Supporting Information for:

Photoaffinity Labeling via Nitrenium Ion Chemistry: Protonation of the Nitrene Derived from a 4-Amino-3-nitrophenylazides to Afford Reactive Nitrenium Ion Pairs.

Valentyna Voskresenska, R. Marshall Wilson*, Maxim Panov, and Alexander N.

Tarnovsky*

Department of Chemistry and the Center for Photochemical Sciences

Bowling Green State University, Bowling Green, Ohio 43403

Jeanette A. Krause

Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221

Shubham Vyas, Arthur Winter, and Christopher M. Hadad*

Department of Chemistry, The Ohio State University, Columbus, Ohio 43210

CONTENTS:

General information	S5
Synthesis of Starting Materials	
Synthesis of 1-Fluoro-2-nitro-4-azidobenzene (4)	S7
Synthesis of 4- <i>N</i> , <i>N</i> -Diethylamino-3-nitrophenylazide (5)	S7
General procedure for Photolysis of 4-N,N-Diethylamino-3-	
Nitrophenylazide (5) in Various Solvents	S 8
a) Irradiation in MeOH	S9
b) Irradiation in <i>n</i> -BuOH	S10

c) Irradiation in i-PrOH	S10					
d) Irradiation in <i>t</i> -BuOH						
e) Irradiation in Acetonitrile						
f) Irradiation in Toluene	S12					
General Procedure for the Photolysis of						
4-Azido-2-nitro-N,N-Diethylaniline (5) in the presence						
of Targeted Functional groups	S13					
a) Irradiation in Presence of Phenol	S14					
b) Irradiation in the Presence of Dimethylamine Hydrochloride	S14					
Acetylation of Adducts 7 and 8						
X-Ray Crystallographic Structure Determination of 9						
Table SM1. Crystal data and structure refinement for 9	S19					
Table SM2. Atomic coordinates and equivalent isotropic						
displacement parameters for 9	S20					
Table SM3. Bond lengths and angles for 9	S22					
Table SM4. Anisotropic displacement parameters for 9	S23					
Table SM5. Torsion angles for 9	S24					
Table SM6. Observed and calculated structure factors for 9	S25					
Laser Flash Photolysis	S39					
General Procedure for Nanosecond Experiments	S39					
Nanosecond Spectra/Nucleophile	S40					
a) Transient absorption spectra in ethanol	S40					
b) Transient absorption spectra in <i>n</i> -butyl alcohol	S40					

c) Transient absorption spectra in <i>t</i> -butyl alcohol	S41
d) Transient absorption spectra in ethyl glycolate	S41
General Procedure for Ultrafast Transient	
Absorption Measurements	S42
Fig. SM1. Transient absorption spectra for azide 5	
in i-PrOH irradiated at 305 nm	S44
Fig. SM2. Transient absorption spectra of azide 5	
in acetonitrile irradiated at 350 nm	S45
Theoretical Calculations for	
Open- and Closed-Shell Singlet Nitrenes	
Table SM7	S46
Fig. SM3. Calculated geometry of :	
A) the closed-shell nitrene	S48
B) the opened-shell nitrene	S49
Azide 5	
Table SM8. Optimized Coordinates of Azide 5	S50
Table SM9. Optimized Coordinates of Methyl Analog	
of Azide 5	S51
Triplet Nitrene	
Table SM10. Optimized Coordinates of Methyl Analog	
of the Triplet Nitrene	S53
Nitrogen Radical	
Table SM11. Optimized Coordinates of Methyl Analog	

of Nitrogen Radical	S53
Nitrenium Ion	
Table SM12. Optimized Coordinates of Methyl Analog	
of the Nitrenium Ion 10	S54
Nucleophile Adducts	
Table SM13. Optimized Coordinates of Methyl Analog	
of Adduct 14	S54
Table SM14. Optimized Coordinates of Methyl Analog	
of Adduct 13	S55
Alternative Scenarios	
Figure SM4. Alternative scenarios for closed-shell singlet	
nitrene reaction	S57
Formation of Adducts 13 and 14 and Their Relative Stability	S 58
Figure SM5. Attack profiles for protonation of nitrene	S59
Figure SM6. Reaction profiles for nucleophile attack and	
adduct interconversion	S60
Spectroscopic Data	S61-S70

General Information.

Reagents and anhydrous solvents were purchased from Aldrich, EMD, and were used without further purification. The 4-fluoro-3-nitroaniline was purchased from Alfa. All reactions were conducted using oven-dried glassware under an atmosphere of nitrogen or argon. Preparative TLC was performed on glass plates (Merck Kieselgel 60 F254; layer thickness, 0.25 and 0.2 mm). Products were purified via flash chromatography using 60 µm silica gel.¹ ¹H-NMR and ¹³C-NMR spectra were recorded on a 300 MHz Bruker spectrometer using CD₃CN, CDCl₃ as solvents. The chemical shifts (δ) are reported in parts per million (ppm) relative to the residual CHCl₃ peak (7.26) ppm for ¹H-NMR and 77.0 ppm for ¹³C-NMR), and coupling constants (*J*) are reported in Hertz (Hz). UV-visible absorption spectra were measured with an Agilent 8453 spectrophotometer, IR spectra were measured with a ThermoNicolet IR 200 spectrometer. EI mass spectra (70 eV) were measured in-house using a direct insertion probe in a Shimadzu QP5050A spectrometer. Exact mass and MS_n determinations were done in the mass spectrometry facility in the Chemistry Department of the University of Cincinnati using a ThermoFinnigan LTQ Linear Ion-Trap FTMS pESI instrument. Transition state calculations for the formation of adducts 13 and 14 were conducted using Spartan '06.² Open-shell and closed-shell nitrenes were optimized at the CASSCF(4,4)/6-31G(d) level using the Gaussian 03 program.³

¹ Still, W. C.: Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923-2925.

² Spartan '06, Wavefunction, Inc., Irvine CA, Shao, Y.; Molnar, L. F.; Jung, Y.; Kussmann, J.; Ochsenfeld, C.; Brown,

S. T.; Gilbert, A. T. B.; Slipchenko, L. V.; Levchenko, S. V.; O'Neill, D. P.; DiStasio Jr., R. A.; Lochan, R. C.; Wang,

T.; Beran, G. J. O.; Besley, N. A.; Herbert, J. M.; Lin, C. Y.; Van Voorhis, T.; Chien, S. H.; Sodt, A.; Steele, R. P.;

Rassolov, V. A.; Maslen, P. E.; Korambath, P. P.; Adamson, R. D.; Austin, B.; Baker, J.; Byrd, E. F. C.; Dachsel, H.;

Doerksen, R. J.; Dreuw, A.; Dunietz, B. D.; Dutio, A. D.; Furlani, T. R.; Gwaltney, S. R.; Heyden, A.; Hirata, S.; Hsu, C.-P.; Kedziora, G.; Khalliulin, R. Z.; Klunzinger, P.; Lee, A. M.; Lee, M. S.; Liang, W. Z.; Lotan, I.; Nair, N.; Peters, B.; Proynov, E. I.; Pieniazek, P. A.; Rhee, Y. M.; Ritchie, J.; Rosta, E.; Sherrill, C. D.; Simmonett, A. C.; Subotnik, J. E.; Woodcock III, H. L.; Zhang, W.; Bell, A. T.; Chakraborty, A. K.; Chipman, D. M.; Keil, F. J.; Warshel, A.; Hehre, W. J.; Schaefer, H. F.; Kong, J.; Krylov, A. I.; Gill, P. M. W., and Head-Gordon, M. *Phys Chem. Chem. Phys*, **8**, 3172 (2006).

³ Gaussian 03, Revision C.02, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazvev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, m. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowdki, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaronmi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P.; M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; and Pople, J. A. Gaussian, Inc., Wallingford CT, 2004.

Synthesis of Starting Materials.

Synthesis of 1-Fluoro-2-nitro-4-azidobenzene (4).⁴

The diazonium salt was prepared from 4-fluoro-3-nitroaniline (0.95 g, 6 mmol) dissolved in warm (40-50° C) concentrated hydrochloric acid (6 mL). The amine solution was cooled to 5° C and a solution of sodium nitrite (0.5 mg, 7.5 mmol) in 4 mL of water added. The solution was stirred for 30 min. at ice-water bath temperature, and added dropwise to a cold solution (0° C) of sodium azide (0.51 g, 7.5 mmol) in 10 mL of water. The light orange crystals were formed immediately. The yield of 1-Fluoro-2-nitro-4azidobenzene (**4**) was 73 % (mp = 54°C (lit.⁵ 53–55 °C). ¹H NMR (300 MHz, CD₃CN): δ 7.72 (dd, *J* = 2.7 Hz, *J* = 6 Hz, 1H), 7.26 (m, 2H); ¹³C NMR (75.5 MHz, CD₃CN): δ 137.25, 128.5 (d, *J* = 240 Hz), 125.35 (d, *J* = 30 Hz), 123.13, 118 (d, *J* = 90 Hz), 112.97. IR (KBr): 2121 (m) cm⁻¹.

⁴ Leyva, E.; Munoz, D.; Platz, M.S., *J. Org. Chem.* **1989**, *54*, 5938-5945

⁵ Hagedorn, M.; Sauers, R. R.; Eichholz, A. J. Org. Chem. 1978, 43, 2070-2072

Synthesis of 4-*N*,*N*-Diethylamino-3-nitrophenylazide (5).⁶

A solution of 4-fluoro-3-nitrophenyl azide (4) (1.82 g, 0.01 moles) and diethylamine (7.3 g, 0.1 moles) was heated in acetonitrile (12 mL) at 40° C for 3 h. The crude product was purified by silica chromatography on a short column of silica gel

eluting with hexane to afford 4-*N*,*N*-Diethylamino-3-nitrophenylazide (**5**) as a red oil (1.57 g) in 67 %. ¹H NMR (300 MHz, CD₃CN): δ 7.26 (d, *J* = 2.6 Hz,1H), 7.11 (d, *J* = 9 Hz, 1H), 7.03 (dd, *J* = 9 Hz, *J* = 2.6 Hz, 1H), 3.05 (q, *J* = 7.2 Hz, 4H), 0.96 (t, *J* = 7.2 Hz, 6H), ¹³C NMR (75.5 MHz, CD₃CN) δ 145.08, 141.57, 133.24, 124.59, 123.07, 115.54, 47.80, 12.59; UV-Vis (CH₃CN) λ_{max} (nm) (ϵ , M⁻¹ cm⁻¹): 445 (1390); IR (KBr): 2117(m) cm⁻¹.

⁶ Lormann, M. E. P.; Walker, C. H.; Es-Sayed, M.; Braese, S. Chem. Com 2002, 12, 1296-1297.

General procedure for Photolysis of 4-*N*,*N*-Diethylamino-3-nitrophenylazide (5) in Various Solvents.

A solution of 20 mg of **5** in alcohol (5 mL) was flushed with nitrogen for 15 min and irradiated for 4 h using 350 nm light in a Rayonet Photochemical reactor. The crude photolysis mixture was concentrated to dryness *in vacuo*, leaving an oily residue, which was separated by preparative TLC (hexane) to afford the aniline **6** and addition products.

Photolysis Products.

a) Irradiation in MeOH:

Irradiation in methanol afforded 4-*N*,*N*-diethylamino-2-methoxy-3-nitroaniline as the major addition product (98%): ¹H NMR (300 MHz, CDCl₃) δ 6.92 (d, *J* = 9 Hz, 1H), 6.75 (d, *J* = 9 Hz, 1H), 3.5 (s, NH₂), 3.71(s, 3H), 2.9 (q, *J* = 7.2 Hz, 4H), 0.9 (t, *J* = 7.2 Hz, 6H); ¹³C NMR (75.5 MHz, CDCl₃) δ 147.6, 137.9, 137.8, 134.3, 121.3, 116.7, 61.2, 49.6, 12.9; HRMS calcd for C₁₁H₁₈N₃O₃ (M + H) 240.13425, found 240.134817.

Trace amounts of 4-*N*,*N*-diethylamino-3-nitroaniline (**6**) (2%) were isolated: ¹H NMR (300 MHz, CDCl₃): δ 7.4 (d, *J* = 9 Hz, 1H), 7.3 (d, *J* = 2.1 Hz, 1H), 7.2 (dd, *J* = 9 Hz, *J* = 2.1 Hz, 1H), 3.0 (q, *J* = 7.2 Hz, 4H), 0.9 (t, *J* = 7.2 Hz, 6H); ¹³C NMR (75.5 MHz, CDCl₃): δ 145.08, 141.57, 133.24, 124.59, 123.07, 115.54; 47.13, 12.59; Mass spectrum: *m*/*z* (relative intensity): 209(40), 194(47), 174(15), 162(30), 147(20), 134(80), 119(75), 92(18), 65(100); HRMS calcd for C₁₀H₁₆N₃O₂ (M + H) 210.124252, found 210.12374.

b) Irradiation in *n*-BuOH

Irradiation in *n*-butanol afforded 4-*N*,*N*-diethylamino-2-*n*-butoxy-3-nitroaniline as the major addition product (95%): ¹H NMR (300 MHz, CDCl₃): δ 6.9 (d, *J* = 9 Hz, 1H), 6.8 (d, *J* = 9 Hz, 1H), 4.2 (t, 2H), 2.9 (q, *J* = 7.2 Hz, 4H), 1.7 (m, 2H), 1.4 (m, 2H), 0.9 (t, *J* = 7.2 Hz, 6H), 0.8 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (75.5 MHz, CDCl₃): δ 145.73, 137.12, 135.93, 133.26, 120.01, 115.63, 79.46, 48.75, 28.02, 17.91 (2C), 11.59; Mass spectrum: *m/z* (relative intensity): 281(70), 266(20), 264(18), 190(90), 178(17), 163(40), 150(30), 135(17), 107(10), 79(20) UV-vis 280-300 nm; HRMS calcd for C14H₂₃N₃O₃ (M + H) 282.181767, found 282.18121.

c) Irradiation in *i*-PrOH:

Irradiation in 2-propanol afforded 4-*N*,*N*-diethylamino-2-*i*-proproxy-3-nitroaniline (**8**) as the major addition product (92%): ¹H NMR (300 MHz, CD₃CN): δ 6.96 (d, J = 9 Hz, 1H), 6.84 (d, J = 9 Hz, 1H), 4.4 (m, 1H), 4.25 (br.s, NH₂), 2.9 (q, J = 7.2 Hz, 4H), 1.2 (d,

J = 6 Hz, 6H), 0.9 (t, J = 7.2 Hz, 6H); ¹³C NMR (75.5 MHz, CD₃CN): δ 142.1, 140.16, 134.54, 132.82, 120.87, 116.63, 75.61, 49.74, 21.70, 12.36; Mass spectrum: *m/z* (relative intensity): 267(40), 225(10), 210(23), 190(100), 176(15), 163(30), 150(25), 148(15), 135(23), 121(20), 79(30).

The minor addition product was 4-N,N-diethylamino-6-i-proproxy-3-nitroaniline (7) (4%): ¹H NMR (300 MHz, CD₃CN): δ 7.16 (s, 1H), 6.58 (s, 1H), 4.5 (m, 1H), 3.2 (q, J = 7.2 Hz, 4H), 1.26 (d, J = 6 Hz, 6H), 1.10 (t, J = 7.2 Hz, 6H); Mass spectrum: m/z (relative intensity): 267(40), 264(10), 250(12), 224(5), 210(22), 208(100), 193(5), 191(22), 178(25), 166(15), 164(30), 150(50), 136(23), 121(15), 108(20), 94(10), 80(20).

d) Irradiation in *t*-BuOH:

Irradiation in *t*-butanol afforded 4-*N*,*N*-diethylamino-2-*t*-butoxy-3-nitroaniline as the major addition product (86%): ¹H NMR (300 MHz, CD₃Cl): δ 6.89 (d, *J* = 9 Hz, 1H), 6.76 (d, *J* = 9 Hz, 1H), 2.85 (q, *J* = 7.2 Hz, 4H), 1.27 (s, 9H), 0.9 (t, *J* = 7.2 Hz, 6H); ¹³C

NMR (75.5 MHz, CDCl₃): δ 145, 137, 133, 132, 123, 120, 79, 49, 28, 17 HRMS calcd for C₁₄H₂₃N₃O₃ (M + H) 282.181767, found 282.18119.

e) Irradiation in Acetonitrile:

Irradiation in Acetonitrile afforded two dimeric products 11 and 12.

11: 65% yield, ¹H NMR (300 MHz, CDCl₃) δ 8.69 (d, J = 2.4 Hz, 1H), 7.95 (dd, J = 9 Hz, J = 2.4 Hz 1H), 7.15 (d, J = 9 Hz, 1H), 3.4 (q, J = 7.2 Hz, 4H), 0.9 (t, J = 7.2 Hz, 6H) ¹³C NMR (75.5 MHz, CDCl₃) δ 160.73, 143.41, 141.8, 126.59, 121.95, 120.24, 46.12, 11.51 HRMS calcd for C₂₀H₂₇N₆O₄ (M + H) 415.209379, found 415.20915; **12**: 35% yield, ¹H NMR (300 MHz, CDCl₃) δ 8.03 (d, J = 9 Hz, 1H), 7.59 (d, J = 9 Hz, 1H), 3.5 (q, J = 7.2 Hz, 4H), 0.9 (t, J = 7.2 Hz, 6H); ¹³C NMR (75.5 MHz, CDCl₃) δ 162.73, 141.61, 138.48, 132.92, 131.26, 126.8, 46.03, 13.51; HRMS calcd for C₂₀H₂₅N₆O₄ (M + H) 413.193180, found 413.19317.

f) Irradiation in Toluene.

A solution of 20 mg of **5** in toluene (8 mL) was flushed with nitrogen for 15 min and irradiated for 4 h using 350 nm light in a Rayonet Photochemical reactor. The crude photolysis mixture was concentrated to dryness *in vacuo*, leaving an oily residue, which was separated by preparative TLC (hexane: dichloromethane in ratio 3:1) to afford the three major products (**6**, **12** and corresponding benzyl amine in the ratio respectively 32:20:48).

¹H NMR (300 MHz, CDCl₃): δ 7.35-7.25 (m, 5H), 7.44 (d, J = 2.1 Hz, 1H), 7.23 (dd, J = 9 Hz, J = 2.1 Hz, 1H), 6.86(d, J = 9 Hz, Hz, 1H), 4.49 (broad NH), 4.38 (s, 2H), 3.0 (q, J = 7.2 Hz, 4H), 0.9 (t, J = 7.2 Hz, 6H); HRMS calcd for C₁₇H₂₁N₃O₂ (M+H) 300.170653; found 300.17064.

General Procedure for the Photolysis of 4-*N*,*N*-diethylamino-3-nitrophenylazide (5) in the presence of Targeted Functional groups.

A solution of 20 mg of **5** and 200 mg of the molecule containing the targeted functional group in acetonitrile (7 mL) was flushed with nitrogen for 15 min and photolyzed for 4 h using 350 nm light in a Rayonet Photochemical reactor. The crude photolysis mixture was concentrated to dryness *in vacuo*, extracted with water and CH_2Cl_2 , dried over Na. $_2SO_4$, leaving an oily residue, which was purified by preparative TLC (hexane/dichloromethane) to give aniline **6** and addition product as yellow oils.

a) Irradiation in Presence of Phenol.

Irradiation in the presence of phenol afforded the phenol adduct in the 2-position **15** in 98% yield as an oil that had: ¹H NMR (300 MHz, CDCl₃) δ 7.37-7.29 (m, 2H), 7.18 (d, *J* = 9 Hz, 1H), 7.09 (t, *J* = 7.2, Hz, 1H), 6.8 (d, *J* = 9 Hz, 1H), 6.91 (dd, *J* = 7.2, 0.9 Hz, 2H), 4.3 (s, NH₂), 2.9 (q, *J* = 7.2 Hz, 4H), 0.9 (t, *J* = 7.2 Hz, 6H); ¹³C NMR (75.5 MHz, CDCl₃) δ 171.4, 156.44, 139.1, 138.4, 132.6, 129.39, 122.87, 122.63, 114.66, 49.36, 12.93; HRMS calcd for C₁₆H₁₉N₃O₃ (M + H) 302.14989, found 302.150467.

b) Irradiation in the Presence of Dimethylamine Hydrochloride.

Irradiation in the presence of dimethylamine hydrochloride afforded the amine adduct in the 2-position **16** in 98% yield as an oil that had: ¹H NMR (300 MHz, CDCl₃) δ 6.92 (d, *J*

= 9 Hz, 1H), 6.75 (d, J = 9 Hz, 1H), 4.2 (s, NH₂), 2.9 (q, J = 7.2, 4H), 2.71 (s, 6 H), 0.9 (t, J = 7.2 Hz, 6H); ¹³C NMR (75.5 MHz, CDCl₃) δ 147.6, 137.9, 137.8, 134.3, 121.3, 116.7, 61.2, 49.6, 12.9; HRMS calcd for C₁₂H₂₀N₄O₂ (M + H) 253.16590, found 253.166451.

Acetylation of Adducts 7 and 8.

The mixture of addition products **7** and **8**, isolated from the irradiation of **5** in *i*-PrOH, and acetic anhydride (150 ml) were dissolved in THF (10 mL) and heated at 60° C for 3 h. The crude product mixture was separated and purified by silica gel chromatography on a short column using hexane and dichloromethane as eluants. Two products were obtained: the acetamide of the minor addition product **7**, and the acetamide of the major addition product **8**, **9**.

Acetamide of **7** was isolated as a yellow solid in 2% yield: ¹H NMR (300 MHz, CDCl₃) δ 9.84 (s, 1H), 6.58 (s, 1H), 4.62 (m, 1H), 3.19 (q, *J* = 7.2 Hz, 4H), 2.2 (s, 3H), 1.4 (d, *J* = 7.2, 6H), 1.2 (t, *J* = 7.2 Hz, 6H); ¹³C NMR (75.5 MHz, CDCl₃) δ 171.3, 147.9, 143.22, 133.8, 124.3, 121.3, 116.7, 105,11, 71.1, 47.15, 21.98, 12.67; HRMS calcd for C₁₅H₂₄N₃O₄ (M + H) 310.176682, found 310.1765.

Acetamide of **8**, **9** was isolated as a yellow solid in 96%: ¹H NMR (300 MHz, CDCl₃) δ 8.44 (d, *J* = 9 Hz, 1H), 7.58 (s, NH), 7.02 (d, *J* = 9 Hz, 1H), 4.32 (m, 1H), 2.9 (q, *J* = 7.2 Hz, 4H), 2.2 (s, 3H), 1.29 (d, *J* = 7.2, 6H), 0.9 (t, *J* = 7.2 Hz, 6H); ¹³C NMR (75.5 MHz, CDCl₃) δ 168.01, 145.18, 139.81, 138.70, 129.43, 122.05, 120.33, 80.01, 48.99, 24.6, 22.78, 12.72; HRMS calcd for C₁₅H₂₄N₃O₄ (M + H) 310.176682, found 310.1767.

X-Ray Crystallographic Structure Determination of 9.

For X-ray examination and data collection, a suitable crystal, approximate dimensions $0.30 \times 0.05 \times 0.02$ mm, was mounted in a loop with paratone-N and transferred immediately to the goniostat bathed in a cold stream.

Intensity data were collected at 150K on a standard Bruker SMART6000 CCD diffractometer using graphite-monochromated Cu K α radiation, λ =1.54178Å. The detector was set at a distance of 5.165 cm from the crystal. A series of 10-s data frames measured at 0.3° increments of ω were collected to calculate a unit cell. For data collection frames were measured for a duration of 8-s at 0.3° intervals of ω with a maximum θ value of ~135°. The data frames were processed using the program SAINT. The data were corrected for decay, Lorentz and polarization effects as well as absorption and beam corrections based on the multi-scan technique.

The structure was solved by a combination of direct methods SHELXTL v6.14 and the difference Fourier technique and refined by full-matrix least squares on F^2 . Nonhydrogen atoms were refined with anisotropic displacement parameters. All hydrogen atoms were located directly in the difference map and their positions refined. The isotropic displacement parameters for the H-atoms were defined as a*U_{eq} of the adjacent atom, (a=1.5 for methyl and 1.2 for all others). The refinement converged with crystallographic agreement factors of R1=3.99%, wR2=10.00% for 2451 reflections with I>2 σ (I) (R1=5.44%, wR2=10.79% for all data) and 268 variable parameters.

Acknowledgements, References and Notes:

(1) Funding for the SMART6000 diffractometer was through NSF-MRI grant CHE-0215950. (2) SMART v5.631 and SAINT v6.45A data collection and data processing programs, respectively. Bruker Analytical X-ray Instruments, Inc., Madison, WI; SADABS v2.10 for the application of semi-empirical absorption and beam corrections. G.M. Sheldrick, University of Göttingen, Germany; SHELXTL v6.14 for structure solution, figures and tables, neutral-atom scattering factors as stored in this package. G.M. Sheldrick, University of Göttingen, Germany and Bruker Analytical X-ray Instruments, Inc., Madison, WI.

Empirical formula	$C_{15}H_{23}N_{3}O_{4}$	
Formula weight	309.36	
Temperature	150(2) K	
Wavelength	1.54178 Å	
Crystal system	Monoclinic	
Space group	$P2_1/c$	
Unit cell dimensions	a = 12.2421(3) Å	$\alpha = 90^{\circ}$
	b = 14.8600(4) Å	$\beta = 100.931(1)^{\circ}$
	c = 9.7185(2) Å	$\gamma = 90^{\circ}$
Volume	1735.89(7)Å ³	
Z	4	
Density (calculated)	1.184 Mg/m^3	
Absorption coefficient	0.714 mm ⁻¹	
F(000)	664	
Crystal size	$0.30 \ge 0.05 \ge 0.02 \text{ mm}^3$	
θ range for data collection	3.68 to 67.85°	
Index ranges	$-14 \le h \le 14, -16 \le k \le 17$, - 11 ≤1 ≤ 11
Reflections collected	14468	
Independent reflections	$3122 [R_{int} = 0.0353]$	
Completeness to $\theta = 67.85^{\circ}$	99.0 %	
Absorption correction	Multi-scan	
Max. and min. transmission	0.9859 and 0.8143	
Refinement method	Full-matrix least-squares of	on F^2
Data / restraints / parameters	3122 / 0 / 268	
Goodness-of-fit on F^2	1.031	
Final R indices $[I \ge 2\sigma(I)]$	R1 = 0.0399, WR2 = 0.100	00
R indices (all data)	R1 = 0.0544, WR2 = 0.107	79
Largest diff. peak and hole	0.195 and -0.161 eÅ ⁻³	

Table SM1. Crystal data and structure refinement for $C_{15}H_{23}N_3O_4$.

Table SM2. Atomic coordinates $[x10^4]$ and equivalent isotropic displacement parameters $[Å^2x10^3]$ for $C_{15}H_{23}N_3O_4$. U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	х	x y z		У	y z	
O(1)	-1418(1)	2505(1)	5214(1)	40(1)		
O(2)	279(1)	876(1)	2129(1)	26(1)		
O(3)	2592(1)	-337(1)	3793(2)	57(1)		
O(4)	2737(1)	577(1)	2103(1)	51(1)		
N(1)	-755(1)	2322(1)	3210(1)	26(1)		
N(2)	2453(1)	391(1)	3207(2)	38(1)		
N(3)	3617(1)	1212(1)	5612(1)	39(1)		
C(1)	343(1)	2070(1)	3834(2)	26(1)		
C(2)	963(1)	2545(1)	4952(2)	30(1)		
C(3)	2030(1)	2286(1)	5546(2)	33(1)		
C(4)	2537(1)	1550(1)	5036(2)	31(1)		
C(5)	1915(1)	1110(1)	3876(2)	29(1)		
C(6)	826(1)	1335(1)	3279(1)	25(1)		
C(7)	-1569(1)	2513(1)	3931(2)	28(1)		
C(8)	-2681(2)	2723(2)	3051(2)	40(1)		
C(9)	-626(1)	280(1)	2385(2)	30(1)		
C(10)	-1370(2)	154(2)	975(2)	44(1)		
C(11)	-141(2)	-580(1)	3050(2)	46(1)		
C(12)	3550(2)	540(2)	6725(2)	48(1)		
C(13)	4539(2)	-88(2)	6990(4)	81(1)		
C(14)	4450(2)	1909(2)	6103(2)	49(1)		
C(15)	4637(2)	2520(2)	4934(3)	60(1)		
H(1)	-926(15)	2307(12)	2360(20)	32		
H(2)	609(14)	3055(12)	5302(18)	36		
H(3)	2453(15)	2619(12)	6320(20)	39		
H(8A)	-2904(18)	3296(15)	3250(20)	59		
H(8B)	-2680(18)	2740(14)	2070(20)	59		
H(8C)	-3229(19)	2307(15)	3210(20)	59		
H(9)	-1032(14)	604(12)	3005(18)	36		
H(10A)	-1985(19)	-238(16)	1050(20)	66		
H(10B)	-953(19)	-98(15)	330(20)	66		
H(10C)	-1710(18)	745(16)	620(20)	66		
H(11A)	-772(19)	-971(16)	3210(20)	69		
H(11B)	372(19)	-466(15)	4010(30)	69		
H(11C)	270(20)	-890(15)	2400(30)	69		
H(12A)	3463(17)	847(14)	7640(20)	58		
H(12B)	2887(19)	161(14)	6420(20)	58		
H(13A)	4450(30)	-540(20)	7730(40)	122		
H(13B)	5200(30)	280(20)	7380(30)	122		
H(13C)	4560(30)	-360(20)	6070(40)	122		

H(14A)	4280(18)	2265(14)	6910(20)	59
H(14B)	5128(19)	1554(14)	6530(20)	59
H(15A)	3990(20)	2871(18)	4560(30)	90
H(15B)	5260(20)	2950(18)	5250(30)	90
H(15C)	4830(20)	2133(18)	4190(30)	90

O(1)-C(7)	1.2256(18)	O(2)-C(6)	1.3707(17)
O(2)-C(9)	1.4750(18)	O(3)-N(2)	1.2197(19)
O(4)-N(2)	1.2203(19)	N(1)-C(7)	1.352(2)
N(1)-C(1)	1.4158(19)	N(2)-C(5)	1.470(2)
N(3)-C(4)	1.427(2)	N(3)-C(14)	1.469(2)
N(3)-C(12)	1.485(2)	C(1)-C(2)	1.393(2)
C(1)-C(6)	1.399(2)	C(2)-C(3)	1.379(2)
C(3)-C(4)	1.394(2)	C(4)-C(5)	1.397(2)
C(5)-C(6)	1.390(2)	C(7)-C(8)	1.497(2)
CC(9)-C(11)	1.504(2)	C(9)-C(10)	1.506(2)
C(12)-C(13)	1.511(3)	C(14)-C(15)	1.505(3)
$C(\ell) O(2) C(0)$	115 26(11)	C(7) N(1) $C(1)$	$124 \ 47(12)$
C(6)-O(2)-C(9)	115.30(11) 125.05(15)	C(7)-N(1)-C(1)	124.4/(13)
O(3)-N(2)-O(4)	125.05(15)	O(3)-N(2)-C(5)	118.18(14)
O(4)-N(2)-C(5)	116.77(14)	C(4)-N(3)-C(14)	114.41(15)
C(4)-N(3)-C(12)	110.36(13)	C(14)-N(3)-C(12)	111.64(14)
C(2)-C(1)-C(6)	119.22(14)	C(2)-C(1)-N(1)	122.22(14)
C(6)-C(1)-N(1)	118.53(13)	C(3)-C(2)-C(1)	121.17(15)
C(2)-C(3)-C(4)	121.39(15)	C(3)-C(4)-C(5)	116.28(14)
C(3)-C(4)-N(3)	125.40(14)	C(5)-C(4)-N(3)	118.31(15)
C(6)-C(5)-C(4)	123.81(14)	C(6)-C(5)-N(2)	117.71(13)
C(4)-C(5)-N(2)	118.42(14)	O(2)-C(6)-C(5)	120.15(13)
O(2)-C(6)-C(1)	121.72(13)	C(5)-C(6)-C(1)	118.01(13)
O(1)-C(7)-N(1)	122.77(15)	O(1)-C(7)-C(8)	121.91(15)
N(1)-C(7)-C(8)	115.32(14)	O(2)-C(9)-C(11)	109.59(14)
O(2)-C(9)-C(10)	105.45(13)	C(11)-C(9)-C(10)	113.96(16)
N(3)-C(12)-C(13)	112.75(18)	N(3)-C(14)-C(15)	112.14(17)

 $\label{eq:smaller} \textbf{Table SM3}. \hspace{0.1in} \text{Bond lengths [Å] and angles [°] for $C_{15}H_{23}N_3O_4$.}$

Table SM4. Anisotropic displacement parameters $[Å^2x10^3]$ for $C_{15}H_{23}N_3O_4$. The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+...+2hka^*b^*U_{12}]$

	U_{11}	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U_{12}
O(1)	41(1)	56(1)	22(1)	-3(1)	8(1)	-3(1)
O(2)	27(1)	27(1)	23(1)	-3(1)	4(1)	-4(1)
O(3)	58(1)	36(1)	75(1)	1(1)	11(1)	13(1)
O(4)	46(1)	70(1)	37(1)	-8(1)	9(1)	16(1)
N(1)	31(1)	29(1)	18(1)	0(1)	3(1)	4(1)
N(2)	30(1)	40(1)	40(1)	-6(1)	0(1)	6(1)
N(3)	27(1)	52(1)	34(1)	5(1)	-1(1)	-1(1)
C(1)	30(1)	26(1)	21(1)	4(1)	5(1)	-1(1)
C(2)	36(1)	26(1)	27(1)	-3(1)	7(1)	-3(1)
C(3)	35(1)	37(1)	26(1)	-3(1)	2(1)	-9(1)
C(4)	28(1)	38(1)	27(1)	3(1)	2(1)	-4(1)
C(5)	30(1)	27(1)	29(1)	0(1)	6(1)	1(1)
C(6)	29(1)	25(1)	21(1)	1(1)	4(1)	-4(1)
C(7)	35(1)	25(1)	24(1)	-1(1)	7(1)	-2(1)
C(8)	34(1)	54(1)	32(1)	2(1)	8(1)	6(1)
C(9)	32(1)	28(1)	31(1)	-2(1)	8(1)	-6(1)
C(10)	41(1)	52(1)	37(1)	-2(1)	2(1)	-18(1)
C(11)	52(1)	31(1)	54(1)	7(1)	9(1)	-6(1)
C(12)	35(1)	63(1)	45(1)	14(1)	4(1)	3(1)
C(13)	55(2)	95(2)	93(2)	43(2)	11(2)	24(1)
C(14)	34(1)	75(1)	36(1)	4(1)	-1(1)	-14(1)
C(15)	48(1)	78(2)	55(1)	12(1)	10(1)	-19(1)

Table SM5.	Torsion	angles	[°]	for	$C_{15}H_{23}N_3O_4.$
------------	---------	--------	-----	-----	-----------------------

C(7)-N(1)-C(1)-C(2)	-48.1(2)
C(7)-N(1)-C(1)-C(6)	133.78(15)
C(6)-C(1)-C(2)-C(3)	-2.1(2)
N(1)-C(1)-C(2)-C(3)	179.80(14)
C(1)-C(2)-C(3)-C(4)	1.3(2)
C(2)-C(3)-C(4)-C(5)	1.6(2)
C(2)-C(3)-C(4)-N(3)	-177.54(15)
C(14)-N(3)-C(4)-C(3)	-38.6(2)
C(12)-N(3)-C(4)-C(3)	88.3(2)
C(14)-N(3)-C(4)-C(5)	142.33(16)
C(12)-N(3)-C(4)-C(5)	-90.78(18)
C(3)-C(4)-C(5)-C(6)	-3.7(2)
N(3)-C(4)-C(5)-C(6)	175.47(14)
C(3)-C(4)-C(5)-N(2)	173.66(14)
N(3)-C(4)-C(5)-N(2)	-7.2(2)
O(3)-N(2)-C(5)-C(6)	-106.88(17)
O(4)-N(2)-C(5)-C(6)	73.79(19)
O(3)-N(2)-C(5)-C(4)	75.60(19)
O(4)-N(2)-C(5)-C(4)	-103.73(17)
C(9)-O(2)-C(6)-C(5)	109.52(15)
C(9)-O(2)-C(6)-C(1)	-74.34(17)
C(4)-C(5)-C(6)-O(2)	179.19(13)
N(2)-C(5)-C(6)-O(2)	1.8(2)
C(4)-C(5)-C(6)-C(1)	2.9(2)
N(2)-C(5)-C(6)-C(1)	-174.47(13)
C(2)-C(1)-C(6)-O(2)	-176.13(13)
N(1)-C(1)-C(6)-O(2)	2.0(2)
C(2)-C(1)-C(6)-C(5)	0.1(2)
N(1)-C(1)-C(6)-C(5)	178.25(13)
C(1)-N(1)-C(7)-O(1)	1.7(2)
C(1)-N(1)-C(7)-C(8)	-177.33(14)
C(6)-O(2)-C(9)-C(11)	-78.95(17)
C(6)-O(2)-C(9)-C(10)	157.97(14)
C(4)-N(3)-C(12)-C(13)	158.3(2)
C(14)-N(3)-C(12)-C(13)	-73.3(3)
C(4)-N(3)-C(14)-C(15)	-61.6(2)
C(12)-N(3)-C(14)-C(15)	172.20(18)

Table SM6.	Observed and	d calculated	d structure	factors f	for ($C_{15}H_{2}$	3N3	O_4
------------	--------------	--------------	-------------	-----------	-------	---------------	-----	-------

h	k	1	10Fo	10Fc	10s	h	k	1	10Fo	10Fc	10s	h	k	1	10Fo	10Fc	10s	h	k	1	10Fo	10Fc	10s	h	k	1	10Fo	10Fc	10s
1	0	0	1047	1093	4	2	6	0	70	67	1	4	13	0	70	72	3	13	2	1	25	12	11	-11	6	1	52	53	4
2	0	0	0	- 9	1	3	6	0	33	33	2	5	13	0	44	40	3	-14	3	1	28	31	7	-10	6	1	54	52	4
3	0	0	77	75	1	4	6	0	136	123	1	6	13	0	0	2	1	-13	3	1	0	5	1	-9	6	1	30	37	6
4	0	0	605	605	2	5	6	0	98	89	2	7	13	0	23	18	7	-12	3	1	32	25	7	-8	6	1	65	69	2
5	0	0	240	240	1	6	6	0	233	239	2	8	13	0	111	112	2	-11	3	1	38	36	6	-7	6	1	103	104	1
6	0	0	390	372	3	7	6	0	46	42	2	9	13	0	79	71	2	-10	3	1	44	32	5	-6	6	1	159	144	2
7	0	0	41	58	11	8	6	0	21	9	8	0	14	0	168	167	3	-9	3	1	48	45	5	-5	6	1	149	143	2
8	0	0	171	181	3	9	6	0	54	58	3	1	14	0	21	17	13	-8	3	1	32	28	4	-4	6	1	148	152	1
9	0	0	105	104	4	10	6	0	81	82	2	2	14	0	116	122	2	-7	3	1	329	329	2	-3	6	1	48	48	1
10	0	0	398	395	4	11	6	0	83	72	2	3	14	0	153	154	2	-6	3	1	56	44	2	-2	6	1	118	115	1
11	0	0	283	280	3	12	6	0	20	9	15	4	14	0	58	58	3	-5	3	1	108	113	1	-1	6	1	119	107	1
12	0	0	0	10	1	13	6	0	26	24	12	5	14	0	0	10	1	-4	3	1	309	314	1	0	6	1	12	23	7
13	0	0	17	38	16	1	7	0	27	37	3	6	14	0	12	6	11	-3	3	1	745	730	2	1	6	1	279	271	1
14	0	0	39	26	7	2	7	0	11	18	11	7	14	0	6	4	6	-2	3	1	272	265	1	2	6	1	10	6	10
1	1	0	409	416	1	3	7	0	206	203	1	8	14	0	0	5	1	-1	3	1	185	186	1	3	6	1	13	13	7
2	1	0	488	497	2	4	7	0	28	25	4	1	15	0	53	53	4	0	3	1	534	527	2	4	6	1	99	108	2
3	1	0	254	252	1	5	7	0	82	92	3	2	15	0	69	62	3	1	3	1	173	172	1	5	6	1	165	151	2
4	1	0	71	71	1	6	7	0	171	178	1	3	15	0	31	34	6	2	3	1	343	343	1	6	6	1	121	131	2
5	1	0	584	566	3	7	7	0	97	104	1	4	15	0	0	14	1	3	3	1	376	380	1	7	6	1	195	198	1
6	1	0	452	423	3	8	7	0	174	171	2	5	15	0	30	6	5	4	3	1	40	46	2	8	6	1	83	83	2
7	1	0	164	170	2	9	7	0	141	145	2	6	15	0	37	37	4	5	3	1	8	5	8	9	6	1	142	138	2
8	1	0	275	274	4	10	7	0	52	47	3	7	15	0	50	47	3	6	3	1	102	103	1	10	6	1	257	248	2
9	1	0	38	40	4	11	7	0	163	158	2	0	16	0	0	16	1	7	3	1	153	160	2	11	6	1	144	148	2
10	1	0	72	64	4	12	7	0	79	77	3	1	16	0	9	20	9	8	3	1	29	25	4	12	6	1	18	20	17
11	1	0	181	185	3	13	7	0	12	10	11	2	16	0	70	64	3	9	3	1	19	16	10	13	6	1	57	49	6
12	1	0	239	241	2	0	8	0	418	416	3	3	16	0	78	77	4	10	3	1	32	35	6	-13	7	1	24	9	10
13	1	0	47	53	4	1	8	0	186	182	1	4	16	0	184	183	2	11	3	1	56	62	4	-12	7	1	93	101	4
14	1	0	37	39	6	2	8	0	46	47	2	5	16	0	41	42	4	12	3	1	59	51	6	-11	7	1	162	159	2
0	2	0	206	210	1	3	8	0	506	511	4	6	16	0	108	98	3	13	3	1	53	47	5	-10	7	1	10	6	9
1	2	0	196	192	1	4	8	0	479	485	3	1	17	0	64	62	9	-14	4	1	0	21	1	-9	7	1	135	147	2
2	2	0	267	268	1	5	8	0	184	195	1	2	17	0	24	34	24	-13	4	1	48	48	4	-8	7	1	293	306	1
3	2	0	739	740	2	6	8	0	12	12	12	3	17	0	93	85	3	-12	4	1	100	97	4	-7	7	1	78	77	2
4	2	0	499	502	1	7	8	0	124	124	1	-14	1	1	3	19	2	-11	4	1	11	12	10	-6	7	1	147	165	2
5	2	0	170	162	1	8	8	0	75	73	3	-13	1	1	183	175	2	-10	4	1	84	85	3	-5	7	1	92	92	5
6	2	0	29	37	3	9	8	0	39	36	4	-12	1	1	34	32	9	-9	4	1	133	143	2	-4	7	1	102	97	2
7	2	0	33	31	4	10	8	0	30	23	5	-11	1	1	94	94	3	-8	4	1	124	132	1	-3	7	1	129	140	1
8	2	0	221	222	2	11	8	0	59	59	3	-10	1	1	85	84	3	-7	4	1	175	184	2	-2	7	1	228	215	1
9	2	0	15	2	15	12	8	0	10	11	10	-9	1	1	31	23	5	-6	4	1	149	145	2	-1	7	1	42	41	2
10	2	0	87	81	3	1	9	0	161	167	3	-8	1	1	174	178	3	-5	4	1	468	452	2	0	7	1	40	26	5
11	2	0	24	14	17	2	9	0	214	211	4	-7	1	1	16	30	9	-4	4	1	319	339	1	1	7	1	288	273	1
12	2	0	0	1	1	3	9	0	186	188	2	-6	1	1	160	156	1	-3	4	1	48	52	1	2	7	1	96	87	3

13	2	0	69	60	3	4	9	0	56	62	2	- 5	1	1	353	364	1	-2	4	1	241	239	1	3	7	1	263	265	2
14	2	0	14	11	13	5	9	0	55	53	2	-4	1	1	92	98	1	-1	4	1	364	355	1	4	7	1	12	0	12
1	3	0	978	990	2	6	9	0	25	21	5	-3	1	1	1178	1190	3	0	4	1	340	354	1	5	7	1	274	273	2
2	3	0	214	214	1	7	9	0	232	232	1	-2	1	1	471	472	1	1	4	1	89	81	1	6	7	1	45	40	2
3	3	0	168	182	1	8	9	0	345	353	1	-1	1	1	653	651	3	2	4	1	330	344	2	7	7	1	57	59	2
4	3	0	508	499	2	9	9	0	149	142	2	0	1	1	826	849	2	3	4	1	385	374	1	8	7	1	158	166	2
5	3	0	310	294	1	10	9	0	86	85	2	1	1	1	54	49	1	4	4	1	250	252	1	9	7	1	262	261	2
6	3	0	145	138	1	11	9	0	30	33	5	2	1	1	24	27	2	5	4	1	322	306	2	10	7	1	78	84	3
7	3	0	39	48	6	12	9	0	28	36	9	3	1	1	676	680	3	6	4	1	263	269	1	11	7	1	27	25	8
8	3	0	274	278	1	0	10	0	418	421	3	4	1	1	447	447	2	7	4	1	204	199	2	12	7	1	34	29	6
9	3	0	223	231	1	1	10	0	98	95	3	5	1	1	585	572	2	8	4	1	32	38	4	-13	8	1	90	81	5
10	3	0	106	107	3	2	10	0	299	295	2	6	1	1	117	115	2	9	4	1	0	5	1	-12	8	1	22	17	12
11	3	0	101	101	3	3	10	0	82	90	2	7	1	1	367	362	2	10	4	1	36	35	5	-11	8	1	78	85	3
12	3	0	87	79	3	4	10	0	0	4	1	8	1	1	284	299	1	11	4	1	0	6	1	-10	8	1	60	59	3
13	3	0	25	20	9	5	10	0	201	207	2	9	1	1	77	73	2	12	4	1	31	18	12	-9	8	1	41	38	4
14	3	0	27	29	10	6	10	0	170	168	2	10	1	1	92	86	4	13	4	1	30	17	10	-8	8	1	27	18	6
0	4	0	1533	1553	6	7	10	0	19	10	10	11	1	1	170	170	2	-14	5	1	19	18	18	-7	8	1	110	104	2
1	4	0	289	290	1	8	10	0	159	163	2	12	1	1	111	113	3	-13	5	1	51	45	4	-6	8	1	247	252	1
2	4	0	45	52	1	9	10	0	60	59	3	13	1	1	117	113	3	-12	5	1	2	14	1	-5	8	1	96	89	3
3	4	0	709	699	2	10	10	0	78	78	2	-14	2	1	35	40	5	-11	5	1	0	12	1	-4	8	1	54	63	8
4	4	0	33	34	2	11	10	0	84	82	3	-13	2	1	29	27	7	-10	5	1	35	27	6	-3	8	1	63	61	3
5	4	0	431	403	1	1	11	0	0	3	1	-12	2	1	88	92	4	-9	5	1	93	87	2	-2	8	1	166	173	1
6	4	0	238	229	2	2	11	0	91	93	2	-11	2	1	71	69	3	-8	5	1	95	99	1	-1	8	1	214	213	2
7	4	0	261	262	2	3	11	0	72	68	2	-10	2	1	19	13	19	-7	5	1	315	313	2	0	8	1	63	61	2
8	4	0	12	18	11	4	11	0	145	156	2	-9	2	1	19	26	11	-6	5	1	94	94	2	1	8	1	106	108	1
9	4	0	35	38	4	5	11	0	215	219	1	-8	2	1	246	239	5	-5	5	1	201	200	2	2	8	1	225	236	2
10	4	0	185	184	2	6	11	0	114	115	2	-7	2	1	13	4	12	-4	5	1	377	352	2	3	8	1	260	259	2
11	4	0	55	59	4	7	11	0	108	110	2	-6	2	1	16	0	8	-3	5	1	531	534	1	4	8	1	200	196	2
12	4	0	10	8	10	8	11	0	29	29	5	-5	2	1	135	135	1	-2	5	1	439	422	1	5	8	1	83	73	2
13	4	0	95	82	14	9	11	0	34	25	4	-4	2	1	72	79	1	-1	5	1	91	75	1	6	8	1	96	98	1
14	4	0	28	32	14	10	11	0	41	41	4	-3	2	1	31	37	1	0	5	1	42	54	1	7	8	1	102	98	2
1	5	0	406	386	1	11	11	0	16	3	15	-2	2	1	16	15	5	1	5	1	144	147	2	8	8	1	18	25	14
2	5	0	557	545	2	0	12	0	32	31	6	-1	2	1	1291	1332	3	2	5	1	166	167	1	9	8	1	55	59	3
3	5	0	281	284	1	1	12	0	77	80	2	0	2	1	415	413	1	3	5	1	395	394	2	10	8	1	68	63	3
4	5	0	20	18	5	2	12	0	122	127	5	1	2	1	41	43	1	4	5	1	448	426	2	11	8	1	87	81	2
5	5	0	153	158	1	3	12	0	179	180	2	2	2	1	163	162	1	5	5	1	125	126	2	12	8	1	104	94	2
6	5	0	171	166	2	4	12	0	118	120	3	3	2	1	113	113	1	6	5	1	94	102	2	-12	9	1	153	146	2
7	5	0	109	113	2	5	12	0	70	70	2	4	2	1	275	286	1	7	5	1	124	134	2	-11	9	1	39	38	4
8	5	0	107	114	2	6	12	0	132	133	2	5	2	1	26	25	3	8	5	1	28	29	5	-10	9	1	45	44	3
9	5	0	0	10	1	7	12	0	151	155	2	6	2	1	344	326	2	9	5	1	134	131	4	-9	9	1	67	62	2
10	5	0	151	156	2	8	12	0	15	4	14	7	2	1	20	21	7	10	5	1	53	43	4	-8	9	1	199	204	2
11	5	0	270	263	2	9	12	0	14	18	13	8	2	1	22	15	6	11	5	1	84	74	6	-7	9	1	266	262	1
12	5	0	139	138	3	10	12	0	25	22	7	9	2	1	166	174	1	12	5	1	9	15	9	-6	9	1	26	33	5
13	5	0	71	74	4	1	13	0	183	191	2	10	2	1	103	102	2	13	5	1	0	33	1	-5	9	1	181	182	1
0	6	0	895	874	3	2	13	0	84	81	3	11	2	1	19	13	19	-13	6	1	14	22	13	-4	9	1	62	64	2
1	6	0	608	579	2	3	13	0	63	69	3	12	2	1	70	65	7	-12	6	1	55	56	4	-3	9	1	73	66	4

-2	9	1	18	9	8	-6 13	3 1	. 0	8	1	4	0	2	713	675	4	8	3	2	199	205	1	-13	7	2	48	49	6
-1	9	1	116	114	2	-5 13	3 1	. 33	23	5	5	0	2	163	150	2	9	3	2	150	146	2	-12	7	2	165	159	4
0	9	1	34	35	3	-4 13	3 1	. 33	32	6	6	0	2	260	256	3	10	3	2	95	98	3	-11	7	2	167	155	2
1	9	1	83	89	2	-3 13	3 1	. 94	94	3	7	0	2	180	180	3	11	3	2	68	69	3	-10	7	2	139	142	2
2	9	1	24	17	6	-2 13	3 1	. 77	83	3	8	0	2	145	150	2	12	3	2	120	123	5	-9	7	2	117	115	2
3	9	1	15	24	15	-1 13	3 1	105	104	3	9	0	2	110	105	3	-14	4	2	3	6	3	-8	7	2	244	257	1
4	9	1	76	71	2	0 13	3 1	. 112	116	3	10	0	2	83	87	5	-13	4	2	42	48	5	-7	7	2	49	49	3
5	9	1	13	11	13	1 13	3 1	. 69	73	3	11	0	2	38	21	9	-12	4	2	52	50	4	-6	7	2	43	45	3
6	9	1	204	206	1	2 1	3 1	65	63	3	12	0	2	159	160	4	-11	4	2	122	124	3	-5	7	2	41	36	6
7	9	1	17	18	17	3 1	3 1	40	38	7	-14	1	2	69	72	3	-10	4	2	40	28	5	-4	7	2	17	9	17
8	9	1	85	87	2	4 1	3 1	83	73	4	-13	1	2	58	53	3	-9	4	2	196	196	1	- 3	7	2	294	290	2
9	9	1	13	5	13	5 1	3 1	48	47	4	-12	1	2	171	172	2	-8	4	2	112	123	1	-2	7	2	319	313	2
10	9	1	139	132	2	6 1	3 1	0	10	6	-11	1	2	23	-/ - 7	12	-7	4	2	309	304	2	-1	7	2	272	270	1
11	9	1	87	84	2	7 1	3 1	40	38	4	-10	1	2	150	146	2	-6	4	2	280	275	2	ā	7	2	409	390	2
12	9	1	10	7	9	8 1	3 1	49	47	3	-9	1	2	292	297	1	-5	4	2	16	19	6	1	7	2	84	80	1
-12	10	1	70	, 75	5	9 1	x 1	. ,5 A	17	1	-8	1	2	451	438	4	-4	م	2	460	461	3 3	2	7	2	82	84	2
-11	10	1	57	49	ž	-9 14	1 1	57	47	6	-7	1	2	200	189	2	- 3	م	2	373	348	1	3	7	2	<u>6</u>	14	1
-10	10	1	15	7	14	-8 14	1 1	. 37	18	11	-6	1	2	43	41	3	-2	4	2	533	526	2	4	7	2	16	25	11
-9	10	1	52	52	3	-7 14	1 1	65	60	2	-5	1	2	261	248	1	-1	4	2	537	510	2	5	7	2	143	153	3
-8	10	1	113	113	2	-6 14	1 1	. 05	25	5	-4	1	2	43	240	2	â	4	2	136	122	1	6	7	2	17	17	8
-7	10	1	88	87	2	-5 14	1 1	. 20	38	4	-3	1	2	42	40	1	1	4	2	313	304	1	7	7	2	169	169	2
-6	10	1	47	56	2	-1 1/	1 1	122	117	2	_2	1	2	139	138	1	2	1	2	7/	67	2	, 8	7	2	90	95	2
-5	10	1	153	160	1	-7 1	r 1 1 1	51	53	7	-2	1	2	992	1016	2	2	1	2	176	172	2	a a	7	2	15	54	7
_1	10	1	151	167	1	-2 1/	r 1 1 1	210	220	2	-1	1	2	180	181	1	7	1	2	470	87	2	10	7	2	73	68	2
_ 3	10	1	74	7/	2	-2 1-	r 1 1 1	. 21J Q/	95	2	1	1	2	192	198	1	5	1	2	52	51	2	11	7	2	10	50	5
_2	10	1	257	260	1	0 1/	r 1 1 1	. 54 74	8/	2	2	1	2	205	197	1	5	1	2	225	223	7	12	7	2	27	30	7
_1	10	1	297	268	2	1 1/	r 1 1 1	. 74	82	2	2	1	2	61	66	1	7	1	2	225	19	7	_13	2 2	2	27	1/	10
à	10	1	117	118	2	2 1/	1 1	150	155	2	1	1	2	9/	88	1	, 8	1	2	<u>a</u> a	90	2	_12	8	2	97	24	3
1	10	1	54	57	2	3 1/	1 1	220	223	2	5	1	2	539	510	2	q	4	2	374	374	2	-11	8	2	15	8	15
2	10	1	148	144	2	4 14	1 1	53	50	4	6	1	2	116	115	2	10	4	2	251	264	2	-10	8	2	49	54	4
3	10	1	82	80	2	5 14	1 1	. 95	82	3	7	1	2	39	33	4	11	م	2	37	30	6	-9	8	2	95	87	2
4	10	1	88	88	2	6 14	1 1	97	99	3	, 8	1	2	160	168	1	12	م	2	57	64	4	-8	8	2	218	215	2
5	10	1	53	65	3	7 14	1 1	. <i>,</i> ,	11	1	9	1	2	46	48	4	13	م	2	, A	11	1	-7	8	2	102	100	2
6	10	1	193	203	2	8 14	1 1	. 51	43	3	10	1	2	186	182	2	-14	5	2	39	34	6	-6	8	2	233	231	1
7	10	1	199	200	2	-7 1	5 1	15	.5	15	11	1	2	23	202	22	-13	5	2	53	54	4	-5	8	2	18	13	ģ
, 8	10	1	113	116	3	-6 1	5 1	12	1	12	12	1	2	27	23	14	-12	5	2	95	13	1	-4	8	2	65	64	2
a	10	1	15	23	15	-5 1	. 1	. 12	31	12	13	1	2	27	19	12	_11	5	2	26	24	8	-3	8	2	86	77	2
10	10	1	39	25	4	-4 1	5 1	165	162	2	-14	2	2	47	43	5	-10	5	2	200	200	2	-2	8	2	151	143	2
11	10	1	62	57	3	-3 1	5 1	84	88	2	-13	2	2	28	7	7	-9	5	2	388	389	1	-1	8	2	77	80	2
-11	11	1	60	61	2	-2 1	5 1	. 04	30	8	-12	2	2	130	, 129	2	-8	5	2	365	368	1	â	8	2	489	478	2
_10	11	1	64	59	2	-2 1.	; 1	. 27 54	52	1	-12	2	2	155	157	2	-7	5	2	36	31	1	1	8	2	122	118	2
-9	11	1	37	31	5	0 1	5 1	. 54	21	16	-10	2	2	217	222	2	-6	5	2	18	10	8	2	8	2	76	77	2
-8	11	1	65	68	2	1 1	5 1	. <u>1</u> 0 20	11	13	-9	2	2	21/	12	6	-5	5	2	182	176	1	2	8	2	78	68	6
-7	11	1	84	77	3	2 1	5 1	228	220	2	-8	2	2	49	59	4	-4	5	2	40	35	2	4	8	2	77	73	2
-6	11	1	175	179	2	3 1	5 1	202	197	2	-7	2	2	155	150	2	- 7	5	2	320	312	1	5	8	2	28	26	4
-5	11	1	66	65	4	4 1	5 1	46	46	5	-6	2	2	73	74	2	-2	5	2	392	366	1	6	8	2	37	43	3
-		-			•					-	5	-	_			-	-	-	-			-		-	_			-

-4 11	1	123	126	2	5	15	1	0	1	1	-5	2	2	149	155	1	-1	5	2	523	503	2	7	8	2	92	82	2
-3 11	1	267	273	1	6	15	1	70	63	2	-4	2	2	48	46	1	0	5	2	223	207	1	8	8	2	113	122	2
-2 11	1	18	4	10	7	15	1	40	40	4	-3	2	2	643	621	2	1	5	2	154	155	1	9	8	2	29	30	6
-1 11	1	7	7	6	-6	16	1	0	7	1	-2	2	2	753	755	2	2	5	2	50	45	2	10	8	2	0	6	1
0 11	1	217	223	1	-5	16	1	61	61	3	-1	2	2	893	891	2	3	5	2	579	563	3	11	8	2	69	78	2
1 11	1	218	223	2	-4	16	1	95	93	2	0	2	2	1449	1435	4	4	5	2	160	161	2	12	8	2	17	18	16
2 11	1	106	108	2	- 3	16	1	138	144	2	1	2	2	575	583	1	5	5	2	227	222	2	-12	9	2	149	143	2
3 11	1	144	153	2	-2	16	1	109	109	3	2	2	2	156	164	1	6	5	2	27	32	6	-11	9	2	120	112	2
4 11	1	54	56	3	-1	16	1	39	34	6	3	2	2	103	107	1	7	5	2	95	90	2	-10	9	2	55	45	3
5 11	1	120	122	2	â	16	1	66	70	7	4	2	2	427	407	2	8	5	2	231	230	2	-9	9	2	27	18	6
6 11	1	220	221	2	1	16	1	81	76	, 4	5	2	2	85	93	2	9	5	2	320	316	2	-8	9	2	169	163	2
7 11	1	251	248	2	2	16	1	27	34	10	6	2	2	167	168	2	10	5	2	36	33	6	-7	ģ	2	74	78	3
9 11 8 11	1	231	37	5	2	16	1	20	17	16	7	2	2	2/13	250	2	11	5	2	7/	69	1	-6	á	2	/8	52	2
0 11	1	15	37	2	ر ۸	16	1	69	62	70	, o	2	2	62	250	2	12	5	2	52	59	7	-5	6	2	200	219	1
10 11	1	4J 65	60	2	5	16	1	30	27	5	٥ ۵	2	2	112	115	2	12	5	2	52	- 50 72	5	- 1	9	2	163	160	1
10 11	1	76	74	5	5	16	1	74	2/	2	10	2	2	113	20	2	12	6	2	105	02	2	-4	0	2	105	109	2
10 12	1	17	14	16	2	17	1	24	22	0	11	2	2	164	170	2	12	6	2	105	52	5	- 5	0	2	100	104	7
0 12	1	16	14	10	- 5	17	1	24	20	0	12	2	2	204	1/2	2	-12	6	2	40 E0	22	2	-2	9	2	100	104	4
-9 12	1	10	/ 0	14	-2	17	1	20	21	9 11	12	2	2	25	20	22	-11	6	2	10	49	12	-1	9	2	101	0E 100	2
-0 12	1	11	0 F 1	11	-1	17	1	10	21	17	14	2	2	47	29	0 7	-10	c	2	122	1/1	12	1	9	2	20	10	2
-/ 12	1	50	21	2 2	1	17	1	20	4 20	11	-14	2 2	2	101	102	2	-9	6	2	135	141	14	1	9	2	175	175	4
-0 12	1	100	100	2	1	17	1	52 1 E	20	14	-15	2 2	2	101	103	2	-0	6	2	110	121	14	2	9	2	1/5 211	1/5	2
-5 12	1	102	109	2	2	17	1	15	4	14	-12	2	2	190	104	2	-7	6	2	119	121	2	2	9	2	100	209	2
-4 12	1	127	140	4	5 14	1/	1	40	40	5	-11	2 2	2	122	150	2	-0	6	2	100	101	2	4	9	2	100	102	1
-3 12	1	137	140	2	-14	0	2	40	46	11	-10	3	2	220	221	2	-5	6	2	121	120	2	5	9	2	225	225	1
-2 12	1	70	00	4	-15	0	2	70	/0	11	-9	2 2	2	195	192	2	-4	6	2	151	120	2	0	9	2	100	104	2
-1 12	1	50 71	5Z 70	2	-12	0	2	100	41	/	-0	2 2	2	120	129	2	- 5	6	2	226	544 555	1	/	9	2	00 FC	0Z	2
0 12	1	71	/0	2 2	-11	0	2	100	90	4	-7	2 2	2	170	120	2	-2	6	2	100	100	1	0	9	2	50	29	2
1 1Z	1	17	25	12	-10	0	2	120	140	0 2	-0	2	2	170 E42	100	1 2	-1	c	2	757	190	2	10	9	2	22	49	2
2 12	1	100	100	12	-9	0	2	129	140	5	-5	2 2	2	245	524 476	1	1	6	2	100	100	2	10	9	2	45	52	4
5 IZ	1	100	102	2	-0	0	2	104	202	2	-4	2 2	2	490	4/0	2	1	6	2	490	400	1	11	9 10	2	17	5	10
4 12	1	205	200	3	-7	0	2	194	203	3	- 3	3	2	512	589	3	2	6	2	1/3	168	1	-12	10	2	1/	20	10
5 12	T	205	208	3	-6	0	2	292	2/5	2	-2	3	2	225	221	1	3	6	2	580	555	3	-11	10	2	22	20	8
6 12	T	159	122	2	-5	0	2	40	34	3	-1	3	2	814	832	2	4	6	2	553	545	2	-10	10	2	42	39	4
/ 12	T	9	/	9	-4	0	2	56/	668	5	0	3	2	/12	699	2	5	6	2	97	90	2	-9	10	2	25	39	/
8 12	T	47	49	3	- 3	0	2	701	663	3	T	3	2	202	211	T	6	6	2	16	4	9	-8	10	2	97	107	2
9 12	1	61	51	3	-2	0	2	1099	1100	4	2	3	2	137	135	1	/	6	2	19	25	/	-/	10	2	182	183	2
10 12	1	30	21	6	-1	0	2	305	290	1	3	3	2	637	597	3	8	6	2	198	204	2	-6	10	2	130	132	2
-10 13	1	0	1/	1	0	0	2	381	398	1	4	3	2	321	308	1	9	6	2	14	3	13	-5	10	2	157	164	2
-9 13	1	43	43	3	1	0	2	439	442	2	5	3	2	683	669	2	10	6	2	32	45	6	-4	10	2	35	33	4
-8 13	1	101	98	2	2	0	2	325	314	1	6	3	2	43	39	3	11	6	2	22	19	11	-3	10	2	129	133	1
-7 13	1	98	95	2	3	0	2	1273	1253	5	7	3	2	56	56	3	12	6	2	28	36	7	-2	10	2	180	183	1
-1 10	2	126	126	2	3	14	2	195	195	2	7	2	3	60	60	3	-13	6	3	13	6	13	-2	9	3	79	72	2
0 10	2	84	81	2	4	14	2	112	116	2	8	2	3	166	170	1	-12	6	3	81	79	3	-1	9	3	33	30	4
1 10	2	15	21	14	5	14	2	16	16	16	9	2	3	106	107	3	-11	6	3	30	28	6	0	9	3	14	20	14
2 10	2	24	32	5	6	14	2	63	53	3	10	2	3	73	76	3	-10	6	3	153	153	2	1	9	3	66	77	2
3 10	2	182	189	1	7	14	2	8	14	7	11	2	3	62	67	4	-9	6	3	227	232	2	2	9	3	30	25	4

4 10	2	50	46	2	8 1	L4	2	10	15	9	12	2	3	0	16	1	-8	6	3	88	82	2	39	3	66	66	2
5 10	2	126	129	2	-71	L5	2	67	68	3	-14	3	3	26	27	7	-7	6	3	0	1	1	49	3	8	3	8
6 10	2	26	24	7	-6 1	L5	2	57	52	3	-13	3	3	85	83	3	-6	6	3	145	147	2	59	3	216	218	1
7 10	2	33	36	5	-5 1	L5	2	14	10	14	-12	3	3	69	65	5	-5	6	3	58	57	2	69	3	78	78	2
8 10	2	63	57	2	-4 1	L5	2	0	5	1	-11	3	3	47	46	5	-4	6	3	191	192	1	79	3	76	78	2
9 10	2	43	36	4	-3 1	L5	2	12	19	12	-10	3	3	203	201	2	-3	6	3	202	195	1	89	3	155	155	2
10 10	2	0	8	1	-2 1	L5	2	74	78	4	-9	3	3	62	61	3	-2	6	3	552	524	2	99	3	0	3	1
11 10	2	66	59	6	-1 1	15	2	0	10	1	-8	3	3	162	161	2	-1	6	3	57	52	2	10 9	3	69	64	2
-11 11	2	11	4	10	0 1	15	2	17	24	16	-7	3	3	71	74	3	0	6	3	189	184	1	11 9	3	20	26	13
-10 11	2	84	87	2	1 1	15	2	113	119	3	-6	3	3	6	5	5	1	6	3	0	12	1	-12 10	3	57	56	-5
-9 11	2	88	84	2	2 1	15	2	59	62	4	-5	3	3	318	316	1	2	6	3	40	46	3	-11 10	3	45	36	3
-8 11	2	80	83	4	3 1	15	2	202	202	3	-4	3	3	345	347	1	3	6	3	184	179	2	-10 10	3	19	8	12
-7 11	2	56	54	3	4 1	15	2	46	43	6	- 3	3	3	264	247	1	4	6	3	134	144	2	-9 10	3	21	20	
-6 11	2	120	121	2	5 1	15	2	43	42	4	-2	3	3	793	785	2	5	6	ے ۲	15	17	11	-8 10	3	54	50	3
-5 11	2	20	17	9	6 1	15	2	23	18	17	-1	3	ے ع	199	186	1	6	6	ے ج	293	295	1	-7 10	ے ج	196	191	2
-4 11	2	159	164	2	-6 1	16	2	25	13	7	ā	3	ž	228	232	2	7	6	ے ج	31	36	5	-6 10	ے ج	99	96	2
-3 11	2	120	123	1	-5 1	16	2	23	33	ģ	1	3	3	341	343	1	, 8	6	3	205	206	2	-5 10	2	76	80	5
_2 11	2	54	57	3	_1 1	16	2	8/	82	2	2	2	2	155	153	2	q	6	2	205	2200	1	_1 10	2	14	2	13
_1 11	2	111	11/	2		16	2	70	52	5	2	2	2	16	16	5	10	6	2	68	62	3	_3 10	2	29	28	1
0 11	2	25	22	6	1	16	2	2/	22	0	7	2	2	272	250	1	11	6	2	50	55	1	-2 10	2	27	20	-
1 11	2	25	25	1	-2 1	16	2	122	122	2	5	2	2	69	233	2	12	6	2	22	10	10	-2 10	2	50	60	2
1 11 2 11	2	55	21 60	4	-1 1	10	2	133	122	2	5	2	2	76	77	2	12	7	2	25	25	22	-1 10	2	55	71	2
2 11	2	05	14	2	1 1	10	2	24	00	10	7	2	2	24	24	2	-15	'	2	11	25	10	1 10	2	60	62	2
J 11	2	07	14	1 2	2 1		2	100	4	201	,	2	2	24 211	24	4	-12	<i>'</i>	2	27	20	TO	2 10	2	122	126	2
4 11 F 11	2	107	170	2	2 1		2	202	95	2 14	0	2 2	2	20	219	2	-11	<i>'</i>	2	57	59	5	2 10	2	122	120	2
5 II 6 11	2	102	1/0	Z 1	1 1	10	2	21	12	14 E	10	2	2	29	12	0	-10	'	2	116	45	2	1 10	2	92 110	106	2
7 11	2	150	150	-+ ->		16	2	24	20	6	11	2	2	47 71	76	4	- 9	, ,	2	110	11	1	4 10 E 10	2	74	71	2
0 11	2	175	176	2	2 1	17	2	17	16	17	12	2	2	15	70	11	-0	, ,	2	01	02	2	5 10 6 10	2	- 74 E 2	71	2
0 11	2	12	120	12		17	2	27	20		14	^	2	10	E1	24	-7	, ,	2	16	60	2	7 10	2	112	112	2
9 II 10 11	2	50	5	22	-2 1	L7 17	2	57	16	1	-14	4	2	52	12	2	-0	'	2	100	120	2	7 10 0 10	2	115	112	2
10 11	2	50 E 4	72	2	-1 1	17	2	1	10	1	12	4	2	40	45	-+	ر - ۸	, ,	2	120	27	12	0 10	2	20	25	10
-10 12	2	24	40	2	1 1	L7 L7	2	- C O	0 F7	1	-12	4	2	03	100	2	-4	<i>'</i>	2	260	27	12	9 10	2	20	25	10
-9 12	2	124	125	4	1 I 2 1	L/ 17	2	50	57	4	-11	4	2	25	100	2	- 5	<i>'</i>	2	209	175	2	10 10	2	20	10	9
-0 12	2	124	125	2	2 1	L7 L7	2	22	50	4	-10	4	2	107	166	1	-2	<i>'</i>	2	129	135	2	-11 11	2	20	, ,	2
-/ 12	2	50	55	2	14	1	2	22	47	22	-9	4	2	120	100	1	-1	<i>'</i>	2	57	41	2	-10 11	2	04	50	2
-0 12	2	20	00	2	-14	1	2	55 70	45	2	-0	4	2	99	102	T	0	4	2	107	122	2	-9 11	2	25	92	2
-5 12	2	26	32	/	-13	1	3	79	74	5	-7	4	3	40	39	4	1	4	3	127	123	2	-8 11	3	12	73	17
-4 12	2	19	100	11	-12	1	3	28	26	ð	-6	4	3	21	15	5	2	4	3	44	40	3	-/ 11	3	19	29	13
-3 12	2	180	188	2	-11	1	3	26	26	9	-5	4	3	324	331	1	3	4	3	64	/1	2	-6 11	3	54	58	5
-2 12	2	53	56	5	-10	1	3	100	9/	3	-4	4	3	274	2/1	3	4	_	3	164	160	2	-5 11	3	45	44	5
-1 12	2	201	204	2	-9	1	3	1/	16	1/	-3	4	3	280	290	1	5	_	3	242	240	1	-4 11	3	68	65	4
0 12	2	150	149	2	-8	1	3	100	104	2	-2	4	3	39	48	2	6	_	3	22	16	6	-3 11	3	250	251	1
1 12	2	72	70	3	- /	1	3	73	79	2	-1	4	3	251	253	1	7	7	3	22	2	8	-2 11	3	204	212	2
2 12	2	246	243	3	-6	1	3	20	1	6	0	4	3	293	287	1	8	7	3	92	88	2	-1 11	3	159	158	2
3 12	2	104	101	2	-5	1	3	198	198	1	1	4	3	198	184	1	9	7	3	28	22	6	0 11	3	200	209	2
4 12	2	77	76	4	-4	1	3	23	30	3	2	4	3	81	101	2	10	7	3	104	100	2	1 11	3	242	236	2
5 12	2	285	275	2	-3	1	3	72	73	1	3	4	3	395	377	2	11	7	3	10	3	10	2 11	3	43	57	5

6 12	2	171	162	2	-2	1	3	186	186	2	4	4	3	343	333	2	12	7	3	64	67	5	3 11	3	20	15	13
7 12	2	38	39	4	-1	1	3	195	201	1	5	4	3	53	56	4	-13	8	3	30	45	13	4 11	3	102	96	2
8 12	2	28	25	7	0	1	3	519	519	1	6	4	3	262	268	1	-12	8	3	38	33	5	5 11	3	91	92	2
9 12	2	19	16	10	1	1	3	121	113	1	7	4	3	99	100	2	-11	8	3	57	60	3	6 11	3	64	64	2
-10 13	2	92	79	10	2	1	3	0	7	1	8	4	3	235	232	2	-10	8	3	33	39	5	7 11	3	109	117	2
-9 13	2	64	61	2	3	1	3	100	90	2	9	4	3	162	153	2	-9	8	3	140	143	3	8 11	3	45	43	3
-8 13	2	101	98	2	4	1	3	43	47	3	10	4	3	63	53	3	-8	8	3	89	90	2	9 11	3	24	21	7
-7 13	2	33	38	4	5	1	3	147	131	2	11	4	3	41	36	5	-7	8	3	43	46	4	10 11	3	65	67	5
-6 13	2	51	57	3	6	1	3	156	152	2	12	4	3	40	53	8	-6	8	3 3	11	3	11	-10 12	3	96	86	2
-5 13	2	185	188	1	7	1	3 3	164	166	1	-14	5	ž	.0	12	1	-5	8	ے ۲	141	151	2	-9 12	3	54	53	2
-4 13	2	46	51	4	8	1	3	67	-00	2	-13	5	3	41	41	5	-4	8	3 3	267	281	2	-8 12	3	15	11	14
-3 13	2	19	17	19	9	1	3	231	239	2	-12	5	ž	27	36	ģ	- 3	8	3	240	232	2	-7 12	z	25	25	7
_2 13	2	79	80	5	10	1	2	11	30	10	_11	5	2	2/	3	11	-2	8	2	240	12	1	-6 12	3	30	25	6
-2 13	2	64	61	1	11	1	2	93	101	3	-10	5	2	116	118	2	-2	8	2	10	12	2	-5 12	2	20	1/	1
0 13	2	21	21	17	12	1	2	95 01	101	7	-10	5	2	161	172	2	-1	0	2	12/	120	2	-/ 12	2	26	26	7
1 1 2	2	120	125	1	1/	2	2	51	55	4	-9	5	2	101	1/2	2	1	0	2	234	150	2	-4 1Z 2 12	2	20	20	2
1 15 2 12	2	120	125	4	-14	2	2	22	57	4	-0	5	2	147	20 120	2	1	0	2	21	227	2	-5 12	2	107	101	2
2 15	2	01	04	2	-15	2	2	2	2	10	-7	5	2	145	1 4 1	1	2	0	2	250	120	2	-2 12	2	10/	191	1
3 13	2	81 117	8/	3	-12	2	3	26	33	10	-6	5	3	140	141	1	3	ð	3	123	120	T	-1 12	3	15	25	12
4 13	2	11/	113	3	-11	2	3	39	32	6	-5	5	3	210	199	1	4	ð	3	25	24	4	0 12	3	0	1	1
5 13	2	29	38	/	-10	2	3	119	123	3	-4	5	3	5/3	554	2	5	8	3	24	20	5	1 12	3	82	81	3
6 13	2	87	86	2	-9	2	3	141	142	2	-3	5	3	407	399	2	6	8	3	264	268	1	2 12	3	21	33	13
/ 13	2	32	25	5	-8	2	3	47	51	3	-2	5	3	217	215	1	/	8	3	91	89	2	3 12	3	181	183	2
8 13	2	84	81	2	- /	2	3	41	40	3	-1	5	3	114	104	1	8	8	3	64	63	3	4 12	3	94	95	3
9 13	2	88	88	3	-6	2	3	107	110	2	0	5	3	320	321	1	9	8	3	54	47	3	5 12	3	43	47	4
-9 14	2	36	32	27	-5	2	3	147	145	1	1	5	3	15	7	14	10	8	3	76	78	2	6 12	3	53	56	3
-8 14	2	40	38	3	-4	2	3	8	23	7	2	5	3	359	335	2	11	8	3	19	15	18	7 12	3	15	26	14
-7 14	2	107	105	2	-3	2	3	565	549	3	3	5	3	13	11	13	-12	9	3	17	19	17	8 12	3	31	37	6
-6 14	2	48	42	3	-2	2	3	169	166	1	4	5	3	267	254	2	-11	9	3	12	12	11	9 12	3	44	44	5
-5 14	2	103	108	2	-1	2	3	169	155	1	5	5	3	171	169	2	-10	9	3	11	19	10	-9 13	3	40	34	4
-4 14	2	33	32	7	0	2	3	385	386	1	6	5	3	188	196	1	-9	9	3	107	106	2	-8 13	3	137	134	2
-3 14	2	108	109	4	1	2	3	87	91	1	7	5	3	25	22	6	-8	9	3	114	118	2	-7 13	3	96	92	2
-2 14	2	85	81	4	2	2	3	121	115	1	8	5	3	96	96	3	-7	9	3	57	56	4	-6 13	3	49	45	3
-1 14	2	60	55	5	3	2	3	10	15	10	9	5	3	104	105	2	-6	9	3	191	197	2	-5 13	3	134	145	2
0 14	2	99	98	3	4	2	3	53	69	2	10	5	3	71	75	6	-5	9	3	34	41	4	-4 13	3	202	201	2
1 14	2	100	101	3	5	2	3	0	12	1	11	5	3	0	14	1	-4	9	3	49	54	2	-3 13	3	65	65	5
2 14	2	32	21	9	6	2	3	148	152	2	12	5	3	39	43	5	-3	9	3	121	121	1	-2 13	3	54	53	4
-1 13	3	75	84	4	-9	1	4	20	25	13	-3	4	4	699	674	3	8	7	4	97	92	2	5 11	4	123	125	2
0 13	3	144	142	2	-8	1	4	43	39	3	-2	4	4	264	267	1	9	7	4	73	72	2	6 11	4	66	65	2
1 13	3	95	91	3	-7	1	4	76	66	2	-1	4	4	238	244	1	10	7	4	27	31	8	7 11	4	57	50	3
2 13	3	295	280	2	-6	1	4	161	157	2	0	4	4	90	96	2	11	7	4	77	76	3	8 11	4	81	80	2
3 13	3	57	60	5	-5	1	4	266	262	2	1	4	4	241	230	3	-12	8	4	51	46	4	9 11	4	52	54	4
4 13	3	144	142	2	-4	1	4	266	252	1	2	4	4	148	144	1	-11	8	4	31	40	5	-10 12	4	22	21	7
5 13	3	16	6	16	- 3	1	4	13	2	7	3	4	4	100	- 99	2	-10	8	4	99	97	2	-9 12	4	17	21	17
6 13	3	88	90	2	-2	1	4	182	191	1	4	4	4	25	22	6	-9	8	4	133	133	2	-8 12	4	89	86	3
7 13	3	19	20	10	-1	1	4	21	15	3	5	4	4	143	145	1	-8	8	4	35	37	5	-7 12	4	38	25	4
8 1 3	2	25	25	7	â	1	4	425	<u>4</u> 17	2	6	4	4	167	172	2	-7	8	4	28	18	7	-6 12	4	63	68	ג
0 10		25	25	,	0	-	-	725	TT /	~	5	-	-	±07		~		0	-	20	±0	,	0 12	-	00	00	2

-8 14	3	54	56	2	1	1	4	156	146	1	7	4	4	236	235	2	-6	8	4	99	105	2	-5 12	4	58	54	3
-7 14	3	96	92	3	2	1	4	238	228	1	8	4	4	212	217	2	-5	8	4	152	149	1	-4 12	4	10	22	10
-6 14	3	66	66	2	3	1	4	208	198	1	9	4	4	91	95	3	-4	8	4	115	115	1	-3 12	4	50	53	4
-5 14	3	22	25	20	4	1	4	64	66	2	10	4	4	30	19	7	- 3	8	4	40	44	2	-2 12	4	0	0	1
-4 14	3	15	17	14	5	1	4	49	48	4	11	4	4	25	10	10	-2	8	4	65	66	2	-1 12	4	22	8	13
-3 14	3	34	31	6	6	1	4	234	238	1	12	4	4	11	28	11	-1	8	4	10	3	10	0 12	4	232	242	2
-2 14	3	28	25	9	7	1	4	234	245	1	-13	5	4	46	39	7	0	8	4	78	84	2	1 12	4	158	157	2
-1 14	3	67	65	4	8	1	4	94	93	3	-12	5	4	63	61	, 3	1	8	4	160	168	2	2 12	4	85	80	3
0 14	3	70	67	3	q	1	4	â	9	1	-11	5	4	165	168	2	2	8	4	251	254	1	3 12	4	117	115	2
1 14	3	205	212	2	10	1	4	89	94	3	-10	5	م	83	81	2	3	8	4	26	25	5	4 12	م	155	148	2
2 14	3	146	144	3	11	1	4	55	56	5	-9	5	4	69	67	3	4	8	4	135	135	1	5 12	م	74	70	3
3 14	2	112	107	3	12	1	4	9	10	1	-8	5	4	16	6	15	5	8	4	10	13	10	6 12	4	21	22	8
1 1/	2	126	128	2	_1/	2	1	10	10	10	-0	5	1	61	55	3	5	8	1	208	213	2	7 12	1	18	32	1/
5 1/	2	169	164	2	-12	2	4	13	10	10	- 7	5	4	35	26	1	7	0	4	200	213	6	9 1 2	4	10	10	10
5 14 6 14	2	114	104	2	12	2	4	124	120	4	-0	5	4	122	122	- 1	, 0	0	4	21	21	1	0 12	4	24	27	10
7 14	2	114	201	2	-12	2	4	167	100	4 2	-5	5	4	122	133	2	0	0	4	52	5	2	-9 15	4	24	27	4
7 14	2	50	5	1	-11	2	4	101	102	2	-4	5	4	91	0/	2	10	0	4	22	27	2	-0 15	4	50	55	4
-/ 15	2	20	54	2	-10	2	4	120	97	2	- 5	5	4	417	415	2	10	Ô	4	10	10	9	-7 15	4	60	62	2
-6 15	3	101	85	2	-9	2	4	138	147	2	-2	5	4	283	2/5	1	-12	9	4	48	54	ð	-6 13	4	10	57	10
-5 15	3	48	38	4	-8	2	4	286	285	1	-1	5	4	/5	/3	2	-11	9	4	28	33	5	-5 13	4	19	8	12
-4 15	3	9	5	8	-/	2	4	266	265	2	0	5	4	103	94	T	-10	9	4	11	13	11	-4 13	4	0	14	1
-3 15	3	25	21	12	-6	2	4	36	24	3	1	5	4	181	1//	1	-9	9	4	61	61	3	-3 13	4	/1	/1	3
-2 15	3	/3	67	4	-5	2	4	318	304	2	2	5	4	154	163	2	-8	9	4	/1	67	3	-2 13	4	/3	/4	/
-1 15	3	0	3	1	-4	2	4	339	335	2	3	5	4	262	261	2	-/	9	4	12	18	11	-1 13	4	100	97	6
0 15	3	32	24	/	- 3	2	4	356	331	1	4	5	4	18	1	10	-6	9	4	88	90	2	0 13	4	0	0	1
1 15	3	76	/1	3	-2	2	4	496	482	1	5	5	4	68	62	2	-5	9	4	85	89	2	1 13	4	21	/	13
2 15	3	85	74	3	-1	2	4	16	16	4	6	5	4	198	205	1	-4	9	4	153	158	1	2 13	4	31	30	/
3 15	3	56	51	9	0	2	4	202	204	1	7	5	4	61	62	3	-3	9	4	125	133	1	3 13	4	95	92	2
4 15	3	39	43	10	1	2	4	144	140	1	8	5	4	69	73	3	-2	9	4	41	44	3	4 13	4	45	46	4
5 15	3	48	40	4	2	2	4	307	290	2	9	5	4	38	50	5	-1	9	4	44	47	3	5 13	4	32	27	5
6 15	3	39	18	7	3	2	4	295	280	2	10	5	4	55	55	4	0	9	4	319	330	1	6 13	4	32	33	5
-5 16	3	29	30	7	4	2	4	38	37	5	11	5	4	18	25	17	1	9	4	273	279	1	7 13	4	89	85	3
-4 16	3	53	58	5	5	2	4	54	48	3	-13	6	4	40	40	5	2	9	4	11	11	10	-8 14	4	0	20	1
-3 16	3	75	71	4	6	2	4	81	85	2	-12	6	4	143	142	4	3	9	4	36	37	3	-7 14	4	51	51	3
-2 16	3	66	67	4	7	2	4	142	142	3	-11	6	4	33	27	5	4	9	4	73	72	2	-6 14	4	33	38	5
-1 16	3	41	22	6	8	2	4	169	175	2	-10	6	4	58	58	5	5	9	4	64	64	3	-5 14	4	46	51	4
0 16	3	30	27	7	9	2	4	29	50	9	-9	6	4	51	44	3	6	9	4	161	165	1	-4 14	4	61	70	3
1 16	3	0	1	1	10	2	4	31	34	7	-8	6	4	23	11	9	7	9	4	43	45	4	-3 14	4	0	13	1
2 16	3	40	33	5	11	2	4	66	78	5	-7	6	4	134	136	2	8	9	4	27	27	7	-2 14	4	110	118	3
3 16	3	41	48	5	12	2	4	64	65	4	-6	6	4	28	26	4	9	9	4	43	40	4	-1 14	4	111	105	5
4 16	3	31	23	6	-14	3	4	38	40	6	-5	6	4	338	339	3	10	9	4	51	46	3	0 14	4	10	11	9
-3 17	3	39	29	9	-13	3	4	111	105	2	-4	6	4	333	337	4	-11	10	4	46	39	4	1 14	4	40	43	5
-2 17	3	96	93	3	-12	3	4	23	14	11	- 3	6	4	151	142	2	-10	10	4	55	48	3	2 14	4	188	180	2
-1 17	3	31	29	8	-11	3	4	66	68	4	-2	6	4	86	84	2	-9	10	4	23	26	9	3 14	4	58	62	4
0 17	3	52	49	6	-10	3	4	226	224	2	-1	6	4	100	89	2	-8	10	4	19	0	11	4 14	4	87	83	2
1 17	3	109	102	4	-9	3	4	196	202	2	0	6	4	305	313	2	-7	10	4	79	74	3	5 14	4	108	104	2
-14 0	4	30	31	9	-8	3	4	251	259	1	1	6	4	236	234	2	-6	10	4	23	24	9	6 14	4	31	30	21

-13	0	4	30	15	21	-7	3	4	32	39	4	2	6	4	263	254	2	-5	10	4	3	1	3	-7	15	4	31	13	12
-12	0	4	119	113	5	-6	3	4	20	15	6	3	6	4	101	97	2	-4	10	4	62	59	3	-6	15	4	7	1	7
-11	0	4	82	78	5	- 5	3	4	169	161	1	4	6	4	216	221	1	-3	10	4	98	99	2	-5	15	4	16	18	15
-10	0	4	16	3	15	-4	3	4	433	415	2	5	6	4	61	63	2	-2	10	4	91	95	2	-4	15	4	46	48	11
-9	0	4	149	151	3	-3	3	4	7	3	6	6	6	4	69	64	3	-1	10	4	45	47	3	-3	15	4	0	8	1
-8	0	4	190	203	2	-2	3	4	97	85	1	7	6	4	109	106	2	0	10	4	188	193	3	-2	15	4	12	21	11
-7	0	4	129	136	5	-1	3	4	442	420	2	8	6	4	117	125	2	1	10	4	51	61	3	-1	15	4	20	26	19
-6	0	4	98	116	4	0	3	4	516	498	2	9	6	4	107	120	2	2	10	4	73	79	4	0	15	4	26	24	8
- 5	0	4	468	457	3	1	3	4	291	269	3	10	6	4	0	1	1	3	10	4	61	63	3	1	15	4	26	21	8
-4	0	4	272	266	2	2	3	4	147	137	2	11	6	4	0	7	1	4	10	4	66	62	3	2	15	4	62	64	3
- 3	0	4	87	90	2	3	3	4	324	329	3	-13	7	4	25	21	21	5	10	4	114	109	2	3	15	4	98	99	2
-2	0	4	117	129	1	4	3	4	93	99	3	-12	7	4	26	6	10	6	10	4	84	85	3	4	15	4	47	48	5
-1	0	4	176	161	1	5	3	4	86	80	3	-11	7	4	81	76	3	7	10	4	0	4	1	-5	16	4	49	48	7
0	0	4	124	122	3	6	3	4	80	86	2	-10	7	4	32	36	5	8	10	4	23	9	8	-4	16	4	33	32	8
1	0	4	359	353	2	7	3	4	86	86	2	-9	7	4	23	21	9	9	10	4	25	25	9	-3	16	4	51	52	5
2	0	4	351	341	2	8	3	4	301	291	2	-8	7	4	104	108	2	-11	11	4	56	48	5	-2	16	4	0	2	1
3	0	4	289	274	2	9	3	4	234	240	2	-7	7	4	289	294	1	-10	11	4	90	79	3	-1	16	4	39	31	4
4	0	4	296	288	3	10	3	4	68	80	3	-6	7	4	67	66	2	-9	11	4	14	1	13	0	16	4	11	8	10
5	0	4	36	45	6	11	3	4	22	17	11	-5	7	4	163	169	1	-8	11	4	77	72	2	1	16	4	11	13	10
6	0	4	259	268	2	12	3	4	67	70	4	-4	7	4	249	252	2	-7	11	4	135	136	2	2	16	4	0	16	1
7	0	4	120	119	2	-14	4	4	18	3	17	-3	7	4	222	236	2	-6	11	4	120	122	2	-14	1	5	26	11	11
8	0	4	323	317	2	-13	4	4	90	81	3	-2	7	4	0	10	1	-5	11	4	176	184	2	-13	1	5	114	104	2
9	0	4	103	113	3	-12	4	4	62	60	4	-1	7	4	163	171	2	-4	11	4	56	55	3	-12	1	5	22	32	13
10	0	4	30	42	14	-11	4	4	189	178	2	0	7	4	123	126	3	-3	11	4	154	158	2	-11	1	5	123	119	3
11	0	4	64	67	7	-10	4	4	279	276	2	1	7	4	100	106	2	-2	11	4	84	83	4	-10	1	5	117	118	2
12	0	4	98	68	5	-9	4	4	7	0	6	2	7	4	23	30	6	-1	11	4	70	74	3	-9	1	5	134	139	2
-14	1	4	57	53	4	-8	4	4	69	63	2	3	7	4	437	450	1	0	11	4	131	138	3	-8	1	5	24	31	6
-13	1	4	75	68	3	-7	4	4	18	16	7	4	7	4	59	64	2	1	11	4	170	170	2	-7	1	5	140	147	1
-12	1	4	35	35	/	-6	4	4	164	1/1	2	5	/	4	5	9	5	2	11	4	102	101	2	-6	1	5	88	91	2
-11	1	4	82	89	3	-5	4	4	117	118	2	6	/	4	64	60	3	3	11	4	0	11	1	-5	1	5	69	60	2
-10	1	4	68	/2	3	-4	4	4	447	436	2	/	/	4	17	4	17	4	11	4	31	25	5	-4	1	5	195	196	1
- 3	1	5	1/8	188	1	/	4	5	100	100	3	-2	8	5	/1	/1	2	5	12	5	41	36	4	9	1	6	26	26	9
-2	T	5	182	185	2	8	4	5	83	86	3	-1	8	5	2/4	280	1	6	12	5	57	62	1	10	1	6	37	27	6
-1	T	5	197	193	1	10	4	5	37	43	5	0	8	5	146	157	1	/	12	5	0	14	1	-13	2	6	53	46	4
0	1	5	220	82	2	10	4	5	39	38	5	1	ð	5	140	128	1	-8	13	5	43	41	3	-12	2	6	20	10	1
1	1	5	239	229	1	11	4	5	34	42	10	2	ð	5	148	149	1	-7	13	5	28	25	5	-11	2	6	30	34	10
2	1	5	57	46	2	-13	5	5	29	18	10	3	ð	5	127	140	12	-6	13	5	67	69	3	-10	2	6	240	26	10
3	1	5	101	143	2	-12	5	5	39	43		4	ð	5	137	146	2	-5	13	5	46	48	4	-9	2	6	249	248	2
4	1	5	191	189	2	-11	5	5	112	110	5	5	ð	5	196	201	2	-4	13	5	99	92	2	-8	2	6	120	154	1
5	1	5	104	111	2	-10	5	5	112	110	3	6	ð	5	108	108	2	- 3	13	5	96	91	5	-7	2	6	111	100	12
5	1	5	64 22	68	2	-9	5	5	100	120	3	/	ð	5	122	121	2	-2	13	5	26	30	11	-6	2	6	100	200	2
/	1	5	55 145	49	2	-8 7	5	5	171	170	4	ð	ð	5	63	60	5 7	-1	13	5	51 01	43	2	-5	2	6	109	200	2 14
ŏ	1	Э Г	145 112	112 112	2	-/	э г	Э Г	23 102	24 104	1	10	ð	Э Г	02 1 F	סט ר	۲ 14	1	12	5 F	91 27	AU AT	5	-4 2	2	c c	160	19	14 ר
9 10	1	2	717	113	2 14	-0	2 E	2	700	104 245	1	10	0	2	10	25	10	1	12	2	۲ ۱ <i>۲</i>	40	0 16	- 5	2	о с	102	100	2
11	1	5	24	72	14	-5	5	5	239	245	11	-11	9	5	21	25	10	2	13	5	10	7/	10	-2	2	6	203	202	3
ΤT	Т	5	27	26	17	-4	5	5	17	T	ΤT	- 10	9	5	ь	5	ь	3	13	5	0	5	T	- T	2	ь	5/	38	3

-14	2	5	3	17	2	- 3	5	5	153	149	2	-9	9	5	27	13	6	4	13	5	74	72	3	0	2	6	288	283	2
-13	2	5	41	42	6	-2	5	5	68	69	3	-8	9	5	99	90	3	5	13	5	40	44	5	1	2	6	392	382	2
-12	2	5	100	95	3	-1	5	5	109	110	2	-7	9	5	59	63	3	6	13	5	5	12	5	2	2	6	136	141	2
-11	2	5	188	185	2	0	5	5	94	100	2	-6	9	5	0	8	1	-7	14	5	36	35	5	3	2	6	23	20	6
-10	2	5	76	74	5	1	5	5	53	52	5	-5	9	5	252	259	2	-6	14	5	46	33	3	4	2	6	212	223	1
-9	2	5	0	3	1	2	5	5	134	137	2	-4	9	5	134	140	2	-5	14	5	1	6	1	5	2	6	308	311	1
-8	2	5	98	103	1	3	5	5	24	18	5	- 3	9	5	92	86	1	-4	14	5	53	52	4	6	2	6	310	317	2
-7	2	5	105	110	1	4	5	5	63	70	2	-2	9	5	10	2	9	- 3	14	5	94	89	3	7	2	6	23	21	10
-6	2	5	41	45	3	5	5	5	65	73	3	-1	9	5	42	39	3	-2	14	5	48	38	5	8	2	6	67	65	4
-5	2	5	12	17	11	6	5	5	53	53	3	ā	9	5	123	128	1	-1	14	5	41	46	5	9	2	6	50	55	4
-4	2	5	209	205	4	7	5	5	53	48	4	1	9	5	168	170	2	Â	14	5	28	14	13	10	2	6	24	27	11
- 3	2	5	138	144	2	, 8	5	5	50	58	י ז	2	ģ	5	91	84	3	1	14	5	20	19	1	-13	3	6	22	29	21
-2	2	5	30	31	3	9	5	5	30	36	7	3	ģ	5	82	89	3	2	14	5	134	131	3	-12	3	6	22	31	16
_1	2	5	16	35	2	10	5	5	11	/3	, Л	1	á	5	69	70	2	2	1/	5	185	177	2	_11	2	6	268	274	20
-1	2	5	106	22	1	11	5	5	52	55	5	5	6	5	80	86	2	7	1/	5	707	77/	5	-10	2	6	50	57	5
1	2	5	100	14	0 1	_12	5	5	20	25	20	5	0	5	1/12	1/1	2	- 5	15	5	12	15	11	-10	2	6	15	50	5
2	2	5	07	14 01	2	12	c c	5	62	2J EQ	20	7	0	5	742	20	2	- 5	15	5	E 2	13	11	- 5	2	c c	4J 61	50	7
2	2	5	140	152	2	-12	c	5	124	120	2	,	9	5	25	20	ć	-4	15	5	22	22	4	-0	2	c	10	47	4
2	2	5	149	122	2	-11	6	5	124	120	2	0	9	5	22	20	5	- 5	12	5	90 17	09 1 F	2 17	-7	2	6	40	47	2
4	2	5	56	57	3	-10	6	5	10	65	17	11	10	5	52	21	5	-2	12	5	1/	15	17	-6	3	6	104	101	1
5	2	5	54	44	2	-9	6	5	18	10	1/	-11	10	5	58	53	3	-1	12	5	21	1/	12	-5	3	6	92	95	2
6	2	5	80	79	2	-8	6	5	6	9	T	-10	10	5	64	63	3	0	15	5	52	45	4	-4	3	6	51	44	2
/	2	5	325	328	2	-/	6	5	91	86	2	-9	10	5	29	14	13	1	15	5	/9	/8	3	-3	3	6	333	336	3
8	2	5	/1	/3	6	-6	6	5	11/	119	1	-8	10	5	84	82	2	2	15	5	12	12	11	-2	3	6	0	4	1
9	2	5	27	27	8	-5	6	5	150	145	1	-/	10	5	42	44	5	3	15	5	85	81	3	-1	3	6	196	199	2
10	2	5	21	26	12	-4	6	5	183	184	1	-6	10	5	/3	64	3	-2	16	5	20	13	19	0	3	6	174	184	2
11	2	5	66	57	3	- 3	6	5	103	108	2	-5	10	5	88	87	2	-1	16	5	22	22	21	1	3	6	145	141	2
-14	3	5	0	21	1	-2	6	5	117	115	2	-4	10	5	110	111	2	0	16	5	35	29	9	2	3	6	227	236	1
-13	3	5	0	17	1	-1	6	5	14	16	13	-3	10	5	97	99	2	-13	0	6	105	102	5	3	3	6	264	274	1
-12	3	5	202	200	2	0	6	5	189	191	2	-2	10	5	57	50	3	-12	0	6	412	395	4	4	3	6	258	267	1
-11	3	5	83	86	4	1	6	5	116	113	2	-1	10	5	0	6	1	-11	0	6	282	287	4	5	3	6	96	89	3
-10	3	5	33	29	6	2	6	5	79	85	2	0	10	5	160	162	2	-10	0	6	39	38	11	6	3	6	13	12	13
-9	3	5	137	130	2	3	6	5	316	321	1	1	10	5	60	52	4	-9	0	6	188	181	3	7	3	6	77	75	3
-8	3	5	22	12	7	4	6	5	57	56	2	2	10	5	37	45	5	-8	0	6	280	277	3	8	3	6	20	10	15
-7	3	5	40	42	3	5	6	5	10	1	10	3	10	5	101	99	3	-7	0	6	32	31	6	9	3	6	9	2	8
-6	3	5	148	147	2	6	6	5	112	117	2	4	10	5	33	36	5	-6	0	6	21	18	9	10	3	6	39	23	4
- 5	3	5	358	343	2	7	6	5	27	27	7	5	10	5	177	171	1	-5	0	6	28	29	6	-13	4	6	25	3	25
-4	3	5	69	71	2	8	6	5	22	26	11	6	10	5	38	36	4	-4	0	6	305	328	3	-12	4	6	27	12	10
- 3	3	5	141	140	1	9	6	5	111	103	2	7	10	5	117	119	2	-3	0	6	178	170	2	-11	4	6	84	85	4
-2	3	5	298	300	2	10	6	5	40	41	4	8	10	5	44	36	3	-2	0	6	86	91	3	-10	4	6	38	25	6
-1	3	5	136	124	1	-12	7	5	44	40	5	-10	11	5	17	15	14	-1	0	6	412	405	3	-9	4	6	0	2	1
0	3	5	198	202	1	-11	7	5	59	59	3	-9	11	5	24	24	7	0	0	6	290	284	2	-8	4	6	0	6	1
1	3	5	14	3	14	-10	7	5	160	157	2	-8	11	5	51	57	5	1	0	6	259	272	5	-7	4	6	120	122	2
2	3	5	106	99	2	-9	7	5	27	27	7	-7	11	5	71	70	3	2	0	6	29	24	6	-6	4	6	42	40	3
3	3	5	66	67	3	-8	7	5	16	11	16	-6	11	5	80	84	3	3	0	6	152	167	2	-5	4	6	182	190	1
4	3	5	52	52	2	-7	7	5	127	127	2	-5	11	5	128	129	2	4	0	6	143	148	2	-4	4	6	7	4	7
5	3	5	17	13	9	-6	7	5	102	109	2	-4	11	5	8	17	8	5	0	6	454	447	5	-3	4	6	110	112	1

6	3	5	229	233	1	- 5	7	5	25	30	5	-3	11	5	56	48	3	6	0	6	467	455	4	-2	4	6	41	39	4
7	3	5	91	92	2	-4	7	5	331	341	1	-2	11	5	190	195	1	7	0	6	128	130	10	-1	4	6	143	143	2
8	3	5	56	52	4	- 3	7	5	149	158	1	-1	11	5	206	205	3	8	0	6	0	9	1	0	4	6	143	142	1
9	3	5	103	104	3	-2	7	5	18	18	7	0	11	5	94	89	3	9	0	6	27	33	12	1	4	6	29	29	4
10	3	5	55	61	4	-1	7	5	112	120	1	1	11	5	27	26	7	10	0	6	0	3	1	2	4	6	94	95	2
11	3	5	40	37	5	0	7	5	285	292	1	2	11	5	67	66	3	-12	1	6	74	78	4	3	4	6	114	119	2
-13	4	5	48	48	5	1	7	5	11	7	11	3	11	5	82	86	3	-11	1	6	46	48	6	4	4	6	95	98	2
-12	4	5	45	41	5	2	7	5	20	11	6	4	11	5	31	28	6	-10	1	6	28	25	9	5	4	6	194	190	2
-11	4	5	48	45	4	3	7	5	157	160	1	5	11	5	11	13	10	-9	1	6	61	65	4	6	4	6	64	66	3
-10	4	5	37	36	6	4	7	5	19	18	11	6	11	5	38	41	4	-8	1	6	114	115	2	7	4	6	15	17	15
-9	4	5	60	51	4	5	7	5	73	71	3	7	11	5	38	36	4	-7	1	6	134	133	1	8	4	6	65	66	3
-8	4	5	152	160	2	6	7	5	86	92	3	8	11	5	26	18	6	-6	1	6	378	377	1	9	4	6	116	108	3
-7	4	5	13	11	13	7	7	5	140	139	2	-9	12	5	105	99	3	-5	1	6	147	149	1	10	4	6	39	19	4
-6	4	5	85	89	2	8	7	5	42	53	5	-8	12	5	106	109	2	-4	1	6	80	83	2	-13	5	6	0	12	1
-5	4	5	77	69	3	9	7	5	40	32	6	-7	12	5	113	109	2	- 3	1	6	22	28	5	-12	5	6	70	67	7
-4	4	5	0	4	1	10	7	5	23	4	8	-6	12	5	95	100	2	-2	1	6	46	47	4	-11	5	6	58	64	4
- 3	4	5	366	360	2	-12	8	5	32	23	7	-5	12	5	19	23	14	-1	1	6	301	300	2	-10	5	6	6	3	6
-2	4	5	28	24	6	-11	8	5	15	6	14	-4	12	5	82	81	2	0	1	6	316	301	2	-9	5	6	113	119	2
-1	4	5	158	160	2	-10	8	5	31	31	6	-3	12	5	0	6	1	1	1	6	239	236	5	-8	5	6	40	33	4
0	4	5	252	248	2	-9	8	5	0	3	1	-2	12	5	40	41	5	2	1	6	15	7	15	-7	5	6	59	68	3
1	4	5	230	228	2	-8	8	5	40	49	5	-1	12	5	51	52	4	3	1	6	15	22	14	-6	5	6	144	152	1
2	4	5	57	49	3	-7	8	5	46	50	5	0	12	5	79	79	3	4	1	6	0	15	1	-5	5	6	135	137	1
3	4	5	33	31	5	-6	8	5	181	184	2	1	12	5	160	154	2	5	1	6	245	244	1	-4	5	6	24	25	5
4	4	5	37	43	3	-5	8	5	257	263	1	2	12	5	7	18	7	6	1	6	155	157	2	-3	5	6	100	107	1
5	4	5	32	37	4	-4	8	5	122	124	1	3	12	5	0	18	1	7	1	6	81	74	3	-2	5	6	205	210	1
6	4	5	87	84	3	- 3	8	5	63	62	2	4	12	5	66	67	3	8	1	6	17	27	16	-1	5	6	128	126	1
0	5	6	145	143	1	0	9	6	99	100	2	-13	1	7	52	45	8	8	4	7	64	56	3	-7	9	7	110	110	2
1	5	6	187	193	1	1	9	6	16	28	16	-12	1	7	131	121	4	9	4	7	23	11	9	-6	9	7	136	144	2
2	5	6	19	14	7	2	9	6	47	44	4	-11	1	7	65	65	3	-12	5	7	29	15	9	-5	9	7	79	77	3
3	5	6	15	14	15	3	9	6	99	98	2	-10	1	7	56	53	4	-11	5	7	29	29	9	-4	9	7	44	40	4
4	5	6	59	60	3	4	9	6	106	107	3	-9	1	7	85	83	4	-10	5	7	63	52	4	-3	9	7	49	36	4
5	5	6	0	13	1	5	9	6	119	124	2	-8	1	7	31	18	6	-9	5	7	57	59	3	-2	9	7	163	172	2
6	5	6	163	158	2	6	9	6	15	30	14	-7	1	7	160	161	2	-8	5	7	80	78	3	-1	9	7	140	144	2
7	5	6	132	130	2	7	9	6	25	32	7	-6	1	7	11	2	11	-7	5	7	26	24	7	0	9	7	88	88	2
8	5	6	81	79	2	8	9	6	60	58	4	-5	1	7	145	153	1	-6	5	7	0	1	1	1	9	7	29	26	6
9	5	6	69	62	3	-10	10	6	87	85	2	-4	1	7	130	130	2	-5	5	7	34	26	5	2	9	7	24	32	8
10	5	6	17	22	17	-9	10	6	17	18	16	-3	1	7	33	36	3	-4	5	7	52	52	4	3	9	7	0	14	1
-12	6	6	83	86	4	-8	10	6	0	9	1	-2	1	7	213	221	1	- 3	5	7	72	67	2	4	9	7	45	41	4
-11	6	6	104	110	2	-7	10	6	135	145	3	-1	1	7	139	144	1	-2	5	7	34	35	4	5	9	7	33	33	5
-10	6	6	26	17	7	-6	10	6	118	134	2	0	1	7	233	237	1	-1	5	7	118	125	2	6	9	7	25	30	7
-9	6	6	23	24	10	-5	10	6	14	5	14	1	1	7	134	140	2	0	5	7	28	26	5	7	9	7	0	7	1
-8	6	6	8	11	8	-4	10	6	42	38	4	2	1	7	45	44	3	1	5	7	0	6	1	-9	10	7	32	20	5
-7	6	6	77	79	2	-3	10	6	110	111	2	- 3	1	7	101	96	2	2	5	7	96	98	2	-8	10	7	22	4	15
-6	6	6	153	152	2	-2	10	6	123	120	2	4	1	7	162	169	2	- 3	5	7	0	5	1	-7	10	7	20	25	12
-5	6	6	52	46	2	-1	10	6	19	15	18	5	1	7	35	36	6	4	5	7	168	174	2	-6	10	7	106	110	2
-4	6	6	13	14	12	0	10	6	274	283	1	6	1	7	154	152	3	5	5	7	101	101	2	-5	10	7	129	133	2
	-	-				-	-	-									-	-	-					-	-				

- 3	6	6	74	75	2	1 10	6	126	125	2	7	1	7	24	13	9	6	5	7	68	64	4	-4 10	7	42	44	4
-2	6	6	85	92	2	2 10	6	148	150	3	8	1	7	40	25	5	7	5	7	0	15	1	-3 10	7	38	39	5
-1	6	6	104	107	1	3 10	6	96	104	5	9	1	7	70	69	3	8	5	7	58	52	3	-2 10	7	24	28	9
0	6	6	158	161	1	4 10	6	22	19	12	-12	2	7	104	108	5	9	5	7	10	5	10	-1 10	7	116	117	5
1	6	6	34	32	3	5 10	6	99	92	2	-11	2	7	37	29	8	-12	6	7	54	48	7	0 10	7	30	23	6
2	6	6	196	201	1	6 10	6	12	28	11	-10	2	7	43	18	5	-11	6	7	44	50	5	1 10	7	116	117	2
3	6	6	22	7	10	7 10	6	53	49	3	-9	2	7	72	66	3	-10	6	7	36	27	6	2 10	7	32	32	6
4	6	6	244	252	1	-10 11	6	22	24	13	-8	2	7	97	97	3	-9	6	7	79	77	2	3 10	7	3	16	2
5	6	6	299	296	2	-9 11	6	33	33	-5	-7	2	7	45	59	4	-8	6	7	17	16	17	4 10	7	43	37	5
6	6	6	192	189	2	-8 11	6	120	125	2	-6	2	7	180	189	2	-7	6	7	17	24	17	5 10	7	12	21	12
7	6	6	54	61	3	-7 11	6	153	155	2	-5	2	7	16	25	12	-6	6	7	68	65	3	6 10	7	44	42	4
, 8	6	6	12	12	11	-6 11	6	19	12	11	-4	2	7	105	111	1	-5	6	7	72	74	3	-9 11	7	42	39	י 8
q	6	6	75	68	2	-5 11	6	41	44	4	-3	2	7	101	103	1	-4	6	7	90	87	2	-8 11	7	11	11	11
-12	7	6	61	59	2	-/ 11	6	53	58	2	- 2	2	7	121	122	2	_3	6	7	97	9/	2	-7 11	7	73	67	3
- 12	7	6	01	22	2	-7 11	6	22	20	7	_1	2	7	50	122	2		6	, 7	268	272	7	-6 11	7	10	51	7
-10	, 7	6	70	56	2	-2 11	6	27	52	1	-1	2	7	30	22	1	- 2	6	7	192	101	2	-5 11	, 7	116	121	2
- 10	<i>'</i>	6	117	116	2	-2 11	6	EQ	-+ E 1	1	1	2	7	50	75	- +	-1	6	',	202	1/	11	-5 11	<i>'</i>	22	121	10
-9	<i>'</i>	6	11/	110	Z 1	-1 11	6	60	20 21	4	2	2	7	22	22	2 7	1	6	7	114	122	21	-4 11 2 11	<i>'</i>	42	2	10
-0	<i>'</i>	c c	02	04 24	4	0 11	6	00 E1	40	4	2	2	7	22	22	1	1	6	7	114	122	10	-5 11	<i>'</i>	42	20 70	4
-7	4	6	24	24	2	1 11	6	120	40	4	2	2	'	9	د حد	1	2	6	'	10	122	10	-2 11	4	70	/0	2
-6	4	6	285	292	2	2 11	6	129	127	2	4	2	/	33	37	5	3	6	/	126	132	12	-1 11	4	52	55	4
-5	/	6	128	134	2	3 11	6	52	60	4	5	2	/	258	259	1	4	6	/	20	100	13	0 11	/	39	36	6
-4	_	6	16	16	15	4 11	6	42	47	5	6	2	/	134	130	2	5	6	/	101	100	2	1 11	_	8/	89	2
- 3	_	6	246	249	1	5 11	6	31	22	14	/	2	/	0	9	1	6	6	/	60	55	3	2 11	_	61	66	3
-2	_	6	67	69	2	6 11	6	0	9	1	8	2	_	98	103	3	/	6	_	19	/	12	3 11	_	67	70	3
-1	_	6	217	215	1	/ 11	6	136	129	3	9	2	/	0	0	1	8	6	/	20	3	10	4 11	_	21	19	13
0	7	6	233	237	1	-9 12	6	63	52	6	-12	3	7	22	25	22	-11	7	7	20	20	19	5 11	7	48	51	6
1	7	6	155	162	2	-8 12	6	42	46	4	-11	3	7	29	9	14	-10	7	7	17	21	16	-7 12	7	131	129	3
2	7	6	140	143	2	-7 12	6	25	20	12	-10	3	7	43	37	5	-9	7	7	80	81	3	-6 12	7	75	72	2
3	7	6	60	64	3	-6 12	6	13	18	12	-9	3	7	51	53	4	-8	7	7	29	32	6	-5 12	7	61	58	3
4	7	6	120	121	2	-5 12	6	43	38	4	-8	3	7	58	47	6	-7	7	7	93	94	2	-4 12	7	42	44	6
5	7	6	128	134	2	-4 12	6	35	30	7	-7	3	7	71	62	3	-6	7	7	159	162	2	-3 12	7	53	48	4
6	7	6	18	23	18	-3 12	6	27	18	7	-6	3	7	109	111	2	-5	7	7	22	8	9	-2 12	7	26	24	10
7	7	6	87	82	2	-2 12	6	8	18	7	-5	3	7	15	12	14	-4	7	7	148	157	2	-1 12	7	120	118	2
8	7	6	16	19	15	-1 12	6	85	88	5	-4	3	7	99	110	1	-3	7	7	295	294	2	0 12	7	30	27	16
9	7	6	42	49	6	0 12	6	51	51	5	-3	3	7	55	45	2	-2	7	7	220	219	2	1 12	7	91	88	3
-11	8	6	39	35	6	1 12	6	79	79	3	-2	3	7	213	220	1	-1	7	7	29	25	6	2 12	7	57	52	3
-10	8	6	0	1	1	2 12	6	55	51	4	-1	3	7	93	89	2	0	7	7	31	41	6	3 12	7	22	15	9
-9	8	6	74	78	3	3 12	6	34	34	5	0	3	7	26	29	5	1	7	7	83	86	2	4 12	7	111	109	3
-8	8	6	231	232	2	4 12	6	40	42	8	1	3	7	39	45	3	2	7	7	105	99	2	-6 13	7	25	11	21
-7	8	6	0	9	1	5 12	6	92	88	3	2	3	7	66	72	2	3	7	7	51	48	4	-5 13	7	59	49	9
-6	8	6	126	127	2	6 12	6	24	17	23	3	3	7	17	9	17	4	7	7	74	83	3	-4 13	7	52	44	4
- 5	8	6	170	184	3	-7 13	6	17	0	16	4	3	7	85	79	3	5	7	7	0	2	1	-3 13	7	125	119	2
-4	8	6	118	125	2	-6 13	6	38	42	4	5	3	7	30	37	6	6	7	7	58	53	3	-2 13	7	27	36	14
- 3	8	6	87	84	3	-5 13	6	0	7	1	6	3	7	137	132	2	7	7	7	23	4	7	-1 13	7	0	3	1
-2	8	6	14	19	13	-4 13	6	63	54	3	7	3	7	32	33	6	8	7	7	42	32	4	0 13	7	25	6	17
-1	8	6	39	45	4	-3 13	6	87	85	2	8	3	7	50	40	6	-11	8	7	20	19	19	1 13	7	20	15	14

0	8	6	81	75	2	-2	13	6	46	48	5	9	3	7	23	18	10	-10	8	7	58	51	3	2 13	5 7	62	55	6
1	8	6	102	107	2	-1	13	6	19	12	18	-12	4	7	66	58	8	-9	8	7	23	15	10	3 13	5 7	24	6	24
2	8	6	249	246	2	0	13	6	0	8	1	-11	4	7	18	14	18	-8	8	7	33	38	5	-2 14	- 7	28	22	8
3	8	6	49	50	4	1	13	6	69	67	4	-10	4	7	0	18	1	-7	8	7	98	107	2	-1 14	- 7	0	18	1
4	8	6	112	113	3	2	13	6	35	25	7	-9	4	7	53	47	4	-6	8	7	105	93	2	0 14	- 7	0	2	1
5	8	6	151	150	2	3	13	6	73	65	3	-8	4	7	142	149	2	-5	8	7	59	64	3	-11 0	8 (99	91	7
6	8	6	161	162	2	4	13	6	60	53	3	-7	4	7	95	99	2	-4	8	7	74	75	3	-10 0	8 (85	82	8
7	8	6	17	1	16	- 5	14	6	39	26	5	-6	4	7	80	84	2	-3	8	7	143	144	2	-9 6	8 (134	136	6
8	8	6	62	56	4	-4	14	6	0	21	1	-5	4	7	30	32	7	-2	8	7	191	192	2	-8 6	8 (173	180	2
9	8	6	88	82	3	- 3	14	6	72	74	3	-4	4	7	218	230	1	-1	8	7	33	37	6	-76	8 (129	124	3
-11	9	6	43	45	4	-2	14	6	35	34	9	-3	4	7	25	27	5	0	8	7	85	82	3	-6 0	8 (206	201	3
-10	9	6	19	11	12	-1	14	6	61	43	3	-2	4	7	196	202	1	1	8	7	96	95	2	-5 0	8 (108	110	4
-9	9	6	23	10	8	0	14	6	14	5	13	-1	4	7	57	56	2	2	8	7	81	75	5	-4 6	8 (0	2	1
-8	9	6	0	2	1	1	14	6	21	26	14	0	4	7	20	21	7	3	8	7	80	79	2	-3 0	8 (245	247	2
-7	9	6	23	26	8	2	14	6	56	57	4	1	4	7	54	44	3	4	8	7	164	170	2	-26	8 (16	15	15
-6	9	6	83	81	3	3	14	6	56	51	5	2	4	7	148	143	2	5	8	7	73	74	3	-1 0	8 (29	47	13
-5	9	6	130	139	2	-3	15	6	99	100	4	3	4	7	34	35	8	6	8	7	24	20	8	00	8 (0	16	1
-4	9	6	258	258	1	-2	15	6	87	87	4	4	4	7	136	129	2	7	8	7	109	98	2	16	8 (115	123	4
- 3	9	6	256	259	3	-1	15	6	28	17	7	5	4	7	5	3	5	-10	9	7	24	4	9	26	8 (83	87	4
-2	9	6	172	174	3	0	15	6	31	30	7	6	4	7	62	59	3	-9	9	7	74	75	2	36	8 (140	154	3
-1	9	6	225	224	2	1	15	6	0	20	1	7	4	7	20	11	12	-8	9	7	47	47	4	4 6	8 (0	10	1
5	0	8	67	58	5	-11	5	8	75	72	4	-8	10	8	10	11	10	-8	4	9	132	128	2	-4 10	9	98	92	2
6	0	8	90	91	4	-10	5	8	39	39	7	-7	10	8	62	62	6	-7	4	9	71	71	3	-3 10	9	96	93	2
7	0	8	136	127	3	-9	5	8	144	142	2	-6	10	8	64	56	2	-6	4	9	19	18	13	-2 10	9	46	35	8
8	0	8	23	41	15	-8	5	8	141	138	2	-5	10	8	12	5	12	-5	4	9	127	125	2	-1 10	9	52	45	5
-12	1	8	79	78	6	-7	5	8	27	31	7	-4	10	8	21	23	11	-4	4	9	175	173	1	0 10	9	14	0	14
-11	1	8	64	65	9	-6	5	8	155	154	2	-3	10	8	69	67	3	-3	4	9	21	10	14	1 10	9	17	18	17
-10	1	8	2	8	2	-5	5	8	22	18	9	-2	10	8	134	135	2	-2	4	9	140	142	2	2 10	9	68	69	5
-9	1	8	30	26	8	-4	5	8	296	288	2	-1	10	8	111	117	2	-1	4	9	96	89	3	-4 11	. 9	36	32	7
-8	1	8	90	91	3	- 3	5	8	325	326	2	0	10	8	18	16	14	0	4	9	67	60	7	-3 11	. 9	0	1	1
-7	1	8	85	85	3	-2	5	8	0	6	1	1	10	8	57	57	3	1	4	9	125	128	2	-2 11	. 9	26	23	7
-6	1	8	224	224	2	-1	5	8	129	133	2	2	10	8	76	66	5	2	4	9	0	14	1	-1 11	. 9	43	30	8
-5	1	8	188	186	2	0	5	8	26	16	/	3	10	8	76	75	3	3	4	9	6	4	6	-9 6) 10	39	32	/
-4	1	8	181	178	1	1	5	8	143	134	2	4	10	8	/2	62	4	4	4	9	23	10	9	-8 6) 10	111	109	5
-3	1	8	188	189	2	2	5	8	36	40	5	-7	11	8	165	166	2	5	4	9	128	119	2	-/ 6) 10	156	156	3
-2	1	8	156	159	2	3	5	8	103	107	3	-6	11	8	27	34	6	6	4	9	36	29	7	-6 6) 10	99	90	3
-1	1	8	12	12	11	4	5	8	37	28	5	-5	11	8	100	97	3	-10	5	9	99	103	3	-5 6) 10	33	31	9
0	1	8	20	21	13	5	5	8	9	15	9	-4	11	8	176	169	2	-9	5	9	23	12	9	-4 6) 10	92	84	8
1	1	8	26	31	8	6	5	8	36	35	5	-3	11	8	99	97	3	-8	5	9	31	27	7	-3 6) 10	144	141	6
2	1	8	134	134	4	7	5	8	19	4	10	-2	11	8	25	24	8	-7	5	9	16	12	16	-2 6) 10	64	56	6
3	1	8	74	70	3	-11	6	8	41	32	12	-1	11	8	16	8	16	-6	5	9	29	19	6	-1 6) 10	0	17	1
4	1	8	0	7	1	-10	6	8	23	21	10	0	11	8	40	41	5	-5	5	9	19	13	11	0 0) 10	297	293	3
5	1	8	271	266	2	-9	6	8	92	94	2	1	11	8	42	35	4	-4	5	9	51	48	3	1 0) 10	162	165	3
6	1	8	43	42	11	-8	6	8	196	193	2	2	11	8	50	43	4	-3	5	9	105	102	3	2 6	10	47	45	6
7	1	8	30	29	6	- 7	6	8	12	2	11	3	11	8	75	71	3	-2	5	9	91	90	2	36	10	33	36	10
8	1	8	39	33	4	-6	6	8	151	149	2	-5	12	8	42	26	19	-1	5	9	28	21	6	4 6) 10	118	118	4

-12	2	8	65	61	6	- 5	6	8	6	13	6	-4	12	8	64	58	3	0	5	9	50	55	4	5	0 10	116	110	4
-11	2	8	85	76	3	-4	6	8	183	182	2	- 3	12	8	109	111	2	1	5	9	30	24	8	-9	1 10	42	37	5
-10	2	8	70	72	3	- 3	6	8	191	191	3	-2	12	8	102	102	2	2	5	9	157	161	2	-8	1 10	36	31	9
-9	2	8	45	43	6	-2	6	8	79	80	2	-1	12	8	55	52	3	3	5	9	198	191	2	-7	1 10	0	15	1
-8	2	8	98	96	3	-1	6	8	118	126	2	0	12	8	75	77	3	4	5	9	51	50	6	-6	1 10	98	98	2
-7	2	8	128	134	2	0	6	8	84	86	2	1	12	8	27	28	7	5	5	9	22	22	9	-5	1 10	255	251	2
-6	2	8	239	239	2	1	6	8	80	81	2	-2	13	8	41	36	7	6	5	9	_0	5	1	-4	1 10	55	61	4
- 5	2	8	244	245	2	2	6	8	161	156	2	-11	1	9	52	32	6	-9	6	9	28	18	6	- 3	1 10	90	84	3
-4	2	8	98	99	2	3	6	8	113	108	2	-10	1	9	22	13	11	-8	6	9	20	22	10	-2	1 10	38	39	5
- 3	2	8	151	157	2	4	6	8	90	84	2	-9	1	9		-0	1	-7	6	9	61	60	3	-1	1 10	102	105	ŝ
-2	2	8	13		13	5	6	8	71	64	2	-8	1	9	22	17	10	-6	6	9	46	47	3	_ ø	1 10	92	95	2
-1	2	8	97	107	2	6	6	8	4	14	3	-7	1	9	22	28	12	- 5	6	9	37	37	7	1	1 10	40	37	5
ā	2	8	119	127	2	7	6	8	36	40	5	-6	1	ģ	34	37	8	-4	6	ģ	148	147	2	2	1 10	5	2	5
1	2	8	55	53	2	, -10	7	8	90	-0	1	-5	1	ģ	149	151	3	-3	6	ģ	316	309	2	3	1 10	36	27	6
2	2	8	179	176	2	-10	7	8	a	0 0	1	_1	1	á	131	130	2	- 2	6	à	115	123	2	7	1 10	15	27	15
2	2	8	69	73	5	- 8	7	8	73	77	2	_3	1	á	154	161	2	-2	6	à	27	20	7	5	1 10	15	21	1
7	2	0	103	100	2	- 3	7	0	172	160	2	- 5	1	٥	20	21	12	-1	6	9	27	20	1	-0	2 10	03	02	1
-4 E	2	0	140	146	2	- /	'	0	27	21	2	-2	1	0	20 E 2	21	12	1	6	0	120	112	2	- 5	2 10	55	20	5
2	2	0	149	140	2	-0	<i>'</i>	0	122	126	2	-1	1	9	164	166	4 2	2	6	9	27	712	5	-0	2 10	11	00	2 11
7	2	0	104	41	4 2	- 5	<i>'</i>	0	122	122	2	1	1	9	104	100	2	2	c	9	107	101	2	-7	2 10	22	25	11
0	2	0	104	100	2	-4	<i>'</i>	0	120	120	2	1	1	9	90	99	2	2	c c	9	10/	101	2	-0	2 10	5Z 1E2	140	2
0 10	2	ð	11/	100	2	- 3	4	ð	129	130	2	2	1	9	50	55	4	4	6	9	62	/3	5	-5	2 10	123	142	3
-12	3	ð	89	88	10	-2	4	ð	187	185	2	3	T	9	63	60	3	5	6	9	20	4	11	-4	2 10	97	100	2
-11	3	8	12	26	12	-1	4	8	4/	44	4	4	T	9	0	6	1	-9	/	9	59	49	3	- 3	2 10	49	46	4
-10	3	8	5	170	4	0	4	8	136	132	2	5	T	9	61	52	3	-8	/	9	43	35	3	-2	2 10	55	59	4
-9	3	8	181	176	2	1	4	8	66	6/	3	6	1	9	9	16	1	-/	/	9	31	29	5	-1	2 10	66	/1	3
-8	3	8	138	137	2	2	_	8	69	/2	3	-11	2	9	23	12	23	-6	_	9	54	49	3	0	2 10	84	/8	3
-/	3	8	259	259	2	3	_	8	167	167	2	-10	2	9	0	15	1	-5	_	9	14	1/	14	T	2 10	84	91	3
-6	3	8	40	40	4	4	_	8	62	54	3	-9	2	9	47	31	5	-4	_	9	113	109	2	2	2 10	162	153	2
-5	3	8	260	258	1	5	2	8	117	118	2	-8	2	9	32	13	6	-3	/	9	68	67	3	3	2 10	24	20	23
-4	3	8	237	234	1	6	/	8	31	25	5	-7	2	9	27	20	8	-2	/	9	50	58	3	4	2 10	0	9	1
-3	3	8	148	149	2	-10	8	8	36	25	8	-6	2	9	23	8	9	-1	/	9	56	47	3	-9	3 10	23	26	10
-2	3	8	38	44	5	-9	8	8	22	25	9	-5	2	9	67	64	3	0	7	9	56	57	3	-8	3 10	138	134	2
-1	3	8	75	70	3	-8	8	8	81	/8	2	-4	2	9	164	166	2	1	/	9	32	31	6	-/	3 10	40	27	5
0	3	8	244	248	2	-7	8	8	90	98	2	-3	2	9	35	34	5	2	7	9	109	119	4	-6	3 10	103	98	2
1	3	8	304	310	2	-6	8	8	110	108	3	-2	2	9	69	68	6	3	7	9	60	65	3	-5	3 10	37	30	4
2	3	8	70	68	3	- 5	8	8	88	87	2	-1	2	9	65	67	3	4	7	9	52	42	3	-4	3 10	170	165	2
3	3	8	144	144	2	-4	8	8	16	10	16	0	2	9	27	36	8	-8	8	9	68	64	2	-3	3 10	180	180	2
4	3	8	325	314	2	-3	8	8	138	149	2	1	2	9	19	9	18	-7	8	9	21	35	8	-2	3 10	41	46	5
5	3	8	218	205	2	-2	8	8	104	107	2	2	2	9	18	17	18	-6	8	9	19	24	10	-1	3 10	63	78	4
6	3	8	54	57	3	-1	8	8	32	36	5	3	2	9	58	60	4	-5	8	9	12	2	11	0	3 10	26	9	8
7	3	8	53	52	3	0	8	8	50	48	3	4	2	9	86	77	3	-4	8	9	70	68	3	1	3 10	150	155	2
8	3	8	20	10	14	1	8	8	52	55	3	5	2	9	0	9	1	-3	8	9	48	38	4	2	3 10	108	107	5
-11	4	8	0	19	1	2	8	8	7	4	7	6	2	9	86	84	3	-2	8	9	108	105	2	3	3 10	59	62	4
-10	4	8	25	33	8	3	8	8	11	7	11	-10	3	9	72	69	3	-1	8	9	56	54	4	4	3 10	113	100	3
-9	4	8	60	55	4	4	8	8	3	8	2	-9	3	9	0	9	1	0	8	9	0	15	1	-9	4 10	0	1	1
-8	4	8	12	0	11	5	8	8	73	69	2	-8	3	9	34	37	5	1	8	9	78	75	2	-8	4 10	59	65	3

-6							-	0	-0	21	-	'	5	9	54	50	4	2	0	9	102	102	2	- /	4 10	/0	70	5
	4	8	179	181	2	-9	9	8	39	40	5	-6	3	9	82	72	2	3	8	9	46	47	4	-6	4 10	27	13	6
- 5	4	8	22	21	8	-8	9	8	79	84	2	-5	3	9	17	5	16	4	8	9	15	6	15	-5	4 10	208	199	1
-4	4	8	7	8	6	-7	9	8	146	152	3	-4	3	9	48	49	3	-7	9	9	53	52	4	-4	4 10	245	237	2
- 3	4	8	115	120	2	-6	9	8	186	188	2	-3	3	9	22	25	10	-6	9	9	66	68	4	-3	4 10	191	186	2
-2	4	8	168	177	2	-5	9	8	59	61	3	-2	3	9	39	41	5	-5	9	9	21	23	11	-2	4 10	108	104	2
-1	4	8	19	5	13	-4	9	8	4	13	4	-1	3	9	21	5	13	-4	9	9	43	44	5	-1	4 10	61	59	3
0	4	8	91	94	2	- 3	9	8	6	1	6	0	3	9	101	98	2	- 3	9	9	6	13	6	0	4 10	102	97	2
1	4	8	106	111	2	-2	9	8	41	39	7	1	3	9	0	9	1	-2	9	9	21	25	11	1	4 10	45	54	5
2	4	8	137	139	2	-1	9	8	80	74	3	2	3	9	40	38	6	-1	9	9	59	53	3	2	4 10	151	158	2
3	4	8	49	54	6	0	9	8	28	32	6	3	3	9	28	2	11	0	9	9	52	49	3	3	4 10	82	93	3
4	4	8	300	299	2	1	9	8	73	65	2	4	3	9	118	115	2	1	9	9	0	10	1	4	4 10	0	11	1
5	4	8	151	148	2	2	9	8	45	49	4	5	3	9	58	54	3	2	9	9	24	6	8	-8	5 10	80	74	2
6	4	8	29	31	6	3	9	8	31	25	7	6	3	9	50	40	4	3	9	9	32	31	7	-7	5 10	31	35	6
7	4	8	20	3	12	4	9	8	23	22	10	-10	4	9	11	9	11	-6	10	9	33	23	5	-6	5 10	71	67	3
8	4	8	62	60	7	5	9	8	81	85	3	-9	4	9	121	119	3	-5	10	9	18	10	18	-5	5 10	83	87	2
-4	5	10	83	78	2	2	6	10	111	102	4	-1	8	10	32	28	6	-6	2	11	82	74	3	-6	4 11	18	17	17
- 3	5	10	102	101	2	3	6	10	71	74	5	0	8	10	11	19	10	-5	2	11	136	135	2	-5	4 11	20	26	19
-2	5	10	17	17	16	-7	7	10	11	10	11	-4	9	10	24	36	9	-4	2	11	44	44	5	-4	4 11	0	19	1
-1	5	10	108	106	2	-6	7	10	61	55	3	-3	9	10	0	2	1	-3	2	11	26	15	9	-3	4 11	15	5	15
0	5	10	93	89	3	- 5	7	10	0	6	1	-2	9	10	23	1	12	-2	2	11	18	4	18	-2	4 11	19	17	18
1	5	10	21	25	13	-4	7	10	72	71	2	-7	1	11	71	79	4	-1	2	11	80	82	5	-1	4 11	20	6	19
2	5	10	67	74	3	- 3	7	10	12	1	12	-6	1	11	141	139	2	0	2	11	72	66	3	0	4 11	59	54	4
-7	6	10	71	72	2	-2	7	10	83	79	2	-5	1	11	35	34	5	1	2	11	40	41	6	-5	5 11	65	57	7
-6	6	10	67	65	2	-1	7	10	147	147	3	-4	1	11	0	15	1	-6	3	11	78	83	3	-4	5 11	87	80	5
- 5	6	10	7	10	7	0	7	10	10	18	9	-3	1	11	94	84	3	-5	3	11	0	1	1	-3	5 11	25	13	11
-4	6	10	21	18	11	1	7	10	13	18	12	-2	1	11	25	29	9	-4	3	11	7	3	7	-2	5 11	25	28	11
- 3	6	10	30	21	5	-6	8	10	48	44	4	-1	1	11	34	27	6	- 3	3	11	28	24	12	-1	5 11	19	14	19
-2	6	10	17	5	17	-5	8	10	57	60	3	0	1	11	103	102	2	-2	3	11	32	11	10	0	5 11	31	38	11
-1	6	10	34	29	5	-4	8	10	57	49	5	1	1	11	116	113	2	-1	3	11	22	15	11					
0	6	10	108	107	2	-3	8	10	112	108	2	2	1	11	0	3	1	0	3	11	0	9	1					
1	6	10	168	164	2	-2	8	10	34	35	5	-7	2	11	52	43	5	1	3	11	34	30	7					

Laser Flash Photolysis.

General Procedure for Nanosecond Experiments.

Nanosecond (ns) time-resolved laser flash photolysis was performed on a Proteus Nanosecond Transient Absorption spectrometer (Ultrafast Systems) equipped with a 150 W Xe-arc lamp (Newport), a Bruker Optics monochromator and photodiode detectors (DET 10A and DET 10C, Thorlabs). Excitation at 350 nm from a computer-controlled Nd:YAG laser/OPO system from Opotek (Vibrant LD 355 II) operating at 10 Hz was directed to the sample with an optical absorbance of 0.64 at the excitation wavelength. The data consisting of a 128-shot average were analyzed by Origin 7.1 software. The absorbance of the sample solutions is typically 0.6-0.7 at the excitation wavelength, and the sample volume was 25 mL. Pump pulse energy is about 5 mJ at the sample position; the number of spectra acquisitions was 16 to 32. All experiments are performed at room temperature and under nitrogen.

Nanosecond Transient Spectra Following Irradiation of Azide 5 in Presence of Various Nucleophiles

a) Transient absorption spectra in ethanol

b) Transient absorption spectra in *n*-butyl alcohol

c) Transient absorption spectra in *t*-butyl alcohol

d) Transient absorption spectra in ethyl glycolate

General Procedure for Ultrafast Transient Absorption Measurements.

The femtosecond time-resolved transient absorption spectrometer used in this work is based on the combination of a Ti:Sapphire regenerative amplifier (Hurricane, Spectra Physics) and two interchangeable, computer-controlled pump and probe TOPAS-C optical parametrical amplifiers (Light Conversion Lt.). The amplified output is a train of 800-nm laser pulses with pulse widths of ~ 100 fs and pulse energy of 0.92 mJ with a repetition rate of 1 kHz. The amplified output is divided by a beam splitter into two beams. One beam (50%) pumps a TOPAS-C pump amplifier to generate 305, 350 and 420-nm light pulses used for sample excitation. The typical excitation energy is 3-4 µJ pulse⁻¹, which is focused into a 300 µm diameter spot at the sample position. The second beam is attenuated to ~4 μ J pulse⁻¹ and focused onto a 3-mm CaF₂ window to produce a white light continuum light. The white-light continuum beam is further split into reference and probe beams, the latter of which is focused to a 100 µm diameter spot and overlapped with the pump beam at an angle of 8° at the sample position. Alternatively, for the 305 pump, the other half of the 800-nm amplified output was delivered to the TOPAS-C probe amplifier to produce UV-probe pulses tunable from 280 to 390 nm. probe After the sample, the reference and beams are sent to а monochromator/spectrograph (Spectra-Pro 2358, Acton Research) and registered on a 512-pixel dual diode array for simultaneous accumulation of kinetic traces within 274 nm spectral windows (white-light continuum) or two Si-photodiodes (TOPAS-C probe). The excitation beam is chopped (on/off) at 500 kHz repetition rate. Probe and reference diode array signals (I_{pr}, I_{ref}) are read after each laser shot for adjacent pairs of excitation on and off pulses and the transient absorption for each pair of pulses is obtained as follows: ΔA = log $(I_{pr}/I_{ref})_{on}$ - log $(I_{pr}/I_{ref})_{off}$. Per a kinetic trace, 300 pairs of excitation on/off ΔA points are collected at ~ 120 delay time positions between -10 ps and 1200 ps. Spectral data obtained in the complementary 274 nm ranges are averaged for about 10 successive scans of the delay line (total acquisition time, 45 min), and subsequently linked together to yield the resultant ΔA spectra from 345 to 765 nm. Time zero at different probe wavelengths is obtained by using the non-resonant or two-photon absorption pump-probe signals from neat solvents. The resultant group velocity dispersion curve (chirp rate, $2.0 \times$

 10^{-5} fs⁻²) is used to correct the ΔA spectra. A strong Gaussian-like emission feature (165 ± 15 fs fwhm) due to stimulated Raman scattering (Raman-active CH₂ symmetrical vibrational mode, v = 2853 cm⁻¹) observed in neat cyclohexane in the Stokes region with respect to the excitation wavelength delivers a cross-correlation signal between pump and probe pulses. The pump light polarization was set using a Berek compensator to be at 54.7° with respect to the probe light polarization, so all measurements are performed at magic angle polarization conditions. The samples were circulated through a Spectrosil quarz flow cell with a 0.2 or 0.5 mm path length (Starna) at a linear velocity of 0.6-1.6 m s⁻¹ to avoid secondary excitation. All samples were prepared in 25 or 50 mL of solvent with typical sample absorbance in the 0.4-0.9 range at the excitation wavelength per 0.2 or 0.5 mm thickness of the flow cell used.

The possibility that the solvent contributes to the measured transient absorption is checked by measuring the ΔA spectra from the neat solvent immediately prior or subsequent to the azide experiment under the same excitation conditions. The typical solvent (*i*-PrOH) contribution is illustrated in Fig. SM1 for excitation at 305 nm. We conclude that the short-time ΔA spectra (from -100 to 100 fs) are dominated (under our conditions: relatively low photon energy, $\lambda_{exc} = 420$, 350, and 305 nm) by cross-phase modulation and impulsive stimulated Raman scattering, and, as the one pump/one probe photon process, vary approximately linearly with the pump intensity. The subsequent ΔA spectra (time delay, 200 fs and longer) for the neat solvent are due to the formation of product(s) via non-linear, typically, two-pump-photon absorption. As the result, when azide **5** is added to the solution, the excitation intensity is reduced by the solute absorption to the extent that the solvent contribution to the transient absorption measured after time delay of 200 fs becomes negligible.

Figure SM1. Transient absorption (ΔA) spectra obtained after 305-nm excitation (3.8 µJ pulse⁻¹) of neat *i*-PrOH (lines) and the solution of 1.2 mM azide **5** in *i*-PrOH (lines and symbols) circulated through a 0.2 mm cell. The time delays (picoseconds) are shown inside each window. The *i*-PrOH contribution to the total ΔA spectra is minor at delay times equal or longer than 100 fs.

Figure SM2. Transient absorption (ΔA) spectra of azide **5** (9.3 mM) in acetonitrile upon 350-nm excitation. Delay times between the probe and pump pulses are shown in the legend. The solution was flowed through a 0.5 mm flow cell and excited with a pulse energy of 5.8 μ J-pulse⁻¹.

Theoretical Calculations for:

Open- and Closed-Shell Singlet Nitrenes

Table SM7. <u>CASPT2(10,10)/pVDZ//CASSCF(10,10)/pVDZ</u> calculations for the nitrenes

closed shell root 2

CASPT2(10,10)/pVDZ for closed-shell nitrene (root 2).

XYZ Coordinates (Bohrs, left side; Angstroms right side) Closed shell:

C1	4.688166	-0.558368	0.078600	2.480871	-0.295476	0.041593
C2	-0.614314	-1.127791	0.140920	-0.325081	-0.596801	0.074572
C3	3.138530	1.490553	-0.639245	1.660839	0.788767	-0.338274
C4	3.599195	-2.879555	0.820107	1.904612	-1.523795	0.433982
C5	0.979221	-3.143197	0.841267	0.518181	-1.663309	0.445179
C6	0.538823	1.153765	-0.581126	0.285133	0.610546	-0.307519
C7	-4.428506	-1.034724	2.611209	-2.343465	-0.547553	1.381793
C8	-4.296636	-3.401250	-1.322612	-2.273682	-1.799864	-0.699896
H1	3.993350	3.252109	-1.217715	2.113190	1.720942	-0.644387
H2	4.839102	-4.410789	1.360836	2.560743	-2.334089	0.720123
H3	0.137505	-4.909758	1.413220	0.072765	-2.598132	0.747844
H4	-3.408062	-3.462487	-3.175055	-1.803469	-1.832270	-1.680167
H5	-6.315752	-3.109901	-1.581103	-3.342152	-1.645689	-0.836684
H6	-3.719073	0.660489	3.524833	-1.968049	0.349516	1.865262
H7	-4.044936	-2.666757	3.830108	-2.140488	-1.411187	2.026806
H8	-6.464502	-0.848730	2.389437	-3.420867	-0.449129	1.264436
H9	-4.024922	-5.231920	-0.393059	-2.129897	-2.768613	-0.207998
O1	-2.068405	4.454837	0.339755	-1.094553	2.357398	0.179791
O2	-1.251401	3.719059	-3.533707	-0.662213	1.968042	-1.869957
N1	7.250891	-0.283450	0.051996	3.837007	-0.149995	0.027515
N2	-1.065673	3.276478	-1.318038	-0.563930	1.733838	-0.697476
N3	-3.288119	-1.289846	0.117617	-1.739998	-0.682557	0.062240
	C1 C2 C3 C4 C5 C6 C7 C8 H1 H2 H3 H4 H5 H6 H7 H8 H9 O1 O2 N1 N2 N3	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

	ΔE (hart)	$\Delta E \text{ kcal/mol}$	nm	f
E	CASPT2	CASPT2	CASPT2	CASSCF
-623.0004087				
-622.9522424	0.048167609	30.22565639	946	3.83E-06
-622.957506	0.042903989	26.92268226	1062	1.97E-02
-622.9362512	0.064158814	40.26029712	710	7.19E-06
-622.9288808	0.071529152	44.88525805	637	2.15E-06
-622.9122053	0.088204673	55.34931461	517	2.90E-07
-622.8662468	0.134163227	84.18876632	340	6.46E-03
-622.9173901	0.083019922	52.09583113	549	5.50E-05
-622.8374619	0.162948077	102.2515475	280	1.90E-05
	E -623.0004087 -622.9522424 -622.957506 -622.9362512 -622.9288808 -622.9122053 -622.8662468 -622.9173901 -622.8374619	ΔE (hart)ECASPT2-623.0004087622.95224240.048167609-622.9575060.042903989-622.93625120.064158814-622.92888080.071529152-622.91220530.088204673-622.86624680.134163227-622.91739010.083019922-622.83746190.162948077	ΔE (hart)ΔE kcal/molECASPT2CASPT2-623.0004087-622.95224240.04816760930.22565639-622.9575060.04290398926.92268226-622.93625120.06415881440.26029712-622.92888080.07152915244.88525805-622.91220530.08820467355.34931461-622.86624680.13416322784.18876632-622.91739010.08301992252.09583113-622.83746190.162948077102.2515475	ΔE (hart)ΔE kcal/molnmECASPT2CASPT2CASPT2-623.0004087CASPT2-622.95224240.04816760930.22565639946-622.9575060.04290398926.922682261062-622.93625120.06415881440.26029712710-622.92888080.07152915244.88525805637-622.91220530.08820467355.34931461517-622.86624680.13416322784.18876632340-622.91739010.08301992252.09583113549-622.83746190.162948077102.2515475280

Notes:

-The roots by CASSCF are not in proper order. CASPT2 gives the roots the likely proper order.

-Solving for more roots than eleven we start to see intruder states corrupting some of the roots.

-Trying to increase the active space beyond 10,10 leads to resource allocation problems

- To get geometric convergence, we used a state-average calculation of the opened-shell and closed-shell roots to avoid convergence failures, following the closed-shell root.

Same method/active space/basis set as above. For ground-state opened-shell nitrene.

XYZ Co	XYZ Coordinates (Bohrs, left side; Angstroms right side)							
1	C1	4.707890	-0.551230	0.075608	2.491308	-0.291698	0.040010	
2	C2	-0.645925	-1.116928	0.142850	-0.341809	-0.591053	0.075593	
3	C3	3.144752	1.433397	-0.634137	1.664131	0.758521	-0.335571	
4	C4	3.585181	-2.809216	0.807857	1.897196	-1.486573	0.427499	
5	C5	0.949549	-3.094659	0.846341	0.502479	-1.637623	0.447864	
6	C6	0.522929	1.123665	-0.587984	0.276722	0.594618	-0.311148	
7	C7	-4.444189	-1.066241	2.629334	-2.351764	-0.564230	1.391384	
8	C8	-4.317426	-3.395658	-1.316223	-2.284683	-1.796905	-0.696515	
9	H1	3.943113	3.215070	-1.228535	2.086605	1.701342	-0.650113	
10	H2	4.775666	-4.372112	1.359538	2.527174	-2.313622	0.719437	
11	H3	0.152210	-4.876398	1.422735	0.080546	-2.580479	0.752879	
12	H4	-3.444972	-3.435515	-3.176342	-1.823001	-1.817996	-1.680848	
13	H5	-6.340940	-3.123054	-1.554360	-3.355481	-1.652649	-0.822532	
14	H6	-3.735609	0.619063	3.560233	-1.976799	0.327594	1.883994	
15	Η7	-4.046878	-2.712103	3.823965	-2.141516	-1.435183	2.023555	
16	H8	-6.481312	-0.886625	2.420783	-3.429763	-0.469182	1.281023	
17	H9	-4.018189	-5.229036	-0.401597	-2.126334	-2.767087	-0.212516	
18	01	-2.106758	4.418986	0.292726	-1.114849	2.338427	0.154904	
19	O2	-1.103041	3.784047	-3.554053	-0.583704	2.002431	-1.880724	
20	N1	7.426717	-0.268030	0.045323	3.930050	-0.141836	0.023984	
21	N2	-1.030260	3.276733	-1.344559	-0.545190	1.733973	-0.711510	
22	N3	-3.318025	-1.285392	0.128743	-1.755823	-0.680200	0.068128	

Root		ΔE (hart)	∆E kcal/mol	nm	f
CASSCF	E CASPT2	CASPT2	CASPT2	CASPT2	CASSCF
1	-623.0077056223				
2	-622.9916134416	0.016096558	10.10075136	2831	0.47791931E-08
3	-622.9484063380	0.059303662	37.21364094	769	0.10588284E-05
4	-622.9277199544	0.079990046	50.19455351	570	0.28377127E-02
5	-622.9382773664	0.069432634	43.56967191	656	0.37963539E-04
6	-622.9212256357	0.086484364	54.26980344	526	0.49857005E-05
7	-622.8956393032	0.112070697	70.32548295	407	0.13596426E-02
8	Different ref.	0.10345044	64.91618573	440	0.28299223E-02
9	Different ref.	0.094363394	59.21397318	483	0.32276268E-01
10	Different ref.	0.138693697	87.03168193	329	0.17899616E-04

--Solved using both 10 SA roots and 7 SA roots. The first 7 roots are from the first calculation (7 roots) since fewer roots give higher quality individual wavefunctions (although the values between the two calcs. did not change in any meaningful way). Roots 8-10 come from the 10 root SA calculation. In the 10 root SA calculation there was 1 root (7) that was corrupted by an intruder state. All the other roots were fine. - To get geometric convergence, We used a state-average calculation of the open-shell and closed-shell roots to avoid convergence failures, following the open-shell root.

Figure SM3. A) Closed-Shell Nitrene optimized at CASSCF(10,10)/pVDZ level of theory using MOLCAS suite of programs

B) Opened-Shell Nitrene optimized at CASSCF(10,10)/pVDZ level of theory using MOLCAS suite of programs

Geometry of Azide 5 and Its Methyl Analog

Table SM8. Optimized Coordinates of Azide 5

RI-CC2/TZVP level of theory

С	1.0592499	-1.9736836	-0.2470072
С	-0.3102988	-1.7493012	-0.1523434
С	-0.8471279	-0.4561988	-0.0029944
С	0.0972976	0.5788899	0.1341844
С	1.4669672	0.3928764	0.0060254
С	1.9544519	-0.9072213	-0.1371428
Ν	3.3369659	-1.2087978	-0.2539377
Ν	4.1571727	-0.3003500	-0.0413188
Ν	5.0594913	0.4368427	0.1086128
Ν	-0.3483068	1.9443897	0.4413937
0	-1.0328555	2.0990815	1.4797803
0	0.0161820	2.8594161	-0.3428841
Ν	-2.2185009	-0.1788876	0.0543191
С	-2.7219302	0.6605569	-1.0436375
С	-3.0989177	-1.2845365	0.4215932
Н	1.4464988	-2.9790828	-0.3620598
Н	-0.9813186	-2.5904473	-0.2704808
Н	2.1299082	1.2480586	0.0869487
Н	-2.1119654	1.5615211	-1.1140540
Н	-3.7276241	0.9841301	-0.7645461
Н	-4.1180363	-0.9096648	0.3023767
Н	-3.0025002	-2.1486291	-0.2526495
С	-2.8835204	-1.7069363	1.8671559
Н	-3.5760863	-2.5088872	2.1307108
Н	-1.8674224	-2.0674554	2.0308927
Н	-3.0546759	-0.8568814	2.5275092
С	-2.7356901	-0.0498690	-2.3934961
Н	-3.3873139	-0.9251827	-2.3768434
Н	-3.0982180	0.6263526	-3.1708491
н	-1.7280569	-0.3715388	-2.6653756

С	1.1639118	-1.9858388	-0.2087298
С	-0.2001637	-1.7966073	-0.1770996
С	-0.7888386	-0.5144937	-0.0672427
С	0.1282775	0.5515030	0.0965474
С	1.5092892	0.3754533	0.0118210
С	2.0392859	-0.8954031	-0.1388766
Ν	3.4241988	-1.1876012	-0.2095173
Ν	4.2322066	-0.2630322	-0.1590766
Ν	5.0733287	0.4924740	-0.1258164
Ν	-0.2981882	1.9083954	0.4872031
0	-1.2722441	2.0214338	1.2229581
0	0.3844422	2.8527958	0.0990499
Ν	-2.1568791	-0.3608365	-0.1457176
С	-2.7717423	0.7465488	-0.8815588
С	-3.0516372	-1.4135933	0.3408282
Η	1.5757620	-2.9814871	-0.3144861

Н	-0.8437373	-2.6578006	-0.2854195
Η	2.1397395	1.2494183	0.1093635
Η	-1.9918947	1.4444409	-1.1744348
Н	-3.4482772	1.2978137	-0.2209015
Η	-4.0669640	-1.0547854	0.1742834
Η	-2.9587629	-2.3320590	-0.2530752
С	-2.8786427	-1.7201950	1.8282806
Η	-3.6070117	-2.4728717	2.1392523
Η	-1.8832127	-2.1058071	2.0523999
Η	-3.0323897	-0.8190659	2.4237796
С	-3.5005608	0.2985475	-2.1523610
Η	-4.3333633	-0.3743144	-1.9412956
Η	-3.9078897	1.1733850	-2.6649838
Н	-2.8163946	-0.2089251	-2.8358667

Table SM9. Optimized Coordinates of Methyl Analog of Azide 5

RI-CC2/TZVP level of theory

С	0.9243118	-2.0298696	-0.0818867
С	-0.4624294	-1.9641624	-0.0801889
С	-1.1542076	-0.7348545	0.0094465
С	-0.3413492	0.4208205	-0.0618201
С	1.0491274	0.3756659	-0.0504141
С	1.6886110	-0.8604153	-0.0984167
Ν	3.1020402	-1.0101485	-0.1205497
Ν	3.8010818	-0.0058332	0.0930678
Ν	4.6067960	0.8344326	0.2522283
Ν	-0.9324724	1.7560937	-0.2192781
0	-1.8488202	1.8786512	-1.0695708
0	-0.4530332	2.6917139	0.4705593
Ν	-2.5306239	-0.6645567	0.0732747
С	-3.3034963	-1.8759576	-0.1212863
С	-3.1630194	0.3120595	0.9550049
Н	1.4248461	-2.9901138	-0.1192900
Н	-1.0190663	-2.8903409	-0.0328981
Н	1.6028932	1.3080374	-0.0756080
Н	-2.9513923	-2.4074079	-1.0048391
Н	-3.2672365	-2.5501838	0.7461741
Н	-4.3414543	-1.5907012	-0.2930106
Η	-3.7978169	1.0012096	0.3938077
Н	-3.7698649	-0.2120750	1.7000514
Н	-2.4118399	0.8892431	1.4936182

TD-B3LYP/TZVP level of theory (S_0 State)

С	-1.1740896	1.5035963	0.0686149
С	-1.6430256	0.2056917	0.0784715
С	-0.7842556	-0.9162382	0.0017160
С	0.6011678	-0.6100635	-0.0126815
С	1.0758375	0.6961658	-0.0743196
С	0.1976809	1.7658895	-0.0315670
Ν	0.7676805	3.0630485	-0.0746246
Ν	0.0253800	4.0399142	-0.0234104
Ν	-0.5448406	5.0168777	0.0157888

Ν	1.6411383	-1.6369285	0.1694452
0	1.3898964	-2.5855604	0.9068082
0	2.7252992	-1.4582322	-0.3779813
Ν	-1.3013608	-2.1852951	-0.0874176
С	-2.6786298	-2.4467826	0.2952791
С	-0.6636113	-3.2379382	-0.8673166
Η	-1.8873699	2.3184837	0.1157416
Η	-2.7114878	0.0481733	0.0985682
Η	2.1419342	0.8675949	-0.1105008
Н	-2.9418962	-1.8888438	1.1936909
Н	-3.3978799	-2.2019163	-0.4989180
Н	-2.7785555	-3.5076724	0.5260812
Н	-0.1985329	-3.9969338	-0.2337614
Η	-1.4161980	-3.7117905	-1.5035347
Н	0.1013644	-2.8223119	-1.5221189

TD-B3LYP/TZVP level of theory (S_1 State)

С	1.0323745	-1.9898684	0.0855354
С	-0.3354952	-1.9624901	0.0880328
С	-1.0738700	-0.7380799	0.0550811
С	-0.3143674	0.4902375	0.0000512
С	1.0490420	0.4380798	-0.0282268
С	1.7511610	-0.7835694	0.0277449
Ν	3.1327633	-0.8928502	0.0208887
Ν	3.8319614	0.1319601	-0.0209329
Ν	4.6003766	0.9536115	-0.0557430
Ν	-0.9068330	1.7971829	-0.0942326
0	-1.5244611	2.0128173	-1.2195884
0	-1.2639351	2.2767012	1.0722852
Ν	-2.4262381	-0.7956653	0.0355650
С	-3.1117440	-2.0555345	-0.2546553
С	-3.3422644	0.3184225	0.3240819
Н	1.5714995	-2.9258945	0.1399604
Н	-0.8624110	-2.9011349	0.1603413
Н	1.5763756	1.3807207	-0.1003848
Н	-2.5940410	-2.6155980	-1.0304053
Н	-3.2019145	-2.6735798	0.6445968
Н	-4.1121122	-1.8185740	-0.6082192
Н	-3.7300001	0.7181837	-0.6131015
н	-4.1609700	-0.0902032	0.9190431
н	-2.8406453	1.1109221	0.8699607

TD-B3LYP/TZVP level of theory (S₂ State)

С	1.0154213	-1.9841922	0.0650026
С	-0.3516014	-1.9709295	0.0811258
С	-1.1005280	-0.7581716	0.0621010
С	-0.3446598	0.4616907	0.0132942
С	1.0225985	0.4430491	-0.0166340
С	1.7478748	-0.7738916	0.0181684
Ν	3.1069876	-0.8975304	0.0070645
Ν	3.7630429	0.2433549	0.0033002
Ν	4.7848748	0.7552621	-0.0166327
Ν	-1.0015498	1.7482151	-0.1036202
0	-1.4361979	2.0560040	-1.2511930

-1.1815087	2.3978588	0.9706727
-2.4596281	-0.8072460	0.0556532
-3.1597606	-2.0343253	-0.3126014
-3.3408794	0.2911591	0.4696906
1.5616294	-2.9166525	0.1118401
-0.8736558	-2.9127552	0.1631981
1.5484066	1.3848554	-0.0865928
-2.6080485	-2.5862533	-1.0699502
-3.3281975	-2.6786410	0.5574964
-4.1287540	-1.7608482	-0.7273392
-3.6804253	0.8577761	-0.3992680
-4.2024870	-0.1509058	0.9713208
-2.8372630	0.9644926	1.1557087
	-1.1815087 -2.4596281 -3.1597606 -3.3408794 1.5616294 -0.8736558 1.5484066 -2.6080485 -3.3281975 -4.1287540 -3.6804253 -4.2024870 -2.8372630	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

Table SM10. Optimized Coordinates of Methyl Analog of the Triplet Nitrene

TD-B3LYP/TZVP level of theory

С	2.0066929	-1.5444510	-0.0781162
С	0.6645997	-1.8025736	-0.0938759
С	-0.3194931	-0.7765415	0.0021855
С	0.1895184	0.5537492	0.0187109
С	1.5370879	0.8383302	0.0804674
С	2.5067274	-0.2043422	0.0383900
Ν	3.7988185	0.0526079	0.0835201
Ν	-0.6876381	1.7272383	-0.1745650
0	-1.6161241	1.6166439	-0.9689445
0	-0.4039548	2.7594107	0.4213318
Ν	-1.6426130	-1.0985272	0.1172073
С	-2.1283945	-2.4129828	-0.2781021
С	-2.6017722	-0.2831090	0.8530757
Η	2.7197716	-2.3572005	-0.1273650
Η	0.3396142	-2.8328410	-0.1225179
Η	1.8615410	1.8688242	0.1051760
Η	-1.6027741	-2.7690025	-1.1627700
Η	-2.0280450	-3.1566267	0.5227774
Η	-3.1849631	-2.3277144	-0.5329572
Η	-3.2707851	0.2654782	0.1863670
Η	-3.1930893	-0.9385167	1.4974814
Η	-2.0880220	0.4303498	1.4951250

Table SM11. Optimized Coordinates of Methyl Analog of Nitrogen Radical

С	1.9764986	-1.5472116	-0.0725900
С	0.6334955	-1.8081566	-0.0861702
С	-0.3466538	-0.7795969	0.0052678
С	0.1695942	0.5505579	0.0202427
С	1.5153581	0.8253855	0.0733004
С	2.4935599	-0.2131332	0.0345574
Ν	3.7768673	0.1237791	0.0790197
Ν	-0.7070671	1.7252526	-0.1741070
0	-1.6162569	1.6236472	-0.9920456

0	-0.4442000	2.7471293	0.4471012
Ν	-1.6726379	-1.0938146	0.1153610
С	-2.1607808	-2.4091514	-0.2732791
С	-2.6318463	-0.2709399	0.8430854
Н	2.6792352	-2.3721773	-0.1195488
Н	0.3046905	-2.8375416	-0.1079855
Н	1.8546905	1.8515075	0.0897665
Н	-1.6457420	-2.7640121	-1.1648003
Н	-2.0478957	-3.1529758	0.5259020
Н	-3.2208843	-2.3264520	-0.5133173
Н	-3.3021368	0.2682233	0.1700339
Н	-3.2222617	-0.9188819	1.4960109
Н	-2.1191226	0.4504646	1.4763232
Н	4.3574773	-0.7163108	0.0283982

Table SM12. Optimized Coordinates of Methyl Analog of the Nitrenium Ion 10

TD-B3LYP/TZVP level of theory

С	2.0196162	-1.4975087	-0.2059825
С	0.7113613	-1.7949322	-0.2961461
С	-0.3141765	-0.7939456	-0.0342818
С	0.1490170	0.5919836	0.0413821
С	1.4523348	0.8995662	0.1376371
С	2.4822895	-0.1363658	0.0718874
Ν	3.6991812	0.2352834	0.2216331
Ν	-0.7887049	1.7261326	-0.2020457
0	-1.6032304	1.5479949	-1.0961522
0	-0.6359076	2.7365386	0.4526865
Ν	-1.5562723	-1.1636347	0.1894973
С	-2.0347812	-2.5348400	-0.0917252
С	-2.5817173	-0.3096062	0.8200526
Н	2.7639164	-2.2767990	-0.3244858
Н	0.4120917	-2.8189048	-0.4592775
Н	1.7782985	1.9309323	0.1989793
Н	-1.5714070	-2.9328311	-0.9893479
Н	-1.8391975	-3.1869574	0.7618938
Н	-3.1080051	-2.4791340	-0.2561472
Н	-3.2491592	0.1013393	0.0625994
Н	-3.1468566	-0.9419435	1.5033536
Н	-2.1272598	0.4918021	1.3941274
Η	4.3618173	-0.5409525	0.1397717

Table SM13. Optimized Coordinates of Methyl Analog of Adduct 14

С	-0.1035575	-2.5218899	0.0161850
С	-1.2412696	-1.9511232	-0.3974303
С	-1.5642465	-0.5352978	-0.1366636
С	-0.5395077	0.2787893	0.2876669
С	0.8435812	-0.2407354	0.5620082
С	0.8880134	-1.7454980	0.7617405
Ν	1.7905165	-2.2352554	1.5207614
Ν	-0.6218747	1.7186725	0.2803623

0	-1.4384822	2.2728185	-0.4641492
0	0.1777846	2.3430779	0.9830967
Ν	-2.8846603	-0.1950174	-0.2199515
С	-3.8110792	-0.8567179	-1.1335721
С	-3.4867172	0.8387814	0.6068333
Η	0.0660959	-3.5843437	-0.1250281
Η	-1.9992938	-2.5630890	-0.8655887
Η	-3.2840978	-1.3282436	-1.9591489
Η	-4.4318383	-1.6022846	-0.6236294
Η	-4.4703883	-0.1005939	-1.5641626
Η	-3.5741468	1.7927152	0.0824546
Η	-4.4783976	0.4938806	0.9113699
Η	-2.8857637	0.9945149	1.5018087
Η	1.7696671	-3.2585150	1.5038741
Η	1.2551996	0.2431974	1.4480165
0	1.6429707	0.0718163	-0.5958122
С	3.0672375	0.1959066	-0.3693663
Η	3.3712210	-0.5567250	0.3656492
С	3.4119123	1.5876478	0.1508462
Η	2.8806709	1.8154944	1.0756110
Η	4.4846310	1.6590285	0.3490503
Η	3.1409029	2.3475976	-0.5851467
С	3.7307912	-0.1113806	-1.7033733
Η	4.8164804	-0.0242877	-1.6189917
Н	3.4880188	-1.1232175	-2.0323784
Н	3.3872517	0.5896158	-2.4676667

Table SM14. Optimized Coordinates of Methyl Analog of Adduct 13

С	0.2816120	-1.3653129	0.2738914
С	-0.8415021	-0.4038627	0.0056434
С	-0.6900688	0.9361732	-0.0262221
С	0.6904034	1.4550950	0.1000358
С	1.7795190	0.6780683	0.1578722
С	1.6675541	-0.7722552	0.0152403
Ν	2.6978378	-1.4402768	-0.3168249
Ν	0.9506064	2.9116361	-0.0222541
0	0.5816599	3.4580444	-1.0482169
0	1.5431267	3.4561146	0.9028000
Ν	-1.7367561	1.8417738	-0.2419843
С	-2.9527402	1.3106994	-0.8307568
С	-2.0076992	2.8128876	0.8188111
Η	0.2672431	-1.5708267	1.3595587
Н	-1.8257700	-0.8429812	-0.0709445
Н	2.7740123	1.1043926	0.1485043
Н	-2.7099320	0.7146782	-1.7103888
Η	-3.5395516	0.6896725	-0.1340463
Η	-3.5804375	2.1472055	-1.1416432
Н	-2.5640192	3.6553306	0.4055530
Η	-2.6008555	2.3648322	1.6309239
Η	-1.0903231	3.1977119	1.2577276
Η	2.4356457	-2.4157414	-0.4786140
0	0.1457912	-2.5934612	-0.4257609

С	-0.1884931	-3.7570015	0.3576879
Η	0.4712956	-3.7792845	1.2370015
С	-1.6408451	-3.7308249	0.8273956
Η	-1.8649033	-4.6282775	1.4088157
Η	-1.8455674	-2.8679860	1.4646679
Η	-2.3174722	-3.6984176	-0.0298379
С	0.1116493	-4.9600146	-0.5223896
Η	1.1580428	-4.9646919	-0.8309297
Η	-0.0936741	-5.8870329	0.0167886
Η	-0.5094995	-4.9370115	-1.4202998

Alternative Scenarios

Many alternative scenarios have been considered to in an effort to explain the cascade of transient intermediates formed in the photoreaction of azide 5. One example is shown in Fig. SM4 in which two scenarios are compared: Scenario I in which the closed-shell singlet nitrene initially undergoes protonation, and Scenario II in which the closed-shell singlet initially undergoes conversion to the opened-shell singlet nitrene before it becomes protonated. Even though the calculated spectra are in nearly perfect agreement with the observed spectra in scenario II, the protonation step occurs in the range of 20 ps not 560 ns. Therefore, scenario I is the more viable alternative.

Figure SM4. Alternative scenarios for closed-shell singlet nitrene reaction.

Theoretical Calculations of Formation of Adducts 13 and 14 and Their Relative Stability

The formation of adducts **13** and **14** have been analyzed theoretically at the DFT B3LYP the reasons for the collapse of the ion pair with preferential bond formation at the 2-position between the nitrene nitrogen and the nitro group rather than at the less hindered 6-position (Fig. SM7). While these transition state imaginary frequencies are small, both initial attack transition states involve hydrogen bonding between the incoming methoxide ion and the =N-H hydrogen atom. The possibility of a 1-5 methoxy shift between the 2- and 6-positions has been considered, but was found to have very high activation energies in either direction, and thus, not to play an important role in the final product isomer distribution. On the other hand, the transition state for formation of the 2-methoxy adduct has a slightly lower energy, 2.05 kcal/mol, and higher intensity (probability) than that for the 6-methoxy adduct. Both of these transitions state occur with quite long O-C bond distances, 2.43 Å, and therefore, the attack at the 2-position is not particularly susceptible to steric interference from the nitro group, but is facilitated by the additional electron withdrawal of that group.

Figure SM5. Attack profile for protonation of nitrene with approach from the 2- or 6-side of the nitrene nitrogen (-O-H in Å) .

Energy Profile of Nitrenium Ion-OMe Adducts

Figure SM6. Reaction profile for formation of 2- and 6-methanol adducts,

interconversion of 2- and 6-adducts, 14 and 13, respectively.

Supplementary Material Spectra

