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A quantitative measure of the reproducibility of serum antibody titers has
recently been proposed (R. J. Wood and T. M. Durham, J. Clin. Microbiol. 11:
541-545, 1980). The measure advocated is "the probability that the maximum
ratio of two distinct (integer) titers (obtained in the blind) on the same specimen
will not exceed 2." This measure of the reproducibility of serological titers is
considered to be a fixed probability for any given specimen and set of test
conditions. Although it is a fixed constant during the time period of a study, there
are alternative methods one might use to compute an estimate of it, using
laboratory data. Four such methods of estimating test reproducibility are dis-
cussed and evaluated. The estimates obtained from the two principal methods
are evaluated quantitatively by means of Monte Carlo computer simulation. The
simulation results show that, from a given sample of replicate integer titers, these
two principal methods yield estimates that are highly correlated. In addition, with
moderate numbers of replicates (sample size), these methods provide estimates
that are on the average properly directed at the true reproducibility values (that
is, are essentially unbiased), particularly when the true reproducibility of the test
is at least 0.9. The reliability, or stability, of the alternative estimates is studied
for selected sample sizes.

A specific quantitative measure of the repro-
ducibility of serum antibody titers has recently
been proposed (6). The measure advocated is
"the probability that the maximum ratio of two
distinct (integer) titers (obtained in the blind)
on the same specimen wiil not exceed 2."
One procedure for computing an estimate of

the true reproducibilty (TR) from laboratory
data was demonstrated with numerical exam-
ples, and a summary algorithm was given to
facilitate computerizing the computations

In this paper, some alternative ways of com-
puting an estimate of TR are presented. Also,
the validities of the different estimates are stud-
ied, along with the reliabiity or stability of each
estimate, based on different sample sizes.
The previously described estimate (6), here

designated El, is "distribution free" or "nonpar-
ametric" (3, 4) because the estimating procedure
does not depend on the population distribution
sampled; El is based only on information ob-
tained from the magnitudes of the sample data.
The reader is referred to the previous paper (6)
for specific details of the El estimating proce-
dure.

In contrast, two of the alternative estimating
procedures introduced here are not distribution
free but are "parametric." They are based on an

assumption about the form of the sampled pop-
ulation distribution (see Appendix A) in addition
to information from the sample data. The first
of these two parametric estimates, designated
E2, is obtained as follows. A random sample of
n replicate integer titers is obtained in the blind
for a chosen specimen. The n titers are converted
to logarithms, and their standard deviations
(SD) are computed and used with Table 1 to
obtain E2, a parametric estimate of the repro-
ducibility of the test system with that specimen
(see Appendix B).
A second nonparametric estimate, designated

E3, is introduced in this paper. It is based on a
pair of replicate integer titers for each of k
different sera, ail having essentially the same
titer. For each pair the maximum ratio is calcu-
lated, and the number (x) of pairs with a maxi-
mum ratio exceeding 2 is counted. TR is esti-
mated by the equation E3 = 1 - x/k.

It is clear that the estimate E3 is easy to
compute. The estimate E2 is also fairly easy to
obtain because it is read directly from Table 1
after the SD among replicate log (integer titer)
values has been computed. A little experience in
using laboratory data will reveal that El is also
readily computed. Consequently, there is little
difference between the estimates El and E2 on
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TABLE 1. Conversion table for obtaining E2 from
the observed SD of the logarithms of integer titers

Sample SD in logarithms to the base:
E2

0.60
0.61
0.62
0.63
0.64

0.65
0.66
0.67
0.68
0.69

0.70
0.71
0.72
0.73
0.74

0.75
0.76
0.77
0.78
0.79

0.80
0.81
0.82
0.83
0.84

0.85
0.86
0.87
0.88
0.89

0.90
0.91
0.92
0.93
0.94

0.95
0.96
0.97
0.98
0.99

2

0.8402
0.8226
0.8055
0.7888
0.7725

0.7566
0.7411
0.7259
0.7110
0.6965

0.6823
0.6683
0.6545
0.6410
0.6278

0.6147
0.6018
0.5891
0.5765
0.5641

0.5518
0.5395
0.5274
0.5153
0.5033

0.4912
0.4791
0.4670
0.4578
0.4424

0.4299
0.4171
0.4039
0.3903
0.3760

0.3608
0.3443
0.3258
0.3040
0.2745

e

0.5824
0.5702
0.5583
0.5467
0.5354

0.5244
0.5137
0.5032
0.4929
0.4828

0.4729
0.4632
0.4537
0.4443
0.4351

0.4261
0.4171
0.4083
0.3996
0.3910

0.3824
0.3740
0.3656
0.3572
0.3488

0.3405
0.3321
0.3237
0.3152
0.3067

0.2980
0.2891
0.2800
0.2705
0.2606

0.2501
0.2387
0.2259
0.2107
0.1903

10

0.2529
0.2476
0.2425
0.2374
0.2325

0.2278
0.2231
0.2185
0.2140
0.2097

0.2054
0.2012
0.1970
0.1930
0.1890

0.1850
0.1812
0.1773
0.1735
0.1698

0.1661
0.1624
0.1588
0.1551
0.1515

0.1479
0.1442
0.1406
0.1369
0.1332

0.1294
0.1256
0.1216
0.1175
0.1132

0.1086
0.1036
0.0981
0.0915
0.0826

the basis of the amount ofcomputation required.
Once the practitioner has become familiar with
computing El and E2, however, the question
will arise about which is the better one-better
in the sense of representing the actual TR. Here
this subject is divided into two parts, the first
dealing with how close each estimate averages
to TR and the second dealing with the amount
of scatter or variation appearing among repeated
sample estimates. The first component of the
accuracy of an estimate is referred to as "bias,"

and the second component is termed "reliabil-
ity" or "precision."

In line with these definitions, a quantitative
evaluation of the estimates E1 and E2 is the
principal topic of this paper. The evaluation is
based on a technique called Monte Carlo distri-
bution sampling. A computer was used to gen-
erate repeated samples of log (integer titer) val-
ues from population distributions having prese-
lected, and therefore known, TR values. The
observed distributions of the repeated sample
estimates were studied to assess the magnitude
of the errors of estimation one can expect when
using the estimators El and E2. In contrast, the
number (x) of pairs in the estimate E3 can be
taken to follow the binomial distribution (5) with
sample size k and TR. Therefore, simulation is
not required to evaluate E3; it is done directly
from knowledge of the binomial distribution.
The terms "integer" and "truncated" titers

relate to a concept that is important to the
subject of this and related papers. In a titration
test on a specimen in practice, the reportable
titer is, in general, limited by the discriminating
capabilities of the measuring equipment avail-
able to the technologist; that is, if better mea-
suring equipment were available, it is conceiv-
able that a titration test could show the endpoint
dilution factor (titer) for a specimen to actually
be 61.3, for example, if the technologist were
sufficiently persistent in pursuing the necessary
dilutions to obtain an endpoint at this level of
resolution. The more common practice currently
is to restrict the search for an endpoint to the
examination of twofold dilutions. In this example
the titer would therefore be observed and re-
ported as the truncated titer 32, in contrast to
the actual integer titer 61.
Some kit tests presently being developed for

the market provide integer titers; that is, for the
example specimen they would yield a result at
or near the integer 61 rather than being re-
stricted to twofold truncated titers. In summary,
the titer 32 is simply the integer titer 61 trun-
cated to the next lower integer power of 2. Such
truncated titers are in general clearly less accu-
rate than the associated integer titers.

MATERIALS AND METHODS
The IBM-370 computer at the Centers for Disease

Control was used to simulate results from five hypo-
thetical serological laboratories making repeated titra-
tion runs in the blind on a given specimen (see Appen-
dix A). These five laboratories were made to differ
only in their TR when producing replicate integer
titers. The different laboratories were assigned TR
values of 0.95, 0.90, 0.80, 0.70, and 0.60. In the simula-
tion, the replicates for each laboratory were divided
into five groups of 5,000 independent samples of sizes
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n = 5, 10, 20, 30, and 40 (see Appendix C).
Within each group of 5,000 samples, the distribu-

tions of the resulting 5,000 values of El and the 5,000
values of E2 were studied to assess the performance of
the estimators at each of the five sample sizes. The
same assessments were made for each of the five
laboratories.

RESULTS
Correlation of El and E2. For computing

convenience, each group of 5,000 reproducibility
estimates was divided into 10 sets of 500 esti-
mates each, and the Pearson product moment
coefficient of correlation between El and E2 was
ec computed for each set. The mean correlations
of these 10 sets are shown in Fig. 1. The figure
shows a high linear correlation between El and
E2 that increases with n over the range of 5 to
40. It also indicates that the correlation coeffi-
cient reaches a maximum for TR values in the
neighborhood of 0.90.
Percent bias in El and E2. The bias of an

estimator is defined as the long-term average of
the sample estimates minus the population TR
value. In this study, the bias was estimated by
subtracting TR from the means of the 5,000 El
and the 5,000 E2 sample estimates. Dividing
these differences by TR and multiplying by 100
gave an estimate of the percent bias for El and
E2 (Fig. 2 and 3).
The figures show that, at a TR of 0.90, the
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FIG. 1. Observed correlation between El and E2
for selected reproducibilities and sample sizes (based
on 10 independent sets of 500 simulated pairs of
estimates at each sample size).

FIG. 2. Observed percent bias of El at selected
reproducibilities and sample sizes (based on 5,000
simulated estimates at each sample size).

bias in El is approximately 1% for a sample size
(n) of 30 and that E2 is essentially unbiased. In
this situation, high correlation together with the
lack of bias indicates that the sample results
from El are practically the same as those from
E2.

Reliability or stability ofEl and E2. When
a laboratory sets out to obtain replicate integer
titers on a specimen for the purpose of estimat-
ing TR, the question of how many replicates are
needed arises. If the replicates are properly ob-
tained in the blind, the estimate of TR will, on
the average, follow the patterns of bias shown in
Fig. 2 or 3. In contrast to bias, however, the
question of sample size has its basis in the vari-
abiity of the estimate. As more replicate titers
are used in the estimate it becomes more stable.
If an estimate were perfectly stable and also
unbiased, it would be TR itself. The question of
adequate sample size is addressed here by deter-
mining the variability in the estimate for differ-
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FIG. 3. Observed percent bias of E2 at selected
reproducibilities and sample sizes (based on 5,000
simulated estimates at each sample size).

ent sample sizes and relating this to levels of
possible error in the estimate that can be consid-
ered "acceptable" or "unacceptable" for the par-
ticular application.
Without substantive experience in applying

the proposed quantitative measure of reproduc-
ibility to laboratory tests, certain assumptions
are necessary. Accordingly, it is assumed that
tests having TR values of 0.9 c TR < 1.0 may
be considered to be in an acceptable range, that
those with TR values of 0.8 c TR < 0.9 may be
considered to be in a "marginal" range, and that
those with 'R values of <0.8 may be considered
to be in an unacceptable range. Using these
categories, one could obtain a set of replicate
integer titers on a chosen specimen, estimate the
TR, and classify the test as having a TR that
was acceptable, marginal, or unacceptable solely
on the basis of the single sample estimate.
Such a procedure for classifying a test would

be subject to either of two relatively important
errors. The first would occur if the TR were
actually in the acceptable range but the sample
estimate fell in the unacceptable range (a type
I error). The second would occur if the TR were
actually in the unacceptable range but the sam-
ple estimate fell in the acceptable range (a type

II error). In industrial applications, the condi-
tional probabilities of experiencing these errors
are referred to as the producer risk and the
consumer risk, respectively (5). These risks, that
is, the conditional probabiliy of the particular
type of error, are directly controllable through
the sample size.
The question of adequate sample size was

addressed here by studying the maximum prob-
abilities of type I and type II errors as the sample
size was increased. These conditional probabili-
ties were obtained from the sample distributions
of the 5,000 estimates obtained for the hypo-
thetical laboratories assigned reproducibilities of
0.9 and 0.8 (Fig. 4). The same results are given
in Table 2, which is discussed in Appendix D.
Suppose a probability in the range of 0.05 is

considered to be acceptable for either type of
error. Fig. 4 shows that sample sizes of approxi-
mately 16 for El and 18 for E2 would be suffi-
cient for the type I error. However, these sample
sizes would not be sufficient for the type II error.
Sample sizes of 32 and 30 are required (Fig. 4)
before the probability of a type II error is re-
duced to the range of 0.05. With these sample
sizes, the probability of a type I error is reduced
to less than 0.02.
Returning to the estimate E3 based on k pairs

of integer titers, the number (x) of pairs follows
the binomial distribution with sample size k and
TR. Therefore, the estimate E3 is known to be
unbiased. However, it is less reliable than El
and E2, which are based on independent repli-
cate titers obtained from a single serum. This
can be seen by determining the number of pairs
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FIG. 4. Observed conditional probabilities of type
I and type II errors for selected sample sizes (based
on 5,000 simulated estimates at each sample size).
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TABLE 2. Conditional probabilities of type I and type II errors associated with El and E2, for selected
sample sizes

Probability of error

Sample size Type 1, conditional on TR = 0.9 Type II, conditional on TR = 0.8

El E2 El E2

5 0.153 a (3.3)b 0.164 (3.2), 0.159" 0.456 (1.5) 0.348 (1.9), 0.342
10 0.074 (5.0) 0.087 (4.6), 0.096 0.265 (2.4) 0.199 (2.8), 0.208
20 0.036 (7.3) 0.040 (6.9), 0.038 0.116 (3.9) 0.097 (4.3), 0.095
30 0.016 (11.1) 0.016 (11.1), 0.016 0.060 (5.6) 0.049 (6.2), 0.048
40 0.006 (18.5) 0.006 (18.5), 0.007 0.034 (7.6) 0.026 (8.7), 0.026

a Estimated from simulation study.
b Percent CVM values are given within parentheses. CVM = 100 x IP(1-P)/5,000/P; in this example, a

95% confidence interval for the long-run average of P is [1 ± (2 x 0.033)], P = (0.143, 0.163).
' True probability computed from the chi-square distribution, using linear interpolation.

necessary to bring the conditional probability of
a type II error with E3 down to 0.05. Using the
Gaussian distribution to approximate the sam-
pling distribution of E3, the required number of
pairs is found to be 44. Thus, a total of 88 titer
measurements are required with E3 to give the
same protection against a type II error that 32
or 30 titer measurements will give when E1 or
E2 is used. This is a substantial difference in the
total number of measurements.

Illustrative example for El and E2. The
test kit integer titer data in Table 3 were ob-
tained from the 30 morning runs for one speci-
men in the study previously described (6). From
these integer titers, El is computed as 1 - (2 x
40)/(30)2 = 0.911. This computation is obtained
from Table 3 as follows (6): there are 1 x 4
possible pairs of integer titers having a maxi-
mum ratio exceeding 2 and a least integer titer
(LIT) of 10. For an LIT of 11, the number of
possible pairs is 1 X 3; for an LIT of 12, the
number is 3 x 2; for an LIT of 13, the number is
4 X 2; for an LIT of 14, the number is 5 x 2; for
an LIT of 15, the number is 3 x 1; and for an
LIT of 16, the number is 6 x 1. The total number

TABLE 3. Test kit integer titers obtained in 30
independent daily runs with a single specimen

Integer titer Frequency

10 1
il 1
12 3
13 4
14 5
15 3
16 6
17 2
20 1
22 1
23 1
30 1
33 1

of possible pairs of integer titers with a maxi-
mum ratio exceeding 2 that could be drawn from
Table 3 (drawing with replacement) is therefore
40 = W. With the formula El = 1 - (2 x W)!
N2, El = 0.911.

After changing the integer titers in Table 3 to
logarithms to the base e, the SD in logarithms
to the base e (SDLE) is computed as 0.2568.
Table 1 gives E2 as 0.95 when SDLE is 0.2501
and as 0.94 when SDLE is 0.2606. With an SDLE
of 0.2568 and linear interpolation, E2 = 0.943.
With n = 30 and TR at approximately 0.90,

the coefficient of correlation between El and E2
is approximatley 0.98 (Fig. 1). The bias in the
two estimators is essentially zero (Fig. 2 and 3).
The combination of high correlation and low
bias is manifested in the agreement of the two
estimates in this example, in which El = 0.911
and E2 = 0.943. At a sample size of n = 30, the
likelihood of a type Il error is in the range of 5
to 6% (Fig. 4).
Because the log (integer titer) values are

Gaussian distributed, a confidence interval for
TR can be computed using the sample SDLE.
The quantities [(n - 1) X SDLE2/chi-square (n
- 1, 0.025)11/2 and [(n - 1) X SDLE2/chi-square
(n - 1, 0.975)11/2 provide a 95% confidence inter-
val (5) for the population standard deviation,
designated here as SIGMA. From a table of the
percentage points of the chi-square distribution
(5), one obtains the two values chi-square (29,
0.025) = 45.7 and chi-square (29, 0.975) = 16.
The confidence limits for SIGMA are computed
as [29 X 0.6594624/45.7]'/2 = 0.2046 and [29 X
0.06594624/16]1/2 = 0.3457. These two quantities
can be used (Table 1) to obtain the 95% confi-
dence interval for TR as (0.843, 0.983).

In summary, the single-point estimate of TR
is E2 = 0.943. Furthermore, one has 95% assur-
ance that TR does not reside outside the interval
of 0.843 to 0.983.
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If the replicate titers are obtained in a single
run, El and E2 will estimate within-run repro-
ducibility. If they are all obtained in different
runs, El and E2 will estimate among-run repro-
ducibility. If the replicates are obtained by some
other study design, it is possible that one does
not have the option of using El. In these cases,
E2 may offer the only means of arriving at a
proper estimate of TR (see Appendix E).

Illustrative example for E3. The data in
Table 4 were obtained from the same specimen
as the data in Table 3. The pairings were made
in the blind, subject to the condition that the
members of a pair were obtained on different
days and therefore in different runs. Among
these 44 pairs, there were 3 that had a maximum
ratio exceeding 2. This leads to the estimate of
TR that is E3 = 1 - 3/44 = 0.931. Note that this
estimate is in close agreement with El and E2
for the same specimen, but that E3 is here based
on 88/30 = 2.9 times as much data.

DISCUSSION
Four methods for estimating TR with non-

truncated integer titers have been discussed.
Two of these, El and E3, being nonparametric
or distribution-free methods of estimating, can
readily be used with either integer or truncated
sample titers. The estimators E2 and E4 (the
latter discussed in Appendix E), being Gaussian
parametric estimators, are properly used only
with data that follow the Gaussian distribution.
If the log (integer titer) values follow this distri-
bution (Appendix A), then clearly the log (trun-
cated titer) values do not, and therefore the
estimators E2 and E4 would not be appropriate
with truncated titers. This subject will be pur-
sued in a future report. The estimators El and
E2 were found to be highly correlated (Fig. 1)
and to have negligible biases at moderate sample
sizes or moderately high TR levels or both (Fig.
2 and 3). The reliability or stability of the two
estimators was studied, using a particular defi-
nition of type I and type II errors, for different
sample sizes. Approximately 30 replicate integer
titers on a chosen specimen were seen to be
required for El or E2 to provide acceptably
reliable estimates of TR (Fig. 4). Approximately
this same number (29) of pairs of integer titers
was required for the parametric estimator E4
(see Appendix E) to attain the same reliability,
whereas the nonparametric estimator E3 re-
quired 44 pairs to provide essentially the same
degree of reliability in the estimate.

APPENDIX A
The Monte Carlo distribution sampling reported in

this paper is based on the Gaussian distribution. The

TABLE 4. Pairs of test kit integer titers obtained on
the specimen used for Table 3'

Titer
Pair no.

1
2
3
4
5

1st

13
13
19
16
14

2nd

12
30
13
14
19

6 20 24
7 10 21
8 28 16
9 14 20
10 15 15

il 15 19
12 14 16
13 33 17
14 20 18
15 19 15

16 14 16
17 12 12
18 19 12
19 13 16
20 18 16

21 22 17
22 23 22
23 23 12
24 18 15
25 14 14

26 21 15
27 16 12
28 il 16
29 20 19
30 18 26

31 16 13
32 20 19
33 22 12
34 30 14
35 21 21

36 17 18
37 12 21
38 12 13
39 22 13
40 17 14

41 17 16
42 25 23
43 15 19
44 17 18

<'Integer titers in each pair were obtained on differ-
ent days. Maximum ratios were: pair 2, 2.31; pair 7,
2.10; and pair 34, 2.14.
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justification for the assumption that the log (integer
titer) values follow this distribution is the subject of
this appendix.
A specially designed rubella antibody serum titra-

tion study was described previously (6). The study
resulted in independent fluorescent-antibody FIAX
(International Diagnostic Technology, Santa Clara,
Calif.) titer measurements on 14 different hemagglu-
tination inhibition-positive specimens. Each specimen
was measured in three separate runs per day for 30
days. In each of the 90 runs, a calibration curve was
determined and used to obtain the logarithms of the
flourescent-antibody titers for all specimens in that
run. Consequently, the resulting titers did not come
truncated to integer powers of 2, which are conven-
tional serum dilution titers, but were free to take on
any of a continuum of integer values. The resulting 14
geometric mean titers ranged from a low positive of
7.0 to a high positive of 389.3.

Because of the possibility of a day-to-day compo-
nent of variation, the data for each of the 14 specimens
were grouped by the morning run, the midday run,
and the afternoon run. This resulted in 30 independent
daily log (integer titer) values in each of 14 x 3, or 42,
groups. The 30 values in each of the 42 groups were
normalized by subtraction of the group mean and
division by the group SD.

Within each group of 30, a count was made of the
numbers of normalized values that fell in the six suc-
cessive intervals defined by the 1/6, 2/6, 3/6, 4/6, and
5/6 percentile of the standard normal curve. If the 30
log (integer titer) values did arise from a Gaussian
distribution, then on the average a count of 5 was to
be expected in each of these six intervals.
The X2 statistic was computed for each group as x2

= E (Oi - 5)2/5, where OQ is the observed count for
i=l

the i-th interval. If the underlying log (integer titer)
values are Gaussian, then X2 is approximately chi-
square distributed with 4 degrees of freedom. These
values computed for the 42 independent groups were
added together to yield an overall X2 based on 168
degrees of freedom. This overall X2 value was 162.8,
which converts to a normal deviate value of -0.26
through the transformation z = - ,12df - 1.
With the hypothesis that the underlying log (integer

titer) distribution is Gaussian, the probability of a
poorer fit than the one represented by z = -0.26 is
found in a table of normal curve values to be 0.79 < P.
From this result, it was concluded that the underlying
distribution of log (integer titer) values could be sim-
ulated with the Gaussian distribution.

APPENDIX B

The subject measure of reproducibiity is "the prob-
ability that the maximum ratio of two distinct (integer)
titers (obtained in the blind) on the same specimen
will not exceed 2." This is equivalent to the logarithms
(to the base 2) of the two independent integer titers
not differing by more than 1.

The log (integer titer) values for any positive spec-
imen are taken to be Gaussian distributed (see Appen-
dix A) with mean ii and SD a. Consequently, the
difference (d) between two independent log (integer

titer) measurements made on the same specimen will
also be Gaussian distributed but with a mean of 0 and
a standard deviation equal to %a. Then z = d/V2a is
a standard normal deviate having a mean of 0 and an
SD of 1.
The probability that a randomly drawn d will fail

within the interval (±1) is P(-1 ' d ' 1) = 1 - 2 P(1
< d) = 1 - 2[1 - P(d < 1)] = 2P(d < 1) - 1. Writing
this in terms of z, the subject reproducibility is R =
2P(z < 1 /v'2a) - 1 = 2F(l/v.I2a - 1, where F is the
cumulative distribution function of z. This relationship
between the SD of the log (integer titer) population
distribution and the subject reproducibility offers a
second means of estimating that reproducibility. It
only remains to obtain a random sample estimate of
a (SD) and compute E2 = 2 F(1/V2SD) - 1. This was
made possible when the function F was specified as a
result of assuming a population distribution for the log
(integer titer) values (see Appendix A).
To facilitate the use of this parametric estimating

procedure, a conversion table of SD and E2 values was
computed by using a power series representation (1)
(Table 1).

APPENDIX C

The IBM VSPC-APL interactive software system
was used to generate random numbers with the IBM-
370/158 computer at the Centers for Disease Control.
These uniform numbers were used pairwise in the
Box-Muller transformation (2) to yield independent
Gaussian random numbers from a population with 0
mean and unit variance. Independent studies were
carried out for the five sample sizes n = 5, 10, 20, 30,
and 40.

For each sample size, 5,000 independent samples of
size n were generated from the standard (0, 1) Gaus-
sian population. For each of the 5,000 samples of size
n, the sample mean and SD were computed. Each of
the n log (integer titer) values, together with the
sample SD, was multipled by a conversion number
corresponding to a preselected reproducibility value
for the sampled population (see Appendix B and Table
1). This caused the sample of n to appear as if it had
been drawn from a population having the preselected
reproducibility parameter. The sample estimates El
and E2 were then computed.
Each of the n original log (integer titer) values in

the sample, together with the sample SD, was then
multipled by a second conversion number correspond-
ing to a second preselected reproducibility parameter
value. A second El and E2 were computed. This
procedure was repeated for the same sample of n log
(integer titer) values a total of five times. In this
manner, each sample of size n yielded both a nonpar-
ametric estimate (El) and a parametric estimate (E2)
of the system reproducibility when the latter was set
in turn to 0.95, 0.90, 0.80, 0.70, and 0.60. In each case,
the 5,000 estimates of reproducibility were taken to
approximate the corresponding population distrubu-
tion of estimates, and selected statistics were com-
puted. The descriptive capability of each of these
selected statistics, when viewed across the range of
preselected TR values, was enhanced through the
correlation induced by using the same sample of ele-
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ments with the five different selected reproducibility
values.

APPENDIX D
For the nonparametric estimator El, the simula-

tion-based estimates of the conditional probabilities of
type I and type II errors are shown in Fig. 4. They are
also given in Table 2, together with a measure called
here the "coefficient of variation of the mean" (CVM).
This useful measure is 100 times the standard error of
the mean divided by the mean, or the conventional
coefficient of variation divided by the square root of
the sample size. The CVM readily leads to a useful
confidence interval for the true mean. This is obtained
as 100% ± 2 x percent CVM to yield a 95% confidence
interval. Consequently, one has assurance at approxi-
mately the 95% level that the observed sample mean
is within 2 x percent CVM of the population mean.
From Table 2, the conditional probability of a type I
error with El is estimated to be 0.153 when n = 5. The
estimated CVM of 3.3% indicates that we have ap-
proximately 95% assurance that this sample estimate,
0.153, is within 2 x 3.3% = 6.6% of the true value in

TABLE 5. Differences of the logarithms to the base e
for the first 29 pairs of integer titers in Table 4

Difference of natu-
ral loganithmis

1 0.800 427
2 0.836 248
3 0.379 490
4 0.133 531
5 0.305 382

6 0.182 322
7 0.741 937
8 0.599 616
9 0.356 675
10 0.064 539

il 0.236 389
12 0.133 531
13 0.633 294
14 0.105 361
15 0.236 389

16 0.133 531
17 0
18 0.459 532
19 0.207 639
20 0.177 783

21 0.257 829
22 0.044 452
23 0.650 588
24 0.182 322
25 0

26 0.336 472
27 0.287 682
28 0.374 693
29 0.051 293

Difference squared'

0.006 406 835
0.699 310 758
0.144 012 373
0.017 830 633
0.093 257 952

0.033 241 150
0.550 471 024
0.313 169 830
0.127 217 016
0.093 257 952

0.055 879 654
0.017 830 633
0.439 959 219
0.011 100 838
0.055 879 654

0.017 830 633
O

0.211 169 962
0.431 141 058
0.013 872 843

0.066 475 850
0.001 975 959
0.423 264 181
0.033 241 150

O

0.113 213 566
0.082 760 975
0.140 395 181
0.002 631 002
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the population. A 95% confidence interval for the true
conditional probability is given by (1.000 ± 0.066) x
0.153, or 0.143 to 0.163.

For the parametric estimator E2, the conditional
probabilities of type I and type II errors can be com-
puted directly from the chi-square distribution. This
is because a constant times the square of the sample
SD from Gaussian log (integer titer) values follows the
chi-square distribution. These true probabilities were
computed and are given in Table 2, together with the
corresponding estimates obtained from the simulation.
Comparison of the computed true probabilites with
those obtained from the simulation for E2 offers an
overall check on the accuracy of the simulation.

APPENDIX E
It has been emphasized that El, E2, and E3 require

data having a particular structure; that is, each of the
replicate integer titers must be from an independent
run of the test system. Such data contain a single
measure of within-run variation and a single measure
of among-run variation. This is so because within-run
measurement error, or variation, is introduced at the
point of measurement within the particular run, and
a different among-run component of variation is an
integral part of each run. When the difference of
logarithms is formed for such measurements, it con-
tains the difference between two independent within-
run measurement components as well as the difference
between the two independent among-run components.
The key point is that all such differences between any
two log (integer titer) values contain these same basic
components in equal quantities, that is, two of each.
An SD computed from such integer titers is based on
these differences and, therefore, reflects an equal
weighting of the within-run component and the
among-run component. Since E2 is obtained directly
from this standard deviation, it too reflects an equal
weighting of the within-run and among-run compo-
nents. Clearly then, the basic measure of overall re-
producibility considered here rests on an equal weight-
ing of these two components of measurement varia-
tion.
The essence of the above statements is that the

underlying restriction does not actually apply to the
structure of the data itself but rather to the SD that
is computed. The data may have any structure what-
ever, so long as the proper SD estimate can be ex-
tracted from it. The data collection study design dis-
cussed in this paper is such that the straightforward
SD of the log (integer titer) values contains the two
subject components of variation automatically
weighted equally. Other study designs may be used,
however, so long as the proper sample SD can be
synthesized from the data. With certain designs, this
can readily be done by means of the analysis of vari-
ance procedure to estimate singly the within-run com-
ponent of variance and the among-run component of
variance. These can be combined to yield an overall
SD estimate. These two SD estimates can themselves
be used in Table 1 to obtain estimates of the within-
run reproducibility and the overall reproducibiity of
the subject test system.

In the same vein, the analyst restricted to paired
data is not limited to the nonparametic estimate E3.

Pa

<'Total differences squared, 4.107 705 150. SDLE =
-/4.107 705 150/58 = 0.2661. E4 = 0.934.
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The analysis of variance procedure can be used to
obtain a parametraic estimate in the manner just
described. For this estimate, called E4, the k differ-
ences between log (integer titer) values within each
pair would be squared, summed, and divided by 2k.
The square root of this quantity is the SD to be used
in Table 1. In this case, the effective sample size is k
+ 1 relative to the estimate E2. That is, k pairs of titer
measurements lead to E4, a parametric estimate of
TR that has no more reliability than E2 has with only
k + 1 replicates. In an example given above, it was
seen that E3 requires 44 pairs to provide the same
reliability obtainable with E2 based on 30 replicate
titer measurements on the same specimen. This same
reliabiity is obtainable with E4 by using 29 pairs of
titer measurements. In this example, the reliability of
the parametric estimate E4 is equivalent to that of the
nonparametric estimate E3, when E4 is based on only
29/44, or two-thirds, as much data. The data in Table
5 are the differences of the logarithms to the base e

for the first 29 pairs of integer titers shown in Table 4.
The sum of the squared differences divided by 2 k =

58 is 0.070823. The square root of this quantity is
0.2661 which, in Table 1, gives the estimate ofTR that
is E4 = 0.934.
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