Supporting information for:

Resonance Raman spectra of an O₂-binding H-NOX domain reveal heme relaxation upon mutation

Rosalie Tran[‡], Elizabeth M. Boon^{‡⊥}, Michael A. Marletta^{\ddagger}8*, and Richard A. Mathies^{\ddagger}*

Departments of Chemistry and Molecular and Cell Biology,

University of California, Berkeley, CA 94720

* To whom correspondence should be addressed.

Figure 1S: Resonance Raman spectra of the Fe^{II}-unligated form of *Tt* H-NOX WT, I5L, P115A, and I5L/P115A. Spectral intensities in the low and high frequency regions were normalized to v_7 and v_4 , respectively.

Figure 2S: Resonance Raman spectra of the O₂ complexes of *Tt* H-NOX WT, I5L, P115A, and I5L/P115A in the low frequency region. ¹⁸O₂ spectra (dotted line) are overlapped over the ¹⁶O₂ spectra to indicate the frequency shifts upon isotopic substitution, and the difference (${}^{18}O_2{}^{-16}O_2$) spectra are shown above each protein for clarity in the v(Fe-O₂) assignment. Spectral intensities were normalized to v₇.

Figure 3S: Resonance Raman spectra of the CO complexes of *Tt* H-NOX WT, I5L, P115A, and I5L/P115A. ¹³CO spectra (dotted line) are overlapped over the ¹²CO spectra to indicate the frequency shifts upon isotopic substitution, and the difference (13 CO- 12 CO) spectra are shown below each protein for clarity. Spectral intensities were normalized to v₇ and v₄ for the low and high frequency regions, respectively.

Figure 4S: Spectral decomposition of resonance Raman spectra for *Tt* H-NOX WT, I5L, P115A, and I5L/P115A in different frequency regions: (a) $200 - 550 \text{ cm}^{-1}$, (b) $450 - 900 \text{ cm}^{-1}$, (c) $1100 - 1700 \text{ cm}^{-1}$.