Supplementary Information

Product Ion	m/z _{unoxidized} ^a	m/z _{oxidized} ^a	Percentage oxidized ^{b,c}
y ₃	303	319	0
y4	432	448	0
y 5	546	562	0
<u>У</u> 6	659	675	0
y ₇	788	804	0
y ₈	859	875	0
y 9	996	1012	22 ± 7
y10	1067	1083	63 ± 0.4
y ₁₁	1138	1154	69 ± 1
y ₁₂	1275	1291	100
y ₁₃	1374	1390	100
y ₁₄	1445	1461	100
b ₅	499	515	0
b ₆	636	652	17 ± 1
b ₇	707	723	25 ± 2
b ₈	778	794	38 ± 2
b9	915	931	100
b ₁₀	986	1002	100
b ₁₁	1115	1131	100
b ₁₂	1228	1244	100
b ₁₃	1342	1358	100
b ₁₄	1471	1487	100
b ₁₅	1542	1558	100
b ₁₆	1599	1615	100

Table S1. Percentage of oxidized product ions observed in the CID spectrum of the doubly charged ion of the oxidized OVA peptide $(M+O+2H)^{2+}$.

^a These m/z ratios correspond to the nominal m/z ratio of the observed product ions.

^b The percentage oxidized is obtained by dividing the ion abundance of the oxidized product ion by the sum of the oxidized and unoxidized product ions.

^c The error associated with oxidized percentage value corresponds to the standard deviation from at least three separate measurements

Product Ion	m/z _{unoxidized} ^a	m/z _{oxidized} ^a	Percentage oxidized ^{b,c}
y ₂	313	329	10 ± 2
y ₃	412	428	0
y 5	653	669	0
<u>У</u> 6	781	797	0
y ₇	918	934	55.0 ± 0.7
y ₈	1055	1071	100
y 9	1154	1170	100
y9 ²⁺	578	586	100
b ₂	293	309	14 ± 1
b ₃	392	408	28 ± 1
b4	529	545	45 ± 3
b ₅	666	682	83.0 ± 0.4
b ₆	794	810	78 ± 1
b ₇	922	938	73 ± 1
b ₈	1035	1051	54 ± 2
b ₉	1134	1150	85 ± 1
b_9^{2+}	567	575	88 ± 3
b_{10}^{2+}	641	649	83 ± 1

Table S2. Percentage of oxidized product ions observed in the CID spectrum of the doubly charged ion of the oxidized β -amyloid peptide $(M+O+2H)^{2+}$.

^a These m/z ratios correspond to the nominal m/z ratio of the observed product ions. ^b The percentage oxidized is obtained by dividing the ion abundance of the oxidized product ion by the sum of the oxidized and unoxidized product ions.

^c The error associated with oxidized percentage value corresponds to the standard deviation from at least three separate measurements.

Product Ion	m/z _{unoxidized} ^a	m/z _{oxidized} ^a	Percentage oxidized ^{b,c}
y ₂	294	310	0
y_5^{2+}	322	330	20±0.5
y 6	700	716	40±0.8
У7	813	829	41±1.1
y_{11}^{2+}	649	657	63±0.9
b ₂	225	241	11±0.2
b ₅	523	539	47±0.4
b_8	879	895	61±1.5
b 9	1016	1032	100
b_{11}^{2+}	615	623	100
b_{12}^{2+}	679	687	100
b_{12}^{3+}	453	458	100

Table S3. Percentage of oxidized product ions observed in the CID spectrum of the triply charged ion of the oxidized MPP peptide $(M+O+3H)^{3+}$.

^a These m/z ratios correspond to the nominal m/z ratio of the observed product ions. ^b The percentage oxidized is obtained by dividing the ion abundance of the oxidized product ion by the sum of the oxidized and unoxidized product ions.

^c The error associated with oxidized percentage value corresponds to the standard deviation from at least three separate measurements

Figure S1. MS^3 of the y₄+O product ion of oxidized angiotensin I $(M+O+2H)^{2+}$, which helps confirm that oxidation only occurs at His9 and not Pro7 or Phe8. The asterisks indicate the product ions that are oxidized.

Figure S2. MS^3 of the $(b_9+O)^{2+}$ product ion of oxidized angiotensin I $(M+O+2H)^{2+}$, which helps confirm that oxidation only occurs at His6 and His9 and not Pro7 or Phe8. The asterisks indicate the product ions that are oxidized.

Figure S3. MS^3 of the b₈+O product ion of oxidized angiotensin I $(M+O+2H)^{2+}$, which helps confirm that oxidation only occurs at His6 and His9 and not Pro7 or Phe8. The asterisks indicate the product ions that are oxidized.

Figure S4. (a) CID of His9-oxidized angiotensin I $(M+O+2H)^{2+}$. (b) CID of His6-oxidized angiotensin I $(M+O+2H)^{2+}$. The individual oxidized His6 and oxidized His9 isomers were obtained by separating them by HPLC. The asterisks indicate the product ions that are oxidized.

Figure S5. (a) CID of His6-oxidized OVA peptide $(M+O+2H)^{2+}$ (b) CID of His9-oxidized OVA peptide $(M+O+2H)^{2+}$. The individual oxidized His6 and oxidized His9 isomers were obtained by separating them by HPLC. The asterisks indicate the product ions that are oxidized.

Figure S6. ETD of the triply-charged ion of oxidized OVA peptide $(M+O+3H)^{3+}$ without prior LC separation. The asterisks indicate the product ions that are oxidized.

Figure S7. (a) CID of His4-oxidized β -amyloid peptide $(M+O+2H)^{2+}$. (b) CID of His5-oxidized β -amyloid peptide $(M+O+2H)^{2+}$. (c) CID of Phe10-oxidized β -amyloid peptide $(M+O+2H)^{2+}$. (d) CID of Phe11-oxidized β -amyloid peptide $(M+O+2H)^{2+}$. The individual oxidized isomers were obtained by separating them by HPLC. The asterisks indicate the product ions that are oxidized.

(b)

Figure S8. ETD of the triply-charged ion of oxidized β -amyloid peptide $(M+O+3H)^{3+}$ without prior LC separation. The asterisks indicate the product ions that are oxidized.

