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Table 2 | Therapeutic targeting of TNF superfamily interactions 

Model Interaction 
targeted

Mice or reagent tested Effect on disease symptom Refs

EAE

 

OX40L–OX40 Toxin-conjugated OX40-specific antibody (depleting) Substantial inhibition 1

OX40–immunoglobulin fusion protein (neutralizing) Substantial inhibition 2

OX40L-specific antibody (neutralizing) Substantial inhibition 3

Ox40–/–or Ox40l–/– mice Substantial inhibition 4,5

TL1A–DR3 Dr3–/– mice Substantial inhibition 6

Tl1a–/– mice Partial inhibition 7

CD70–CD27 CD70-specific antibody (neutralizing) Substantial inhibition 8

4-1BBL–4-1BB 4-1BB-specific antibody (agonist) Substantial inhibition 9

Colitis and IBD

 

OX40L–OX40 OX40–immunoglobulin fusion protein (neutralizing 
and depleting)

Substantial inhibition 10–12

OX40L-specific antibody (neutralizing) Substantial inhibition 13,14

TL1A–DR3 TL1A-specific antibody (neutralizing) Partial inhibition 15

4-1BBL–4-1BB 4-1BB-specific antibody (agonist) Substantial inhibition 16

Asthma and atopy

 

OX40L–OX40 Ox40–/– or Ox40l–/– mice Substantial inhibition 17,18

OX40L-specific antibody (neutralizing) Substantial inhibition 19–21

TL1A–DR3 Dr3–/– mice Substantial inhibition 6

TL1A-specific antibody (neutralizing) Substantial inhibition 22

4-1BBL–4-1BB 4-1BB-specific antibody (agonist) Substantial inhibition 23

Diabetes 

 

OX40L–OX40 Ox40l–/– mice Substantial inhibition 24

OX40L-specific antibody (neutralizing) Substantial inhibition 25

4-1BBL–4-1BB 4-1BB-specific antibody (agonist) Substantial inhibition 26

Arthritis 

 

OX40L–OX40 OX40L-specific antibody (neutralizing) Substantial inhibition 27,28

Toxin-conjugated OX40-specific antibody (depleting) Partial inhibition 29

TL1A–DR3  Dr3–/– mice orTL1A-specific antibody (neutralizing) Partial inhibition 30

4-1BBL–4-1BB

 

4-1BB-specific antibody (agonist) Substantial inhibition 31,32

4-1BBL-specific antibody (neutralizing) Partial inhibition 32

 SLE 4-1BBL–4-1BB 4-1BB-specific antibody (agonist) Substantial inhibition 33,34

Atherosclerosis OX40L–OX40 Ox40l–/– mice Substantial inhibition 35

OX40L-specific antibody (neutralizing) Substantial inhibition 36

Minor MHC 
transplant 
mismatch 

OX40L–OX40 OX40–immunoglobulin  fusion protein (neutralizing) Substantial inhibition 37

4-1BBL–4-1BB 4-1BB–immunoglobulin fusion protein (neutralizing) Partial inhibition 43

Major MHC 
transplant 
mismatch 

 

OX40L–OX40 OX40–immunoglobulin fusion protein (neutralizing) No effect 37

OX40L-specific antibody (neutralizing) Substantial inhibition with CD28 or 
CD28 and CD40L blockade

38–41

CD70–CD27 CD70-specific antibody (neutralizing) No effect alone; no effect with CD28 
and CD40L blockade; substantial 
inhibition with CD4 and CD28 blockade

40,42

4-1BBL–4-1BB

 

4-1bb–/– or 4-1bbl–/– mice Varying results: no effect or inhibition 44–47

4-1BB–immunoglobulin fusion protein  (neutralizing) Partial inhibition 48,49

GVHD

 

OX40L–OX40 OX40L-specific antibody (neutralising) Substantial inhibition 50,51

Ox40–/– mice Substantial inhibition 50

4-1BBL–4-1BB

 

4-1bb–/– mice Substantial inhibition 52

4-1BB-specific antibody (agonist) Substantial inhibition 53

No published reports are available for the interactions that are not mentioned. 4-1BBL, 4-1BB ligand; DR3, death receptor 3; EAE, experimental autoimmune 
encephalomyelitis; GVHD, graft-versus-host disease; IBD, inflammatory bowel disease; OX40L, OX40 ligand; SLE, systemic lupus erythematosus. 
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Table 3 | Therapeutic targeting of TNF superfamily members in cancer

Mode of therapy Target Combination treatment Tumour type Refs

Stimulatory 
antibody or ligand 
Fc protein

OX40 NA Sarcoma, melanoma, glioma, colon 
carcinoma, mammary carcinoma, thymoma 
and renal-cell carcinoma

54–58

Adoptive transfer of CTLs Sarcoma, thymoma and prostate tumour 59–61

Administration of IL-12 and 4-1BB-specific 
antibody

Colon carcinoma 62

Administration of GM-CSF Colon and breast carcinoma 63

Tumour transfection with CD80 B-cell lymphoma 64

Administration of DC vaccine and 
4-1BB-specific antibody

Breast carcinoma 65,66

Administration of GM-CSF and tumour 
antigen vaccine

Breast tumour 67

Administration of IL-12 Sarcoma and prostate tumor 68

4-1BB NA Sarcoma, mastocytoma, glioma, colon 
carcinoma and B-cell lymphoma

69–75

Administration of IL-12 Colon carcinoma and melanoma 76–78

Adoptive transfer of CTLs Plasmacytoma 79

FLT3L-mediated DC mobilization Fibrosarcoma 80

HLA-DR- and CD40-specific antibodies Renal carcinoma and mammary carcinoma 81

5-fluorouracil Renal carcinoma 82

CD27 NA B-cell lymphoma 8

Transfection of 
tumour cells

OX40L Administration of GM-CSF Melanoma, lung carcinomathymoma and 
colon carcinoma

84–86

4-1BBL CD80 co-transfection Sarcoma and colon carcinoma 87,88

CD80 and CD86 co-transfection B-cell lymphoma 89,90

IL-12 co-transfection Colon carcinoma 91

CD80 Squamous-cell carcinoma 92

CD80, CD40L and CD48 co-transfection T-cell lymphoma 93

Adoptive transfer of LAK cells  and NK cells Adenocarcinoma 94

TRANCE, CD95L and CCL21 co-transfection T-cell lymphoma 95

Soluble PD1 co-transfection Hepatocarcinoma 96

Single-chain Fv 
fragments specific 
for 4-1BB

NA Melanoma and mammary carcinoma 97–99

CD70 NA Sarcoma, mastocytoma, colon carcinoma, 
thymoma, lymphoma, mammary 
adenocarcinoma and glioma

100–105 

CD80 co-transfection Melanoma and mammary adenocarcinoma 106,107

CD40L co-transfection Melanoma 108

Transfection of DCs OX40L NA Melanoma, thymoma and melanoma 109,110

4-1BBL NA Colon carcinoma and adenocarcinoma 111

CD70 NA Thymoma 112

Stimulatory RNA 
aptamer

OX40 Administration of DC vaccine Melanoma 113

4-1BB NA Mastocytoma 114

Depleting antibody CD70 NA B-cell lymphoma, renal carcinoma and 
non-Hodgkin lymphoma

115–117

4-1BBL, 4-1BB ligand; CCL21, CC-chemokine ligand 21; CD95L, CD95 ligand; CTL, cytotoxic T lymphocyte; DC, dendritic cell;  DR3, death receptor 3; FLT3, 
FMS-related tyrosine kinase 3; GM-CSF; granulocyte/macrophage colony-stimulating factor; IL,  interleukin; LAK, lymphokine activated killer; NA, not applicable; 
NK, natural killer; OX40L, OX40 ligand; PD1, programmed cell death 1; TNF, tumour necrosis factor; TRANCE, TNF-related activation-induced cytokine.
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