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Simulation and Analysis Methods: 
 
Molecular dynamics simulations.  All simulations were run using Gromacs 4.0,1 the 
AMBER03 forcefield for proteins,2 and the GLYCAM forcefield for carbohydrates.3  
Topologies were prepared using LEAP and converted to Gromacs format using the 
amb2gmx script by Eric Sorin.  The crystal structure of hemagglutinin from H5N1 strain 
VN1194 (PDB code 2IBX)4 was used as the starting point for simulations; all mutations 
are with respect to this strain.  Because the available human H5 crystal structures did not 
contain ligand, starting coordinates for α2,3-sialyllactose were taken from an avian H5 
structure bound to LSTA (PDB code 1JSN)5 that was structurally aligned to the 2IBX 
structure using DaliLite6.  Only the crystallographically resolvable glycans were included 
in these simulations.  The wild-type VN1194 and each mutant tested were simulated for 
100ns (approximately 900 processor-days per simulation) using 64 processors of the 
Stanford BioX2 cluster (8-core Cloverton nodes connected via Infiniband).  An additional 
200 simulations of each protein trimer tested were also performed using Folding@Home.   
 
 Simulations were run using TIP3P water and 150 mM NaCl.  Box dimensions were 
100A x 100A x 150 A, allowing for approximately 41,100 water molecules depending on 
the particular mutant simulated.  Simulations were run with a 2 fs timestep, constraining 
hydrogen bonds using the LINCS algorithm.7  Temperature coupling was performed 
using the Berendsen method with a target temperature of 300K and a coupling constant of 
1 ps.  Periodic boundary conditions were employed with reaction-field electrostatics and 
a 1.2 nm cutoff for both van der Waals and coulomb interactions.  The dielectric constant 
of 60 used for reaction-field calculations corresponds to the dielectric of 150mM sodium 
chloride at 30C.  Additional simulation parameters are listed in Table S3.  A plot of root 
mean squared deviation (RMSD) from the 2IBX crystal structure versus time for the 
initial 100-ns simulation of H5N1 hemagglutinin is given in Figure S5. 
 
Mutual information analysis of dynamics.  Displacement magnitudes relative to the start 
of the simulation were calculated at 100 ps intervals and used as the input for mutual 
information calculations.  Displacements di(t) = |Xi(t) – Xi(0)| were calculated for all 
alpha carbons of the protein and all ligand atoms i based on simulation snapshots X(t) at 
each time t after rigid-body alignment to the starting structure using least-squares 
distance to the bound sialic acid residues as a target function. Mutual information was 
calculated using histogram estimates of the probability density function for di(t) with 10 
bins at even intervals from min(di(t), ∀t) to max(di(t), ∀t).  Sensitivity analyses of scoring 
versus selection of alignment group and number of histogram bins are presented in Figure 
S6.  Mutual information H(i,j) was calculated in Python based on Matlab code kindly 



 

S3 

provided by Relly Brandman and Yigal Brandman.  The normalized quantity, symmetric 
uncertainty  

! 

S(i, j) =
H(i, j)

H(i,i) + H( j, j)
,  

was used to measure relatedness in a fashion maximally independent from the magnitude 
of motion undergone by each residue.  Each residue i was then scored by excess mutual 
information 8 to the ligand relative to the protein: 

! 

Ei = S(i, j) " S(i,k)   
for each protein residue i, all ligand atoms j and all protein residues k≠i.  Because 
hemagglutinin is trimeric, Ei was measured for each residue relative to the bound ligand 
in the corresponding monomer and averaged over monomers.  The top 5% of residues 
were then selected for further analysis. 
 
Mutual information analysis of sequence data.  Sequence mutual information was 
calculated as previously described9 using a multiple sequence alignment of all available 
human and avian H5N1 hemagglutinin sequences as of July 2008.  Mutual information 
was calculated in a discrete fashion between each position in the alignment, and 
symmetric uncertainty was used as the scoring metric. Pairwise mutual information was 
calculated each residue position in the H5N1 multiple sequence alignment as follows:   

! 

I(i, j) = H(i) + H( j) "H(i, j)    

where 

! 

H(i) = "p(xi = a)
a#A

$ log p(xi = a)    

and  

! 

H(i, j) = "p(xi = a,x j = b)
b#A

$ log p(xi = a,x j = b)
a#A

$ ,  

for sequence positions i and j, where the variable xi represents the values of the multiple 
sequence alignment at position i.  Use of a substitution matrix to give varying mismatch 
probabilities according to the chemical similarity of the amino acids involved may add 
further sensitivity. 
 

Symmetric uncertainty10 was used to normalize the pairwise mutual information 
matrix as follows:  U(i,j)=2*I(i,j) / (I(i,i) + I(j,j)) for all positions i and j.  Single-linkage 
hierarchical clustering was performed in MATLAB using U as the distance metric and 
guaranteeing U(i,i) =1, all i.  The 99.9th percentile of all non-self symmetric uncertainty 
values was calculated, and the corresponding distance metric was used as a threshold for 
cluster identification.  Other recent work has developed the quantity MIp as a 
measurement of mutual information corrected for phylogenetic conservation 11.  We 
computed MIp and its overlap with dynamics MI but found that for hemagglutinin MI 
yielded results that had a clearer physical interpretation than did MIp (Figure S7). 
 
Generation of hemagglutinin point mutants.  Point mutants were generated based on 
structures of the VN1194:α2,3-sialyllactose complex using Modeller12.  Each mutant was 
energy-minimized, re-solvated, and then simulated in Gromacs as per the protocol 



 

S4 

described above.  Ligand dissociation was assessed by measuring the closest distance 
between the sialic-acid residue of the ligand and the sialic-acid binding pocket of the 
protein.  Binding-pocket residues were defined as all residues within 5A of the sialic acid 
for >50% of the 100-ns simulation of the VN1194-α2,3-sialyllactose complex; a distance 
threshold of 10A was used for dissociation.  As the protein and ligand did not have time 
to equilibrate properly in the unbound state, re-association was not assessed. 
 
Bayesian analysis of dissociation rates.  For each mutant m and each starting 
conformation X, we calculate the probability density function P(km | D, X, I) for the 
dissociation rate km given the simulation data D and the set of simulation conditions I.  
We approximate dissociation as a two-state reaction.  The simulation data D can then be 
represented as follows:  given N simulations, n of which lead to dissociation, we record 
the times of dissociation {t1..tn} and the time intervals in which no dissociation was 
observed {T1 .. TN-n}. Then,  

! 

P km |D,X,I( ) =
"n+1
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km

n
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for any two protein mutants 1 and 2 (a more complete derivation follows).  In addition to 
the 17 point mutants, we performed a set of “sham mutation” control experiments by 
running the mutation protocol given above using the wild-type VN1194 sequence; we use 
this dataset to evaluate the probability that each point mutation increases the dissociation 
rate relative to the wild-type complex.  Bootstrap resampling was performed over 
simulation trajectories using 100 samples, and significance testing of the resulting 
distributions of P(km > kw.t.) was performed using the Kolmogorov-Smirnov test and a 
Bonferroni multiple-hypothesis correction for the number of mutants, averaging over 
starting conformations.   
 
Derivation of probability that koff for any given mutant 1 is faster than koff for mutant 2.  
We approximate dissociation as a two-state reaction, so it can be represented as a single-
exponential process with probabilities: 

! 

Pdissociate t = " | k,X,I( ) = ke#k"

Pstay t = 0.." | k,X,I( ) = e#k"
 

We encapsulate a set of simulation data D = (N,n,{ti,d},{Ti}) as a group of N simulations, 
n of which lead to dissociation with times of dissociation {t1..tn}, and N-n of which do 
not dissociate over the observation time intervals {T1 .. TN-n}. Then,  
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Using a uniform prior for k, we obtain: 
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! 

P k |D,X,I( ) =
"

n+1

n!
k
n exp[#k"] 

 
Now consider two dissociation reactions, 1 and 2, with datasets D1 and D2.  We wish to 
predict the probability that k2 > k1.  We define a variable δ = k1 – k2 < 0. 
 

! 

P " |D,X,I( ) = P(k2 |D2,X,I)P(k1 |D1,X,I)dk20
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and P(k2 > k1) = P(δ < 0): 
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Figure S1.  Expected number of dissociation events detected.  The expected number 
of dissociation events detected in our simulations are plotted as a function of the ΔΔG‡ of 
a given mutant.  The plot in blue assumes a wild-type koff of 84 s-1, and the plot in red 
assumes a koff of 10-4 s-1.  Values are derived as follows: 
 
P(d) = 1-exp(-1*(koff,wt + exp(ΔΔGmut / kT) * t) 
for small time, 
P(d) ~= (koff,wt + exp(ΔΔGmut / kT ) * t) 
MLE # of events for n simulations each of length τ = n*τ* (koff,wt + exp((ΔΔGmut / 0.6) ) 
n * τ is taken as 1x10-4 s (e.g. 1000 samples of 100 ns).  The average value for n * τ in 
our mutant dataset is slightly lower, at 6.2x10-5 s.
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Figure S2. Probability distribution functions for mutant dissociation rates.  Plotted 
in (a-f) are probability distribution functions for the dissociation rate of each mutant 
tested, compared against the wild-type VN1194 hemagglutinin.  Dissociation rates are 
plotted relative to the maximum-likelihood estimate for the wild-type dissociation rate.  
The difference in probability distribution functions between the wild type and each of the 
three most significant mutants is highlighted. 
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Figure S3. Probability distribution functions for additional sampling of mutant 
dissociation.  Plotted are probability distribution functions for the dissociation rate of 
each mutant (blue lines) based on 33 different starting conformations each (3 from the 
crystal structure and 30 additional conformations selected at random from a 100-ns 
simulation.  Dissociation rates are plotted relative to the maximum-likelihood estimate of 
the wild-type dissociation rate.  Each of these plots represents sampling of 11-fold more 
starting conformations than the initial dataset, but analysis of p(koff,mutant > koff, wild-type) 
yields similar results.
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Figure S4.  Negative controls:  estimates of dissociation rate acceleration.  For each 
starting conformation (a-c) and each mutant, the probability that the mutant koff is faster 
than the wild-type VN1194 is plotted.  Bars represent 90% confidence intervals from 
bootstrap resampling. As expected from experimental measurements of whole-virus 
binding to sialylglycopolymers, neither mutant N197K nor S127P shows substantial 
acceleration of koff.), compared against the wild-type VN1194 hemagglutinin (black 
dotted lines).  
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Figure S5.  Root mean squared deviation from the crystal structure in a simulation 
of H5N1 hemagglutinin.  The root mean squared deviation is plotted as a function of 
time for a 100-ns simulation of the H5N1 VN1194 hemagglutinin trimer.  This simulation 
trajectory was used for calculation of mutual information values.  RMSD was calculated 
for all alpha-carbons in the trimer.
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Figure S6.  Sensitivity analysis of dynamics-mutual-information scoring to choice of 
alignment and number of histogram bins.  Plotted in (a) are excess mutual information 
values calculated using 10-bin histogram estimates versus 20-bin estimates.  The 
correlation coefficient is 0.90.  Plotted in (b) are excess mutual information values 
calculated using rigid-body alignment to the bound sialic acids versus to the protein 
residues comprising the binding pocket.  The correlation coefficient is 0.82. 
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Figure S7.  Identification of coordinated mutations using the MIp metric.  In panel 
(a), residues scoring among the top 0.1% of MIp pairs are rendered in green.  In panel 
(b), the two residues scoring both among the top 0.1% of MIp pairs and the top 5% via 
analysis of dynamics are rendered in yellow.  Experimentally identified ligand specificity 
mutation sites are rendered in red, the remainder of the hemagglutinin protein is rendered 
in blue, and a bound α2,3-sialyllactose is modeled in orange.  The one experimentally 
identified mutant also identified by MIp is rendered in magenta.  The crystal structure of 
VN1194, PDB code 2IBX, was used for the protein coordinates. 
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Residue Score 
    48     0.0719 
    49     0.0716 
    82     0.0755 
   100     0.0875 
   115     0.0713 
   133     0.0758* 
   134     0.0836 
   136     0.0850 
   138     0.0976* 
   139     0.1020 
   140     0.0788 
   141     0.0743 
   181     0.0716 
   182     0.0853 
   184     0.0720 
   201     0.0811 
   208     0.0840 
   213     0.0782 
   214     0.0770 
   224     0.0864 
   225     0.0963* 
   231     0.0723 
   250     0.0771 
   325     0.0733 
 
Table S1.  Top 5% of residues scored by excess mutual information to the ligand.  
Residues also identified experimentally are marked by an asterix.  Residues 184, 208, and 
231 also lie within the trimer interface region, which we define as residues having having 
a neighbor from another monomer within 5 A. 
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Mutation Log-likelihood of significance P(koff > kwild-type) 

E231A 2.0359 0.5317 
E231V 71.5566 0.7984 
E231S 0.0415 0.6105 
G134A 0 0.6728 
G134V 89.8379 0.8101 
S136A 103.8709 0.8687 
S136V 0 0.5494 
N224A 0 0.5190 
N224G 0.1662 0.6249 
N224R 95.7274 0.8190 
N224V 38.6503 0.6836 
L48V 58.4274 0.6418 
L48P 95.7274 0.8169 
L48A 0.6648 0.5047 
Y82A 1.4957 0.5180 
Y82H 0 0.2857 
Y82V 23.9318 0.5952 

wild type 0 0.5000 
 
Table S2.  Log-likelihood values for significance of acceleration of koff by 
hemagglutinin mutants.  Because the dissociation rate of α2,3-sialyllactose from wild-
type VN1194 hemagglutinin is slow, very few dissociation events are sampled in the 
simulation dataset but even a small number of events can represent an important 
acceleration of koff.   To evaluate this tradeoff quantitatively, bootstrap resampling was 
performed on the simulation trajectory dataset for each mutant, and the posterior 
probability P(kmutant > kwild-type) was evaluated for each of the samples. Kolmogorov-
Smirnov significance testing was performed on the average of these probabilities across 
starting conformations, and the significance values were transformed into log-likelihood 
scores. 
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integrator               = md 
tinit       = 0.0 
dt            = 0.002 
nstlist      = 10 
ns_type       = grid 
pbc           = xyz 
rlist        = 1.2 
coulombtype   = Reaction-Field 
rcoulomb_switch    = 0.9 
rcoulomb      = 1.2 
epsilon_r         = 60 
vdw_type         = Shift  
rvdw_switch      = 0.9 
rvdw          = 1.2 
DispCorr    = EnerPres 
tcoupl      = Berendsen 
tc-grps        = Glycoprotein Ligand Solvent 
tau_t         = 1.0 1.0 1.0 
ref_t           = 300 300 300 
Pcoupl         = No 
constraints      = h-bonds 
constraint_algorithm   = Lincs 
unconstrained_start    = no 
lincs_order        = 4 
 
Table S3.  Simulation parameters.  Listed are simulation parameters in the Gromacs 
MDP file format.  The dielectric constant of 60 used for reaction-field calculations 
corresponds to the dielectric of 150mM sodium chloride at 30C. 
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