Supporting Information

The Chiral Crown Conformation of Rh₂(S-PTTL)₄: Enantioselective Cyclopropanation with α-Alkyl-α-diazoesters

Andrew DeAngelis, Olga Dmitrenko, Glenn P. A. Yap, and Joseph M. Fox*

Brown Laboratories, Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716

Experimental Section	Page
General Considerations	S-3
Optimization Table	S-4
Assignment of absolute stereochemistry	S-5
Experimental procedures	S-5
NMR, GC, and HPLC data	
GC trace of 2	S-25
HPLC trace of 2	S-26
¹ H and ¹³ C NMR spectra of 3	S-27
GC trace of 3	S-28
HPLC traces of 3	S-29
GC trace of 4	S-3 0
HPLC traces of 4	S-31
¹ H and ¹³ C NMR spectra of 5	S-32
GC trace of 5	S-33
HPLC traces of 5	S-34
¹ H and ¹³ C NMR spectra of 6	S-35

GC trace of 6	S-36
GC trace of 7	S-37
¹ H and ¹³ C NMR spectra of 8	S-38
GC trace of 8	S-39
HPLC traces of 8	S-40
¹ H and ¹³ C NMR spectra of 9	S-41
GC trace of 9	S-42
GC trace of 10	S-43
HPLC traces of 10	S-44
¹ H and ¹³ C NMR spectra of 11	S-45
¹ H and ¹³ C NMR spectra of 12	S-46
GC trace of 12	S-47
HPLC traces of 12	S-48
¹ H and ¹³ C NMR spectra of 13	S-49
GC trace of 13	S-50
HPLC traces of 13	S-51
¹ H and ¹³ C NMR spectra of 15	S-52
HPLC traces of 15	S-53
¹ H and ¹³ C NMR spectra of 16	S-54
HPLC traces of 16	S-55
¹ H and ¹³ C NMR spectra of 17	S-56
HPLC traces of 17	S-57
¹ H and ¹³ C NMR spectra of 18	S-58
HPLC traces of 18	S-59
¹ H and ¹³ C NMR spectra of 19	S-60
¹ H and ¹³ C NMR spectra of 20	S-61
References	S-62

Experimental Procedures

General Considerations

All non-aqueous reactions were carried out in glassware that was flame-dried under vacuum and cooled under nitrogen. CH₂Cl₂, toluene, diethyl ether, and hexanes were dried with columns packed with activated neutral alumina. THF was distilled from sodium/benzophenone. Chromatography was performed on silica gel (silicycle 40-63D, 60Å). For ¹³C NMR, multiplicities were distinguished using a ATP pulse sequence: typical methylene and quaternary carbons appear 'up' (u); methine and methyl carbons appear 'down' (dn). NMR yields were determined by addition of 1 equivalent of mesitylene as an internal standard to the crude reaction mixture. Reagents were used directly as purchased from commercial sources without further purification. Ethyl 2-diazopropanoate, ethyl 2-diazobutanoate, ethyl 2-diazobexanoate, ethyl 2diazooctanoate, and ethyl 2-diazo-5-methylhexanoate were prepared from the corresponding βketoesters according to literature protocol.¹ (E)-1-phenylbutadiene was prepared according to a literature procedure.² Dirhodium tetrakis triphenylacetate,³ dirhodium tetrakis *N*-phthaloyl (*S*)valinate, and dirhodium tetrakis N-phthaloyl (S)-tert-leucinate were also prepared according to methods described in the literature.⁴ The "racemic" (+/-) Rh₂(PTV)₄ was prepared by mixing an equimolar amount of each enantiomer, and then dissolving the mixture in CH₂Cl₂ and subsequently evaporating the solvent. X-ray quality crystals of Rh₂(S-PTTL)₄ were grown by slow evaporation of 20:2:1 drop hexanes/toluene/ethyl acetate. Enantiomeric excesses were measured on materials directly after chromatography (i.e. the reported ee's have not been enhanced through crystallization).

Optimization Table

Ph~	// _ Et _ CO	₂ Et Rh ca	at.	Et /, C	O ₂ Et
1 eq	uiv 3 equiv	Solvent,	Solvent, -78°C		
Entry	Rh cat.	Solvent	Yield	dr	ee
1	Rh ₂ (S-DOSP) ₄	CH_2CI_2	26%	84:16	0%
2	Rh ₂ (<i>R</i> -PTAD) ₄	CH_2CI_2	51%	82:18	-30%
3	Rh ₂ (<i>R</i> -PTAD) ₄	PhMe	98%	90:10	-70%
4	Rh ₂ (S-PTPA) ₄	PhMe	24%	>99:1	28%
5	$Rh_2(S-PTV)_4$	PhMe	95%	85:15	73%
6	Rh ₂ (S-PTTL) ₄	CH_2CI_2	94%	80:20	50%
7	Rh ₂ (S-PTTL) ₄	Hexanes	95%	92:8	79%
8	Rh ₂ (S-PTTL) ₄	Et ₂ O	92%	89:11	75%
9	Rh ₂ (S-PTTL) ₄	PhMe	99%	90:10	72%

*Bold face denotes optimized conditions

Assignment of absolute configuration

For the cyclopropanations catalyzed by $Rh_2(S-PTTL)_4$ the absolute configuration was determined by x-ray diffraction of compound **20**, which was prepared from compound **19** (96% ee) and (*S*)-(+)-4-phenyl 2-oxazolidinone. From the x-ray data, it was determined that the absolute configuration of the cyclopropane is 1*S*, 2*R*.

General procedure for cyclopropanation to provide racemic samples

In a dry round bottomed flask, Rh_2TPA_4 (3 mg, 0.002 mmol) or +/- $Rh_2(PTV)_4$ (2 mg, 0.002 mmol) and 0.40 mmol of alkene were dissolved in anhydrous CH_2Cl_2 (2.0 mL) and cooled by a bath of dry ice/acetone (-78 °C) under a nitrogen atmosphere. The appropriate diazoester (1.20 mmol) was dissolved in anhydrous CH_2Cl_2 (1.2 mL) and added to the reaction mixture via syringe pump at a rate of 1 mL/h. After the addition was complete, the mixture was allowed to warm to room temperature. The solvent was subsequently removed and the residue was chromatographed on silica gel.

NOTE: Compounds 2, 4, 7, and 10 were prepared according to previously described protocols.⁵

General procedure I for enantioselective cyclopropanation using Rh₂(S-PTTL)₄

In a dry round bottomed flask, $Rh_2(S-PTTL)_4$ (2 mg, 0.002 mmol) and 0.44 mmol of alkene were dissolved in anhydrous hexanes (2.2 mL) and cooled by a bath of dry ice/acetone (-78 °C) under a nitrogen atmosphere. The appropriate diazoester (0.40 mmol) was dissolved in anhydrous hexanes (1.0 mL) and added to the reaction mixture via syringe pump at a rate of 1 mL/h. After the addition was complete, the mixture was allowed to warm to room temperature. The solvent was subsequently removed and the residue was chromatographed on silica gel.

General procedure II for enantioselective cyclopropanation using Rh₂(S-PTTL)₄

$$\begin{array}{c} R_1 \underbrace{CO_2Et}_{N_2} + \underbrace{R_2}_{R_3} \\ \end{array} \xrightarrow{ \begin{array}{c} Rh_2(S-PTTL)_4 \\ \hline hexanes, -78^\circ C \end{array}} \\ \end{array} \xrightarrow{ \begin{array}{c} R_1 \swarrow}_{R_2} \\ \end{array} \xrightarrow{ \begin{array}{c} CO_2Et}_{R_2} \\ \end{array} \xrightarrow{ \begin{array}{c} R_1 \swarrow}_{R_2} \\ \end{array} \xrightarrow{ \begin{array}{c} R_2 \end{array}} \\ \end{array} \xrightarrow{ \begin{array}{c} R_2 \end{array}} \\ \end{array}$$

In a dry round bottomed flask, $Rh_2(S-PTTL)_4$ (2 mg, 0.002 mmol) and 0.40 mmol of alkene were dissolved in anhydrous hexanes (2.0 mL) and cooled by a bath of dry ice/acetone (-78 °C) under a nitrogen atmosphere. The appropriate diazoester (1.20 mmol) was dissolved in anhydrous hexanes (1.2 mL) and added to the reaction mixture via syringe pump at a rate of 1 mL/h. After the addition was complete, the mixture was allowed to warm to room temperature. The solvent was subsequently removed and the residue was chromatographed on silica gel.

(1*S*,2*R*)-(+)-Ethyl 1-ethyl-2-phenylcyclopropane-1-carboxylate (2)

$$Et_{\lambda}(S) CO_2 Et$$

Ph^{\\''}(R)

General procedure I was followed with 55 mg (0.39 mmol) of ethyl 2-diazobutanoate and 45 mg (0.43 mmol) of styrene to give 66 mg (0.30 mmol, 77%) of known compound **2** as a colorless oil. The purity was measured to be $\geq 95\%$ by ¹H NMR and GC. The diastereomer ratio was measured to be 92:8 by GC analysis. The enantiomeric excess of the major diastereomer was measured to be 79% ee by HPLC analysis (CHIRACEL OD column, 0.1% isopropanol in hexanes, 1 mL/min, 220 nm). A similar experiment starting with 57 mg (0.40 mmol) of ethyl 2-diazobutanoate and 46 mg (0.44 mmol) of styrene gave 66 mg (0.30 mmol, 75%) of **2**. The diastereomer ratio was measured to be 92:8 by GC analysis. The enantiomeric excess of the major diastereomer and 46 mg (0.44 mmol) of styrene gave 66 mg (0.30 mmol, 75%) of **2**. The diastereomer ratio was measured to be 92:8 by GC analysis. The enantiomeric excess of the major diastereomer was measured to be 79% ee by HPLC analysis. Alternatively, general procedure II with 40 mg (0.38 mmol) of styrene (99% purity) and 160 mg (1.13 mmol) of ethyl 2-diazobutanoate gave 76 mg (0.35 mmol, 92%) of **2**. A repetition of that experiment gave **2** in 98% yield. [α]²⁰_D = +78° (*c*. 1.04 CHCl₃); The spectral properties were identical to those previously described in the literature for the racemic material.⁵

(1*S*,2*R*)-(+)-Ethyl 2-phenyl-1-propylcyclopropane-1-carboxylate (3)

General procedure I was followed with 62 mg (0.40 mmol) of ethyl 2-diazopentanoate and 45 mg (0.44 mmol) of styrene to give 77 mg (0.33 mmol, 83%) of **3** as a colorless oil. The purity was measured to be $\ge 95\%$ by ¹H NMR and GC. Two peaks were detected in a 99:1 ratio by GC analysis. The enantiomeric excess was measured to be 94% ee by HPLC analysis (CHIRACEL OD column, 0.2% isopropanol in hexanes, 1 mL/min, 220 nm). A similar experiment starting with 67 mg (0.43mmol) of ethyl 2-diazopentanoate and 49 mg (0.47 mmol) of styrene gave 85 mg (0.37 mmol, 86%) of **3**. Two peaks were detected in a > 99:1 ratio by GC analysis. The enantiomeric excess was measured to be 94% ee by HPLC analysis. Alternatively, general procedure II with 23 mg (0.22 mmol) of styrene (99% purity) and 104 mg (0.67 mmol) of ethyl 2-diazopentanoate gave 52 mg (0.22 mmol, 100%) of **3**. A repetition of that experiment gave **3** in 100% yield. $[\alpha]_{D}^{20} = +83^{\circ}$ (c. 1.95 CHCl₃); ¹H NMR (400 MHz, CDCl₃, δ): 7.33-7.27 (m, 2H), 7.26-7.18 (m, 3H), 4.25-4.12 (m, 2H), 2.75 (dd, J = 9.0 Hz, 7.1 Hz, 1H), 1.69 (m, 1H), 1.67-1.58 (m, 1H), 1.43-1.27 (m, 2H), 1.29 (t, J = 7.2 Hz, 3H), 1.19 (dd, J = 7.2 Hz, 4.6 Hz, 1H), 0.83-0.78 (m, 1H), 0.73 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃, δ): 175.0 (u), 137.2 (u), 129.3 (dn), 128.1 (dn), 126.6 (dn), 60.6 (u), 32.1 (dn), 30.7 (u), 30.5 (u), 20.7 (u), 17.9 (u), 14.3 (dn, 2 carbons); IR (CHCl₃, cm⁻¹): 3020, 2962, 1709, 1458, 1382, 1295, 1217, 1158, 757, 699, 669; HRMS-ESI m/z: [M+], calcd for C₁₅H₂₀O₂, 232.1463; found 232.1454.

(1*S*,2*R*)-(+)-Ethyl 1-butyl-2-phenylcyclopropane-1-carboxylate (4)

General procedure I was followed with 73 mg (0.43 mmol) of ethyl 2-diazohexanoate and 49 mg (0.47 mmol) of styrene to give 92 mg (0.37 mmol, 86%) of **4** as a colorless oil. The purity was measured to be \geq 95% by ¹H NMR and GC. Two peaks were detected in a 99:1 ratio by GC analysis. The enantiomeric excess was measured to be 96% ee by HPLC analysis (CHIRACEL OD column, 0.1% isopropanol in hexanes, 1 mL/min, 220 nm). A similar experiment starting with 75 mg (0.44 mmol) of ethyl 2-diazohexanoate and 51 mg (0.49 mmol) of styrene gave 88 mg (0.36 mmol, 82%) of **4**. Two peaks were detected in a > 99:1 ratio by GC analysis. The enantiomeric excess was measured to be 97% ee by HPLC analysis. Alternatively, general procedure II with 20 mg (0.19 mmol) of styrene (99% purity) and 97 mg (0.57 mmol) of ethyl 2-diazohexanoate gave 45 mg (0.18 mmol, 95%) of **4**. A repetition of that experiment gave **4** in 92% yield. $[\alpha]^{20}_{D} = +67^{\circ}$ (*c*. 0.93 CHCl₃); The spectral properties were identical to those previously described in the literature for the racemic material.⁵

(1*S*,2*R*)-(+)-Ethyl 1-isopentyl-2-phenylcyclopropane-1-carboxylate (5)

General procedure I was followed with 81 mg (0.44 mmol) of ethyl 2-diazo-5-methylhexanoate and 51 mg (0.49 mmol) of styrene to give 102 mg (0.39 mmol, 89%) of **5** as a colorless oil. The

purity was measured to be > 95% by ¹H NMR and GC. Two peaks were detected in a 99:1 ratio by GC analysis. The enantiomeric excess was measured to be 99% ee by HPLC analysis (CHIRACEL OD column, 0.2% isopropanol in hexanes, 1 mL/min, 220 nm). A similar experiment starting with 79 mg (0.43 mmol) of ethyl 2-diazo-5-methylhexanoate and 49 mg (0.47 mmol) of styrene gave 100 mg (0.38 mmol, 88%) of 5. Two peaks were detected in a > 99:1 ratio by GC analysis. The enantiomeric excess was measured to be 99% ee by HPLC analysis. Alternatively, general procedure II with 36 mg (0.34 mmol) of styrene (99% purity) and 176 mg (1.04 mmol) of ethyl 2-diazo-5-methylhexanoate gave 81 mg (0.31 mmol, 91%) of 5. A repetition of that experiment gave 5 in 93% yield. $[\alpha]_{D}^{20} = +77^{\circ} (c. 1.84 \text{ CHCl}_{3});$ ¹H NMR (CDCl₃, 400 MHz, δ): 7.33-7.26 (m, 2H), 7.25-7.17 (m, 3H), 4.23-4.12 (m, 2H), 2.69 (dd, *J* = 9.4 Hz, 7.4 Hz, 1H), 1.64 (m, 1H), 1.59-1.51 (m, 1H), 1.30-1.22 (m, 1H), 1.28 (t, *J* = 7.3 Hz, 3H), 1.21-1.15 (m, 3H), 0.96-0.88 (m, 1H), 0.72 (d, J = 6.5 Hz, 3H), 0.69 (d, J = 6.5 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz, δ): 174.9 (u), 137.0 (u), 129.2 (dn), 128.0 (dn), 126.6 (dn), 60.6 (u), 36.4 (u), 32.0 (dn), 30.6 (u), 28.1 (dn), 26.2 (u), 22.6 (dn), 22.1 (dn), 18.0 (u), 14.2 (dn); IR (CHCl₃, cm⁻¹): 3020, 2957, 1708, 1499, 1459, 1384, 1216, 1158, 1082, 1026, 757, 699, 669; HRMS-ESI m/z: [M + Na], calcd for C₁₇H₂₄O₂Na, 283.1674; found 283.1669.

(1*S*,2*R*)-(+)-Ethyl 1-butyl-2-(4-methoxyphenyl)cyclopropane-1-carboxylate (6)

General procedure II was followed with 30 mg (0.22 mmol) of 4-vinylanisole (97% purity) and 75 mg (0.44 mmol) of ethyl 2-diazohexanoate to give 51 mg (0.18 mmol, 82%) of 6 as a colorless oil. The purity was measured to be > 95% by ¹H NMR and only 1 peak was detected by GC analysis. The enantiomeric excess was measured to be 90% ee by HPLC analysis of the alcohol adduct obtained upon DIBAL reduction of the ester. A similar experiment starting with 65 mg (0.47 mmol) of 4-vinylanisole (97% purity) and 240 mg (1.41 mmol) of ethyl 2diazohexanoate gave 104 mg (0.38 mmol, 81%) of **6**. Two peaks were detected in a > 99:1 ratio by GC analysis. The enantiomeric excess was measured to be 91% by HPLC analysis. $[\alpha]_{D}^{20} =$ $+78^{\circ}$ (c. 1.04 CHCl₃); ¹H NMR (CDCl₃, 400 MHz, δ): 7.09 (d, J = 8.2 Hz, 2H), 6.82 (d, J = 8.8Hz, 2H), 4.22-4.10 (m, 2H), 3.80 (s, 3H), 2.69 (dd, *J* = 9.3 Hz, 7.2 Hz, 1H), 1.68-1.55 (m, 2H), 1.34-1.22 (m, 2H), 1.29 (t, J = 7.2 Hz, 3H), 1.19-1.10 (m, 3H), 0.83-0.73 (m, 1H), 0.78 (t, J = 7.2 Hz, 3H): ¹³C NMR (CDCl₃, 100 MHz, δ): 175.1 (u), 158.3 (u), 130.2 (dn), 129.1 (u), 113.5 (dn), 60.5 (u), 55.2 (dn), 31.5 (dn), 30.4 (u), 29.7 (u), 28.1 (u), 22.8 (u), 18.1 (u), 14.2 (dn), 13.9 (dn); IR (CHCl₃, cm⁻¹): 3011, 2959, 2873, 1706, 1612, 1515, 1463, 1380, 1318, 1292, 1249, 1203, 1174, 1059, 1035, 837, 736, 667; HRMS-ESI m/z: [M + Na], calcd for C₁₇H₂₄O₃Na, 299.1623; found 299.1618.

(1*S*,2*R*)-(+)-Ethyl 1-butyl-2-(4-fluorophenyl)cyclopropane-1-carboxylate (7)

General procedure II was followed with 56 mg (0.45 mmol) of 4-fluorostyrene (97% purity) and 228 mg (1.34 mmol) of ethyl 2-diazohexanoate to give 118 mg (0.45 mmol, 100%) of known compound **7** as a colorless oil. The purity was measured to be \geq 95% by ¹H NMR and GC. Two peaks were detected in a 99:1 ratio by GC analysis. The enantiomeric excess was measured to be 96% ee by HPLC analysis of the alcohol adduct obtained upon DIBAL reduction of the ester. A similar experiment starting with 49 mg (0.39 mmol) of 4-fluorostyrene (97% purity) and 200 mg (1.18 mmol) of ethyl 2-diazohexanoate gave 104 mg (0.39 mmol, 100%) of **7**. Two peaks were detected in a > 99:1 ratio by GC analysis. The enantiomeric excess was measured to be 97% ee by HPLC analysis. [α]²⁰_D = +82° (*c*. 1.28 CHCl₃); The spectral properties were identical to those previously described in the literature for the racemic material.⁵

(1*S*,2*R*)-(+)-Ethyl 1-butyl-2-(*E*)-(β)-styrylcyclopropane-1-carboxylate (8)

General procedure II was followed with 53 mg (0.41 mmol) of (E)-1-phenylbutadiene and 209 mg (1.23 mmol) of ethyl 2-diazohexanoate to give 77 mg (0.28 mmol, 68%) of 8 as a colorless oil. The purity was measured to be 93% by ¹H NMR. Two peaks were detected in a 96:4 ratio by GC analysis. The enantiomeric excess was measured to be 85% ee by HPLC analysis (CHIRACEL OD column, 0.2% isopropanol in hexanes, 1 mL/min, 220 nm). A similar experiment starting with 55 mg (0.42 mmol) of (*E*)-1-phenylbutadiene and 214 mg (1.26 mmol) of ethyl 2-diazohexanoate gave 86 mg (0.32 mmol, 76%) of 8. Two peaks were detected in a 97:3 ratio by GC analysis. The enantiomeric excess was measured to be 85% ee by HPLC analysis. $[\alpha]^{20}_{D} = +56^{\circ}$ (c. 0.84 CHCl₃); ¹H NMR (CDCl₃, 400 MHz, δ): 7.36-7.27 (m, 4H), 7.25-7.18 (m, 1H), 6.57 (d, J = 16.0 Hz, 1H), 5.98 (dd, J = 16.0 Hz, 8.4 Hz, 1H), 4.15 (dq, J = 16.0 Hz, 1H), 4.15 (dq, J = 16.0 Hz, 8.4 Hz, 1H), 4.15 (dq, J = 16.0 Hz, 8.4 Hz, 1H), 4.15 (dq, J = 16.0 Hz, 8.4 Hz, 1H), 4.15 (dq, J = 16.0 Hz, 8.4 Hz, 1H), 4.15 (dq, J = 16.0 Hz, 8.4 Hz, 1H), 4.15 (dq, J = 16.0 Hz, 8.4 Hz, 1H), 4.15 (dq, J = 16.0 Hz, 8.4 Hz, 1H), 4.15 (dq, J = 16.0 Hz, 8.4 Hz, 1H), 4.15 (dq, J = 16.0 Hz, 8.4 Hz, 1H), 4.5 (dq, J = 16.0 Hz, 1H), 4.5 (dq, J = 16.0 Hz, 1H), 4.5 (dq, J 7.1 Hz, 1.1 Hz, 2H), 2.30 (app q, J = 8.6 Hz, 1H), 2.73-2.65 (m, 1H), 1.61-1.57 (m, 1H), 1.56-1.50 (m, 1H), 1.49-1.41 (m, 2H), 1.33-1.23 (m, 5H), 0.96-0.87 (m, 4H); ¹³C NMR (CDCl₃, 100 MHz, δ): 174.6 (u), 137.3 (u), 132.3 (dn), 128.6 (dn), 127.9 (dn), 127.2 (dn), 125.9 (dn), 60.6 (u), 30.8 (u), 30.1 (dn), 30.0 (u), 29.0 (u), 22.9 (u), 21.6 (u), 14.2 (dn), 14.0 (dn); IR (CHCl₃, cm⁻¹): 3014, 2959, 2872, 1709, 1450, 1382, 1244, 1207, 1176, 1156, 1044, 961, 758, 747, 694, 667; HRMS-CI(NH₃) m/z: [M+H], calcd for C₁₈H₂₅O₂, 273.1855; found 273.1865.

(1S,2R)-(-)-Ethyl 2-(naphthalen-1-yl)-1-propylcyclopropane-1-carboxylate (9)

General procedure II was followed with 31 mg (0.19 mmol) of 1-vinylnaphthalene (95% purity) and 89 mg (0.57 mmol) of ethyl 2-diazopentanoate to give 41 mg (0.15 mmol, 79%) of 9 as a pale yellow oil. The purity was measured to be \geq 95% by ¹H NMR and GC. Two peaks were detected in a 98:2 ratio by GC analysis. The enantiomeric excess was measured to be 93% ee by HPLC analysis of the alcohol adduct obtained upon DIBAL reduction of the ester. A similar experiment starting with 70 mg (0.43 mmol) of 1-vinylnaphthalene (95% purity) and 201 mg (1.28 mmol) of ethyl 2-diazopentanoate gave 85 mg (0.30 mmol, 70%) of 9. Two peaks were detected in a 99:1 ratio by GC analysis. The enantiomeric excess was measured to be 94% ee by HPLC analysis. $[\alpha]_{D}^{20} = -113^{\circ}$ (c. 1.60 CHCl₃); ¹H NMR (CDCl₃, 400 MHz, δ): 8.04 (d, J =7.9 Hz, 1H), 7.85 (d, J = 7.5 Hz, 1H), 7.75 (d, J = 7.9 Hz, 1H), 7.56-7.48 (m, 2H), 7.41 (t, J =7.1, 1H), 7.30-7.24 (m, 1H), 4.30 (q, J = 7.1 Hz, 2H), 3.01 (dd, J = 8.8 Hz, 7.7 Hz, 1H), 1.90 (m, 1H), 1.75-1.66 (m, 1H), 1.43-1.32 (m, 2H), 1,38 (t, *J* = 7.1 Hz, 3H), 1.30-1.19 (m, 1H), 0.66 (t, J = 7.4 Hz, 3H, 0.47-0.38 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz, δ): 175.1 (u), 134.1 (u), 133.5 (u, 2 carbons), 128.4 (dn), 127.5 (dn), 126.2 (dn), 126.1 (dn), 125.8 (dn), 125.2 (dn), 124.2 (dn), 60.7 (u), 30.6 (u), 30.4 (u), 30.4 (dn), 20.9 (u), 17.6 (u), 14.4 (dn), 14.1 (dn); IR (CHCl₃, cm⁻¹): 3011, 2963, 2873, 1708, 1463, 1374, 1294, 1226, 1177, 1138, 1054, 802, 749; HRMS-ESI m/z: [M + Na], calcd for C₁₉H₂₂O₂Na, 305.1518; found 305.1514.

(1*S*,2*R*)-(+)-Ethyl 1-butyl-2-methyl-2-phenylcyclopropane-1-carboxylate (10)

General procedure II was followed with 20 mg (0.17 mmol) of α -methylstyrene (99% purity) and 87 mg (0.51 mmol) of ethyl 2-diazohexanoate to give 39 mg (0.15 mmol, 88%) of known compound **10** as a colorless oil. The purity was measured to be \geq 95% by ¹H NMR and GC. Two peaks were detected in a 99:1 ratio by GC analysis. The enantiomeric excess was measured to be 97% ee by HPLC analysis (CHIRACEL OD column, 0.1% isopropanol in hexanes, 1 mL/min, 220 nm). A similar experiment starting with 51 mg (0.43 mmol) of α -methylstyrene (99% purity) and 217 mg (1.28 mmol) of ethyl 2-diazohexanoate gave 80 mg (0.41 mmol, 95%) of **10**. Two peaks were detected in a > 99:1 ratio by GC analysis. The enantiomeric excess was measured to be 96% ee by HPLC analysis. [α]²⁰_D = +50° (*c*. 0.56 CHCl₃); The spectral properties were identical to those previously described in the literature for the racemic material.⁵

(S)-(-)-Ethyl 1-butyl-2,2-diphenylcyclopropane-1-carboxylate (11)

n-Bu (S)CO₂Et Ph^{IIII} Ph

General procedure II was followed with 33 mg (0.18 mmol) of 1,1-diphenylethylene (97% purity) and 61 mg (0.36 mmol) of ethyl 2-diazohexanoate to give 53 mg (0.16 mmol, 89%) of 11 as a colorless oil. The purity was measured to be $\ge 95\%$ by ¹H NMR. The enantiomeric excess was measured to be 63% ee by HPLC analysis of the alcohol adduct obtained upon DIBAL reduction of the ester. A similar experiment starting with 80 mg (0.43 mmol) of 1,1diphenylethylene (97% purity) and 219 mg (1.29 mmol) of ethyl 2-diazohexanoate gave 138 mg (0.43 mmol, 100%) of **11**. The enantiomeric excess was measured to be 63% ee by HPLC analysis. $[\alpha]_{D}^{20} = -5.2^{\circ}$ (c. 0.90 CHCl₃); ¹H NMR (CDCl₃, 400 MHz, δ): 7.39-7.33 (m, 4H), 7.22-7.19 (m, 2H), 7.17-7.10 (m, 3H), 7.08-7.01 (m, 1H), 3.83-3.75 (m, 1H), 3.72-3.65 (m, 1H), 2.38-2.28 (m, 1H), 2.24 (dd, J = 5.0 Hz, 1.5 Hz, 1H), 1.35 (d, J = 5.0 Hz, 1H), 1.34-1.11 (m, 4H), 0.82 (t, J = 7.2 Hz, 3H), 0.75 (t, J = 7.2 Hz, 3H), 0.45 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz, δ): 172.5 (u), 143.2 (u), 142.3 (u), 129.4 (dn), 128.9 (dn), 128.5 (dn), 128.2 (dn), 126.6 (dn), 126.4 (dn), 60.3 (u), 43.9 (u), 36.7 (u), 32.7 (u), 30.1 (u), 22.7 (u), 22.2 (u), 14.1 (dn), 13.7 (dn); IR (CHCl₃, cm⁻¹): 3029, 2958, 2930, 2872, 1710, 1494, 1449, 1373, 1263, 1087, 1025, 760, 748, 707; HRMS-ESI m/z: [M + Na], calcd for C₂₂H₂₆O₂Na, 345.1831; found 345.1829.

(1*R*,5*S*,6*S*)-(+)-3,4-Benzo-6-ethoxycarbonyl-6-isopentyl-2-oxabicyclo[3.1.0]hex-3-ene (12)

General procedure II was followed with 49 mg (0.41 mmol) of benzofuran and 228 mg (1.24 mmol) of ethyl 2-diazo-5-methylhexanoate to give 106 mg (0.39 mmol, 95%) of 12 as a colorless oil. The purity was measured to be $\ge 95\%$ by ¹H NMR and GC. The diastereomer ratio was measured to be > 95:5 by ¹H NMR, and only one peak was detected by GC analysis. The enantiomeric excess was measured to be 99% ee by HPLC analysis (CHIRACEL OD column, 0.1% isopropanol in hexanes, 1 mL/min, 220 nm). An identical experiment gave 106 mg (0.39 mmol, 95%) of **12**. The diastereomer ratio was measured to be \geq 95:5 by ¹H NMR, and only one peak was detected by GC analysis. The enantiomeric excess was measured to be 99% ee by HPLC analysis. $[\alpha]_{D}^{20} = +240^{\circ}$ (c. 0.84 CHCl₃); ¹H NMR (CDCl₃, 400 MHz, δ): 7.35 (dd, *J* = 7.4 Hz, 1.4 Hz, 1H), 7.18 (app dt, *J* = 7.7 Hz, 1.5 Hz, 1H), 6.93 (app dt, *J* = 7.6 Hz, 1.3 Hz, 1H), 6.86 (d, J = 8.0 Hz, 1H), 4.98 (d, J = 5.7 Hz, 1H), 4.19 (q, J = 7.1 Hz, 2H), 3.33 (d, J = 5.7Hz, 1H), 1.39-1.27 (m, 1H), 1.29 (t, J = 7.2 Hz, 3H), 1.26-1.18 (m, 2H), 1.04-0.93 (m, 2H), 0.68 $(d, J = 6.8 \text{ Hz}, 3\text{H}), 0.55 (d, J = 6.6 \text{ Hz}, 3\text{H}); {}^{13}\text{C} \text{ NMR} (\text{CDCl}_3, 100 \text{ MHz}, \delta): 173.6 (u), 161.4$ (u), 128.1 (dn), 126.1 (u), 125.6 (dn), 121.2 (dn), 109.3 (dn), 70.9 (dn), 61.0 (u), 35.8 (u), 34.8 (dn), 28.0 (dn), 26.0 (u), 22.4 (dn), 21.9 (dn), 18.8 (u), 14.3 (dn); IR (CHCl₃, cm⁻¹): 2958, 2871, 1703, 1616, 1596, 1464, 1370, 1311, 1239, 1204, 1159, 1090, 1058, 1033, 758, 747; HRMS-CI(NH₃) m/z: [M+], calcd for C₁₇H₂₂O₃, 274.1569; found 274.1564.

(1*S*,2*R*)-(+)-Ethyl 1-hexyl-2-phenylcyclopropane-1-carboxylate (13)

n-Hex (S) CO₂Et

In a dry round bottomed flask, Rh₂(S-PTTL)₄ (2 mg, 0.001 mmol) and 85 mg (0.81 mmol) of styrene (99% purity) were dissolved in anhydrous hexanes (2.5 mL) and cooled by a bath of dry ice/acetone (-78°C) under a nitrogen atmosphere. Ethyl 2-diazooctanoate (54 mg, 0.27 mmol) was dissolved in hexanes (1.5 mL) and added to the reaction mixture via syringe pump at a rate of 1 mL/h. After the addition was complete, mesitylene (47 mg, 0.39 mmol) was added to the reaction mixture, and an ¹H NMR spectrum was taken to estimate the yield. The solvent was subsequently removed and the residue was chromatographed on silica gel to give 55 mg (0.20 mmol, 74%) of 13 as a colorless oil. The purity was measured to be $\ge 95\%$ by ¹H NMR and only one peak was detected by GC analysis. The enantiomeric excess was measured to be 96% ee by HPLC analysis (CHIRACEL OD column, 0.2% isopropanol in hexanes, 1 mL/min, 220 nm). A similar experiment starting with 82 mg (0.78 mmol) of styrene (99% purity) and 51 mg (0.26 mmol) of ethyl 2-diazooctanoate gave 49 mg (0.18 mmol, 69%) of 13. Only one peak was detected by GC analysis. The enantiomeric excess was measured to be 95% ee by HPLC analysis. $[\alpha]_{D}^{20} = +82^{\circ}$ (c. 0.93 CHCl₃); ¹H NMR (CDCl₃, 400 MHz, δ): 7.32-7.26 (m, 2H), 7.24-7.17 (m, 3H), 4.25-4.13 (m, 2H), 2.77 (dd, J = 8.9 Hz, 6.8 Hz, 1H), 1.67 (dq, J = 4.8 Hz, 1.3 Hz, 1H), 1.63-1.53 (m, 1H), 1.33-1.26 (m, 2H), 1.30 (t, J = 7.1 Hz, 3H), 1.20-1.06 (m, 7H), 0.89-0.79 (m, 1H), 0.81 (t, J = 7.2 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz, δ): 175.0 (u), 137.3 (u), 129.2 (dn), 128.1 (dn), 126.6 (dn), 60.6 (u), 32.0 (dn), 31.6 (u), 30.5 (u), 29.4 (u), 28.5 (u), 27.4 (u), 22.5 (u), 17.9 (u), 14.2 (dn), 14.0 (dn); IR (CHCl₃, cm⁻¹): 2930, 1720, 1459, 1219, 1185, 1153, 772, 698; HRMS-ESI m/z: [M + Na], calcd for C₁₈H₂₆O₂Na, 297.1831; found 297.1825.

General procedure for ester reduction

To a dry round bottomed flask was added 0.10 mmol of the cyclopropane carboxylic ester in 0.7 mL anhydrous THF. The mixture was cooled by a bath of dry ice/acetone (-78 °C), and 0.39 mL (0.39 mmol) of a 1.0 M solution of diisobutylaluminium hydride in THF was added dropwise. The reaction mixture was then warmed to room temperature and allowed to stir for 1 hour. The flask was then cooled by a bath of ice water (0 °C) and 161 mg (0.50 mmol) Na₂SO₄· 10H₂O was added and the mixture was allowed to warm to room temperature and stir for 30 minutes. The mixture was then filtered, concentrated, and chromatographed on silica gel.

(1*S*,2*R*)-(+)-1-Butyl-2-(4-methoxyphenyl)cyclopropylmethanol (15)

The general procedure was followed starting with 18 mg (0.065 mmol) of **9** and 0.26 mL (0.26 mmol) of a 1.0 M diisobutylaluminium hydride solution to give 11 mg (0.047 mmol, 72%) of **15** as a colorless oil. The purity was measured to be > 95% by ¹H NMR. The enantiomeric excess was measured to be 90% ee by HPLC analysis (CHIRACEL OD column, 2% isopropanol in hexanes, 1 mL/min, 220 nm). A similar experiment starting with 29 mg (0.11 mmol) of **9** and 0.43 mL (0.43 mmol) of diisobutylaluminium hydride solution gave 19 mg (0.081 mmol, 74%) of **15**. The enantiomeric excess was measured to be 91% ee by HPLC analysis. $[\alpha]^{20}_{D} = +21^{\circ}$ (*c*. 0.50 CHCl₃); ¹H NMR (400 MHz, CDCl₃, δ): 7.09 (d, *J* = 8.5 Hz, 2H), 6.81 (d, *J* = 8.5 Hz, 2H), 3.79 (s, 3H), 3.68 (d, *J* = 10.2 Hz, 1H), 3.42 (d, *J* = 10.2 Hz, 1H), 2.01 (dd, *J* = 8.5 Hz, 5.9

Hz, 1H), 1.55 (bs, 1H), 1.32-1.22 (m, 3H), 1.20-1.06 (m, 2H), 0.96-0.88 (m, 1H), 0.87-0.80 (m, 2H), 0.77 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃, δ): 157.8 (u), 130.7 (u), 130.0 (dn), 113.4 (dn), 69.1 (u), 55.2 (dn), 29.2 (u), 28.7 (u), 28.6 (u), 26.7 (dn), 22.9 (u), 14.2 (u), 14.0 (dn); IR (CHCl₃, cm⁻¹): 3613, 3457 (br), 3017, 2959, 2933, 2873, 1612, 1514, 1465, 1247, 1215, 1178, 1037, 909, 836, 757, 745, 735, 669; HRMS-CI(NH₃) m/z: [M⁺], calcd for C₁₅H₂₂O₂, 234.1620; found 234.1611.

(1*S*,2*R*)-(–)-1-Butyl-2-(4-fluorophenyl)cyclopropylmethanol (16)

The general procedure for ester reduction was followed starting with 34 mg (0.13 mmol) of **10** and 0.52 mL (0.52 mmol) of a 1.0 M diisobutylaluminium hydride solution to give 14 mg (0.063 mmol, 48%) of **16** as a colorless oil. The purity was measured to be > 95% by ¹H NMR. The enantiomeric excess was measured to be 98% ee by HPLC analysis (CHIRACEL OD column, 2% isopropanol in hexanes, 1 mL/min, 220 nm). A similar experiment starting with 44 mg (0.17 mmol) of **10** and 0.67 mL (0.67 mmol) of diisobutylaluminium hydride solution gave 19 mg (0.086 mmol, 51%) of **16**. The enantiomeric excess was measured to be 97% ee by HPLC analysis. $[\alpha]^{20}{}_{\rm D} = -11^{\circ}$ (*c*. 0.88 CHCl₃); ¹H NMR (400 MHz, CDCl₃, δ): 7.12 (dd, *J* = 8.7 Hz, 5.4 Hz, 2H), 6.93 (app t, *J* = 8.7 Hz, 2H), 3.67 (d, *J* = 11.3 Hz, 1H), 3.42 (d, *J* = 11.3 Hz, 1H), 2.02 (dd, *J* = 8.8 Hz, 7.0 Hz, 1H), 1.62 (bs, 1H), 1.33-1.20 (m, 3H), 1.20-1.02 (m, 2H), 0.98-0.89 (m, 2H), 0.88-0.83 (m, 1H), 0.75 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃, δ): 161.3 (u)

S - 20

 $[d, {}^{1}(CF) = 243 \text{ Hz}], 134.3 (u) [d, {}^{4}J(CF) = 3 \text{ Hz}], 130.4 (dn) [d, {}^{3}J(CF) = 8 \text{ Hz}], 114.7 (dn) [d, {}^{2}J(CF) = 21 \text{ Hz}], 68.8 (u), 29.3 (u), 28.6 (u, 2 \text{ carbons}), 26.6 (dn), 22.9 (u), 14.4 (u), 13.9 (dn);$ IR (CHCl₃, cm⁻¹): 3452 (br), 3016, 2959, 2933, 2873, 1604, 1511, 1466, 1380, 1213, 1158, 1043, 1016, 840, 778, 767, 744, 669; HRMS-CI(NH₃) m/z: [M – CH₂OH], calcd for C₁₃H₁₆F, 191.1236; found 191.1238.

(1S,2R)-(-)-2-(Naphthalen-1-yl)-1-propylcyclopropylmethanol (17)

The general procedure was followed starting with 19 mg (0.071 mmol) of **12** and 0.27 mL (0.27 mmol) of a 1.0 M diisobutylaluminium hydride solution to give 12 mg (0.050 mmol, 75%) of **17** as a colorless oil. The purity was measured to be > 95% by ¹H NMR. The enantiomeric excess was measured to be 92% ee by HPLC analysis (CHIRACEL OD column, 2% isopropanol in hexanes, 1 mL/min, 220 nm). A similar experiment starting with 26 mg (0.092 mmol) of **12** and 0.37 mL (0.37 mmol) of diisobutylaluminium hydride solution gave 18 mg (0.075 mmol, 82%) of **17**. The enantiomeric excess was measured to be 93% ee by HPLC analysis. $[\alpha]^{20}_{D} = -180^{\circ}$ (*c*. 0.55 CHCl₃); ¹H NMR (400 MHz, CDCl₃, δ): 8.43 (d, *J* = 8.0 Hz, 1H), 7.87 (d, *J* = 8.2 Hz, 1H), 7.72 (d, *J* = 8.2 Hz, 1H), 7.55-7.48 (m, 2H), 7.41-7.38 (m, 1H), 7.28-7.26 (m, 1H), 4.05 (d, *J* = 11.1 Hz, 1H), 3.59 (d, *J* = 11.1 Hz, 1H), 2.47 (dd, *J* = 8.5 Hz, 6.7 Hz, 1H), 1.61 (bs, 1H), 1.41-1.19 (m, 3H), 1.10-1.00 (m, 2H), 0.66 (t, *J* = 7.3 Hz, 3H), 0.61-0.52 (m, 1H); ¹³C NMR

(100 MHz, CDCl₃, δ): 135.6 (u), 134.0 (u), 133.5 (u), 128.3 (dn), 126.8 (dn), 126.1 (dn), 125.8 (dn), 125.6 (dn), 125.3 (dn), 124.8 (dn), 69.0 (u), 31.1 (u), 28.9 (u), 25.8 (dn), 19.9 (u), 14.3 (dn), 13.6 (u); IR (CHCl₃, cm⁻¹): 3363 (br), 3020, 2961, 1510, 1422, 1215, 1045, 929, 757, 669, 627; HRMS-CI(NH₃) m/z: [M⁺], calcd for C₁₇H₂₀O, 240.1514; found 240.1518.

(S)-(+)-(1-Butyl-2,2-diphenylcyclopropyl)methanol (18)

The general procedure for ester reduction was followed starting with 45 mg (0.14 mmol) of **14** and 0.56 mL (0.56 mmol) of a 1.0 M diisobutylaluminium hydride solution to give 28 mg (0.10 mmol, 71%) of **18** as a colorless oil. The purity was measured to be > 95% by ¹H NMR. The enantiomeric excess was measured to be 63% ee by HPLC analysis (CHIRACEL OD column, 2% isopropanol in hexanes, 1 mL/min, 220 nm). A similar experiment starting with 31 mg (0.10 mmol) of **14** and 0.39 mL (0.39 mmol) of diisobutylaluminium hydride solution gave 22 mg (0.079 mmol, 79%) of **18**. The enantiomeric excess was measured to be 63% ee by HPLC analysis. $[\alpha]^{20}{}_{\rm D}$ = +19° (*c*. 0.90 CHCl₃); ¹H NMR (400 MHz, CDCl₃, δ): 7.51 (dd, *J* = 8.5 Hz, 1.7 Hz, 2H), 7.42 (dd, *J* = 8.6 Hz, 1.5 Hz, 2H), 7.28-7.21 (m, 4H), 7.17-7.10 (m, 2H), 3.69 (d, *J* = 11.7 Hz, 1H), 3.19 (d, *J* = 11.7 Hz, 1H), 1.87-1.78 (m, 1H), 1.59-1.47 (m, 1H), 1.53-1.29 (m, 3H), 1.26-1.17 (m, 3H), 0.91-0.87 (m, 1H), 0.83 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃, δ): 143.7 (u), 143.3 (u), 129.9 (dn), 129.5 (dn), 128.6 (dn), 128.3 (dn), 126.3 (dn), 126.1 (dn), 64.5 (u), 42.6 (u), 32.8 (u), 31.4 (u), 28.9 (u), 23.0 (u), 20.1 (u), 14.1 (dn); IR (CHCl₃, cm⁻)

¹): 3439 (br), 3023, 2958, 2932, 2860, 1493, 1461, 1379, 1033, 909, 773, 760, 709, 670; HRMS-CI(NH₃) m/z: [M – CH₂OH], calcd for C₁₉H₂₁, 249.1643; found 249.1641.

(1*S*,2*R*)-1-Butyl-2-phenylcyclopropanecarboxylic acid (19)

To a round bottom flask was added 43 mg (0.18 mmol) of **7** (96% ee) followed by 2 mL of 3:1 2.0 M KOH : EtOH. The mixture was heated to 90 °C for 16 hours. The mixture was then acidified with 3 M HCl, extracted with three 5 mL portions of CH₂Cl₂. The organic extracts were combined, dried (Na₂SO₄) and concentrated to give 39 mg (0.18 mmol, 100%) of **19** as a colorless oil. The purity of the crude material was measured to be 97% by ¹H NMR. It was used in the next step without further purification. ¹H NMR (400 MHz, CDCl₃, δ): 11.0 (bs, 1H), 7.25-7.20 (m, 2H), 7.20-7.10 (m, 3H), 2.80 (dd, *J* = 9.2 Hz, 7.5 Hz, 1H), 1.68 (dq, *J* = 4.9 Hz, 1.0 Hz, 1H), 1.56-1.48 (m, 1H), 1.36-1.13 (m, 3H), 1.10-0.98 (m, 2H), 0.79-0.62 (m, 4H); ¹³C NMR (100 MHz, CDCl₃, δ): 182.1 (u), 136.6 (u), 129.2 (dn), 128.2 (dn), 126.8 (dn), 33.2 (dn), 30.3 (u), 29.5 (u), 27.8 (u), 22.8 (u), 18.6 (u), 13.9 (dn).

(1S,2R,3S)-(-)-1-Butyl-2-phenylcyclopropanecarbonyl-4-phenyloxazolidin-2-one (20)

To a dry round bottom flask was added 39 mg (0.18 mmol) **19** in 0.5 mL SOCl₂. The mixture was stirred at room temperature for 1 hour, and the excess SOCl₂ was subsequently removed in vacuo. Anhydrous THF (1.0 mL) was then added, followed by 44 mg (0.27 mmol) of (S)-(+)-4phenyl 2-oxazolidinone and 63 μ L Et₃N. The mixture was allowed to stir for 18 hours at room temperature. A white precipitate formed. The mixture was then added to 10 mL H₂O, and extracted with CH₂Cl₂ three times. The organic extracts were combined, dried (MgSO₄), concentrated and chromatographed on silica gel to give 44 mg (0.12 mmol, 67%) of **20** as a white solid, m.p. 90-91 °C. Small peaks attributable to impurities were observed at 5.57 ppm, 5.19 ppm, 4.80 ppm, 4.39 ppm, 2.61 ppm, 2.20 ppm, 1.12 ppm, and 0.44 ppm. X-ray quality crystals were grown from 1:1 Et₂O:hexanes. $\left[\alpha\right]^{20}_{D} = -56^{\circ}$ (c. 0.50 CHCl₃); ¹H NMR (400 MHz, $CDCl_3$, δ): 7.30-7.09 (m, 10H), 5.38 (dd, J = 8.9 Hz, 6.1 Hz, 1H), 4.61 (app t, J = 8.9 Hz, 1H), 4.22 (dd, J = 8.9 Hz, 6.3 Hz, 1H), 2.37 (dd, J = 9.4 Hz, 7.1 Hz, 1H), 1.83-1.74 (m, 1H), 1.65-1.57 (m, 1H), 1.02-0.88 (m, 5H), 0.81-0.70 (m, 1H), 0.55 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃, δ): 174.3 (u), 152.7 (u), 138.3 (u), 136.5 (u), 129.9 (dn), 129.1 (dn), 128.9 (dn), 127.9 (dn), 126.9 (dn), 126.6 (dn), 69.8 (u), 58.6 (dn), 34.9 (u), 30.5 (dn), 30.0 (u), 28.8 (u), 22.6 (u), 14.9 (u), 13.9 (dn); IR (CHCl₃, cm⁻¹): 3023, 2928, 1787, 1688, 1460, 1383, 1324, 1225, 1201, 1047, 791, 700, 671; HRMS-ESI m/z: [M + Na], calcd for C₂₃H₂₅NO₃Na, 386.1732; found 386.1725.

GC trace of 2 (Hewlett Packard HP1 column, 200 °C injection, 50–300 °C over 27 min)

HPLC resolution of racemic 2 (Chiracel OD column, 99.9:0.1 hexanes:isopropanol, 1 mL/min, 220 nm)

Enantiomeric excess of 2 (Chiracel OD column, 99.9:0.1 hexanes:isopropanol, 1 mL/min, 220

S - 27

GC trace of **3** (Hewlett Packard HP1 column, 200 °C injection, 50–300 °C over 27 min)

HPLC resolution of racemic **3** (Chiracel OD column, 99.8:0.2 hexanes:isopropanol, 1 mL/min, 220 nm)

Enantiomeric excess of 3 (Chiracel OD column, 99.8:0.2 hexanes:isopropanol, 1 mL/min, 220

nm)

GC trace of 4 (Hewlett Packard HP1 column, 200 °C injection, 50–300 °C over 27 min)

n-Bu/SCO2Et

HPLC resolution of racemic **4** (Chiracel OD column, 99.9:0.1 hexanes:isopropanol, 1 mL/min, 220 nm)

Enantiomeric excess of 4 (Chiracel OD column, 99.9:0.1 hexanes:isopropanol, 1 mL/min, 220

nm)

GC trace of 5 (Hewlett Packard HP1 column, 200 °C injection, 50–300 °C over 27 min)

HPLC resolution of racemic **5** (Chiracel OD column, 99.8:0.2 hexanes:isopropanol, 1 mL/min, 220 nm)

Enantiomeric excess of 5 (Chiracel OD column, 99.8:0.2 hexanes:isopropanol, 1 mL/min, 220

nm)

GC trace of 6 (Hewlett Packard HP1 column, 200 °C injection, 50–300 °C over 27 min)

GC trace of 7 (Hewlett Packard HP1 column, 200 °C injection, 50–300 °C over 27 min)

¹H NMR spectrum of **8** (400 MHz, CDCl₃) (93% purity)

HPLC resolution of racemic **8** (Chiracel OD column, 99.8:0.2 hexanes:isopropanol, 1 mL/min, 220 nm)

Enantiomeric excess of 8 (Chiracel OD column, 99.8:0.2 hexanes:isopropanol, 1 mL/min, 220

¹H NMR spectrum of **9** (400 MHz, CDCl₃)

GC trace of 9 (Hewlett Packard HP1 column, 200 °C injection, 50–300 °C over 27 min)

GC trace of **10** (Hewlett Packard HP1 column, 200 °C injection, 50–300 °C over 27 min)

n-Bu/SCO2Et

HPLC resolution of racemic **10** (Chiracel OD column, 99.9:0.1 hexanes:isopropanol, 1 mL/min, 220 nm)

Enantiomeric excess of 10 (Chiracel OD column, 99.9:0.1 hexanes:isopropanol, 1 mL/min, 220

nm)

¹H NMR spectrum of **11** (400 MHz, CDCl₃)

¹H NMR spectrum of **12** (400 MHz, CDCl₃)

GC trace of 12 (Hewlett Packard HP1 column, 200 °C injection, 50–300 °C over 27 min)

HPLC resolution of racemic **12** (Chiracel OD column, 99.9:0.1 hexanes:isopropanol, 1 mL/min, 220 nm)

Enantiomeric excess of 12 (Chiracel OD column, 99.9:0.1 hexanes:isopropanol, 1 mL/min, 220

nm)

¹H NMR spectrum of **13** (400 MHz, CDCl₃)

GC trace of **13** (Hewlett Packard HP1 column, 200 °C injection, 50–300 °C over 27 min)

HPLC resolution of racemic **13** (Chiracel OD column, 99.8:0.2 hexanes:isopropanol, 1 mL/min, 220 nm)

Enantiomeric excess of 13 (Chiracel OD column, 99.8:0.2 hexanes:isopropanol, 1 mL/min, 220

nm)

¹H NMR spectrum of **15** (400 MHz, CDCl₃)

HPLC resolution of 15 (Chiracel OD column, 98:2 hexanes: isopropanol, 1 mL/min, 220 nm)

Enantiomeric excess of 15 (Chiracel OD column, 98:2 hexanes: isopropanol, 1 mL/min, 220 nm)

¹H NMR spectrum of **16** (400 MHz, CDCl₃)

HPLC resolution of 16 (Chiracel OD column, 98:2 hexanes: isopropanol, 1 mL/min, 220 nm)

Enantiomeric excess of 16 (Chiracel OD column, 98:2 hexanes: isopropanol, 1 mL/min, 220 nm)

¹H NMR spectrum of **17** (400 MHz, CDCl₃)

HPLC resolution of 17 (Chiracel OD column, 98:2 hexanes:isopropanol, 1 mL/min, 220 nm)

Enantiomeric excess of 17 (Chiracel OD column, 98:2 hexanes:isopropanol, 1 mL/min, 220 nm)

¹H NMR spectrum of **18** (400 MHz, CDCl₃)

HPLC resolution of racemic **18** (Chiracel OD column, 98:2 hexanes:isopropanol, 1 mL/min, 220 nm)

Enantiomeric excess of 18 (Chiracel OD column, 98:2 hexanes:isopropanol, 1 mL/min, 220 nm)

¹H NMR spectrum of **19** (400 MHz, CDCl₃) (97% purity)

¹H NMR spectrum of **20** (400 MHz, CDCl₃) (90% purity)

References

- ¹ Taber, D. F.; Sheth, R. B.; Joshi, P. V. J. Org. Chem. 2005, 70, 2851.
- ² Okamoto, T.; Kobayashi, K.; Oka, S.; Tanimoto, S. J. Org. Chem. **1988**, 53, 4897.
- ³ Hashimoto, S., Watanabe, N., Ikegami, S., *Tetrahedron Lett.* **1992**, 33, 2709.
- ⁴ Tsutsui, H.; Abe, T.; Nakamura, S.; Anada, M.; Hashimoto, S. *Chem. Pharm. Bull.* **2005**, *10*, 1366-1368.
- ⁵ Panne, P.; DeAngelis, A.; Fox, J. M. Org. Lett. **2008**, 10, 2987