5 GISS-ER Y Y Y Y Y Y Y Y Y Y Y

6 MIROC3.2(medres) Y Y Y Y Y Y Y Y Y Y Y

7 MIROC3.2(hires) Y Y Y Y Y Y Y Y Y Y Y

8 MIUB/ECHO-G Y - Y Y - - - - - Y Y

9 MRI-CGCM2.3.2 Y - Y - - - - - - Y Y

10 PCM Y Y Y - - - - - - Y Y

11 UKMO-HadCM3 Y Y Y Y - - - - - Y Y

12 UKMO-HadGEM1 Y Y Y Y Y Y - - Y Y Y

1 BCCR-BCM2.0 Y - Y - - - - - - - -

2 CCCma-CGCM3.1(T47) Y - Y - - - - - - - -

3 CCCma-CGCM3.1(T63) Y - Y - - - - - - - -

4 CNRM-CM3 Y Y Y - Y - - - - - -

5 CSIRO-Mk3.0 Y - Y - ? ? ? ? ? ? -

6 ECHAM5/MPI-OM Y Y Y Y - - - - - - -

7 FGOALS-g1.0 Y - Y ? - - - - - - -

8 GISS-AOM Y - Y - - - - Y - - -

9 INM-CM3.0 Y - Y - - - - - - Y -

10 IPSL-CM4 Y - Y Y - - - - - - -

G = Well-mixed greenhouse gases O = Tropospheric and stratospheric ozone

SD = Sulfate aerosol direct effects SI = Sulfate aerosol indirect effects

BC = Black carbon OC = Organic carbon

MD = Mineral dust SS = Sea salt

LU = Land use change SO = Solar irradiance

VL = Volcanic aerosols.

Table S1. Forcings used in IPCC simulations of 20th century climate change 

Forcings used in IPCC 20CEN simulations. Results are partitioned into V and No-V models (first 12 and 
last ten rows, respectively). A letter `Y' denotes inclusion of a specific forcing. A question mark indicates a 
case where there is uncertainty regarding inclusion of the forcing. G, well-mixed greenhouse gases; O, 
tropospheric and stratospheric ozone; SD, sulfate aerosol direct effects; SI, sulfate aerosol indirect effects; 
BC, black carbon OC, organic carbon; MD, mineral dust; SS, sea salt; LU, land use change; SO, solar 
irradiance; VL, volcanic aerosols. 
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Table S2: Technical details of IPCC 20CEN runs and pre-industrial control integra-

tions.

Model AGCM resolution Nr CTL1 CTLN L

1 CCSM3 T85 8 280 509 230

2 GFDL-CM2.0 2.0◦ × 2.5◦ 3 1 500 500

3 GFDL-CM2.1 2.0◦ × 2.5◦ 3 1 500 500

4 GISS-EH 4.0◦ × 5.0◦ 5 1900 2279 380

5 GISS-ER 4.0◦ × 5.0◦ 9 1901 2400 500

6 MIROC3.2(medres) T42 3 2300 2799 500

7 MIROC3.2(hires) T106 1 1 100 100

8 MIUB/ECHO-G T30 5 1860 2200 341

9 MRI-CGCM2.3.2 T42 5 1851 2200 350

10 PCM T42 4 451 1079 589

11 UKMO-HadCM3 2.5◦ × 3.75◦ 1 1800 2109 310

12 UKMO-HadGEM1 1.25◦ × 1.875◦ 2 1800 1919 120

1 BCCR-BCM2.0 T63 1 1850 2099 250

2 CCCma-CGCM3.1(T47) T47 5 1850 2850 1001

3 CCCma-CGCM3.1(T63) T63 1 1850 2199 350

4 CNRM-CM3 T63 1 1930 2429 500

5 CSIRO-Mk3.0 T63 3 1871 2250 380

6 ECHAM5/MPI-OM T63 4 2150 2655 506

7 FGOALS-g1.0 T42 3 1850 2199 350

8 GISS-AOM 3.0◦ × 4.0◦ 2 1850 2100 251

9 INM-CM3.0 4.0◦ × 5.0◦ 1 1871 2200 330

10 IPSL-CM4 2.5◦ × 3.75◦ 1 1860 2359 500

TOTAL - 71 - - 8838

Table S2. Technical details of IPCC 20CEN runs and pre-industrial control integrations 

Technical details of IPCC 20CEN runs and pre-industrial control integrations. The AGCM 
resolution is given for both spectral models (in terms of the triangular truncation; e.g., T30, 
T42, etc.) and grid-point models (in terms of the latitude-longitude spacing of grid-points). 
Nr is the number of realizations that were used for calculating 20CEN ensemble means. 
CTL1, CTLN, and L are (respectively) the first year, last year, and length (in years) of the 
pre-industrial control runs employed in the D&A analysis. Note that the start date of each 
control run is arbitrary. As described in Section 5.3, the first 20 years of the GISS-EH 
control run display large residual drift, and were therefore discarded. 




