Expanded Materials and Methods

Isolation of AT-derived SVCs and flow cytometry

One gram of peri-epididymal fat from lean and obese C57BL/6J mice (15 weeks of LF or HF diet, respectively) was minced in PBS containing 2% bovine serum albumin (BSA) and 250 U/ml of collagenase type II (Worthington) and incubated at 37°C for 1 h. The digested tissue was passed through a 70-µm cell strainer (BD Biosciences) and the flow-through centrifuged. After aspirating the supernatant, red blood cells were lysed with ACK lysing buffer (Gibco). The remaining cells were washed with DMEM supplemented with 10% FCS, counted and labeled with conjugated antibodies or their respective isotype controls before acquisition by a FACScan.

Analysis of inflammatory cells in AT by immunohistochemistry

Peri-epididymal AT (from mice on LF or HF diet for 21 weeks) was fixed in periodate-lysine-paraformaldehyde fixative as described previously (see reference in the text), and embedded in paraffin. Five-micron sections were stained for rat anti-mouse CD45, Mac-3, I-A^b (BD Pharmingen) and CD3 (Abcam), and then incubated with appropriate biotinylated secondary antibodies followed by incubation with avidin-biotin complex (Vector). Next, the reaction was visualized with 3-amino-9-ethyl carbazole (DAKO). Sections were counterstained with Gill's hematoxylin solution (Sigma). Positive cells were counted in 10 consecutive visual fields at the same magnification.

1

177105/R2

Culture and differentiation of 3T3-L1 cells

Murine 3T3-L1 pre-adipocytes were cultivated in DMEM high glucose supplemented with 10% FCS. After reaching confluency (day 0), cells were stimulated with DMEM containing 10% FCS, 0.5 mmol/L 3-lsobutyl-1-methylxanthine (Sigma), 1 μ mol/L dexamethasone (Sigma), and 10 μ g/ml of porcine insulin (Sigma), to induce differentiation. At day 2, media were replaced by DMEM with 10% FCS and 10 μ g/ml of insulin, and changed every 48 h. At day 11, cells were stimulated with recombinant mouse IFN_γ (Chemicon) at 10, 50, or 100 U/ml, and harvested 24 h after stimulation.

Culture and activation of T cells in vitro

Splenic CD4+ T cells were positively selected from C57BL/6J male mice and cultured *in vitro* with 2 μ g/ml of anti-CD28 (Bioexpress) and 10 ng/ml of recombinant mouse IL-12 (R&D Systems) in a plate coated with 5 μ g/ml of anti-CD3 (BD Pharmingen). After 48 h of incubation at 37°C, cells were transferred to fresh plates and incubated with 10 U/ml of recombinant mouse IL-2 (R&D Systems) for 72 h. Cells were then washed and again incubated in a plate coated with anti-CD3. After 48 h, conditioned media were used to stimulate differentiated 3T3-L1 cells for 24 h in the presence or absence of a neutralizing anti-IFN γ antibody at 10 μ g/ml.

Sequences of mouse primers

2

TNF α , 5'-CTGTAGCCCACGTCGTAGC-3' and 5'-TTGAGATCCATGCCGTTG-3'; 5'-CTCTCTAAGGCTACAGGCTGCT-3' 5'-CD68, and TCACGGTTGCAAGAGAAACA-3'; MCP-1, 5'-GGCTGGAGAGCTACAAGAGG-3' 5'-TCTTGAGCTTGGTGACAAAAAC-3'; 5'and RANTES. AGCAGCAAGTGCTCCAATC-3' and 5'-GGGAAGCGTATACAGGGTC-3'; IL-10, 5'-ACTGCACCCACTTCCCAGT-3' and 5'-TGTCCAGCTGGTCCTTTGTT-3'; STAT-1, 5'-TGAGATGTCCCGGATAGTGG-3' and 5'-CGCCAGAGAGAAATTCGTGT-3'; IFN γ , 5'-TCTGGAGGAACTGGCAAAAG-3' 5'-TTCAAGACTTCAAAGAGTCTGAGG-3': and IP-10. 5'-GCTGCCGTCATTTTCTGC-3' and 5'-TCTCACTGGCCCGTCATC-3'; MIG, 5'-CTTTTCCTTTTGGGCATCAT-3' and 5'-GCATCGTGCATTCCTTATCA-3': 5'-GCCAAGCCATGTACCTTGAG-3' 5'-CXCR3. and GGAGAGGTGCTGTTTTCCAG-3'; I-A^b, 5'-GTGGTGCTGATGGTGCTG-3' and 5'-CCATGAACTGGTACACGAAATG-3'; CD3, 5'-TCCCAACCCAGACTATGAGC-3' and 5'-GCGATGTCTCTCCTATCTGTCA-3'; GAPDH. 5'-TGGGTGTGAACCATGAGAAG-3' and 5'-GCTAAGCAGTTGGTGGTGC-3'.

Supplementary figure 1. Plasma levels of adiponectin, leptin, and total cholesterol.

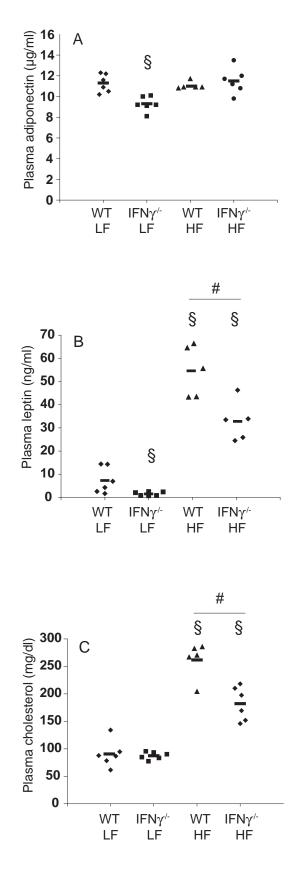
Values representing the animals individually and the average in each group are plotted for each measurement. WT/LF, wild type mice/low fat diet; $IFN\gamma^{-/-}LF$, IFN γ -deficient mice/low fat diet; WT/HF, wild type mice/high fat diet; $IFN\gamma^{-/-}HF$,

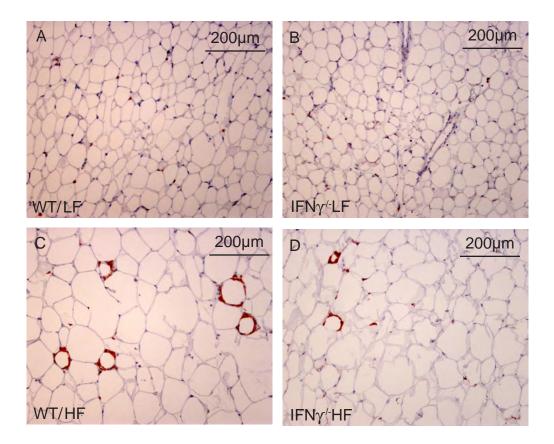
3

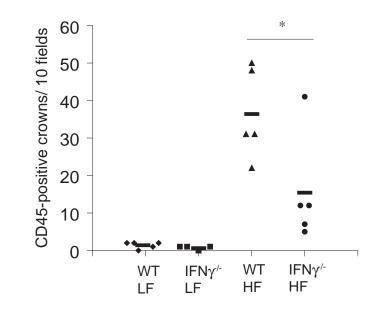
IFN γ -deficient mice/high fat diet. §p<0.05 relative to WT/LF; #p<0.05; n=5-6 in each group.

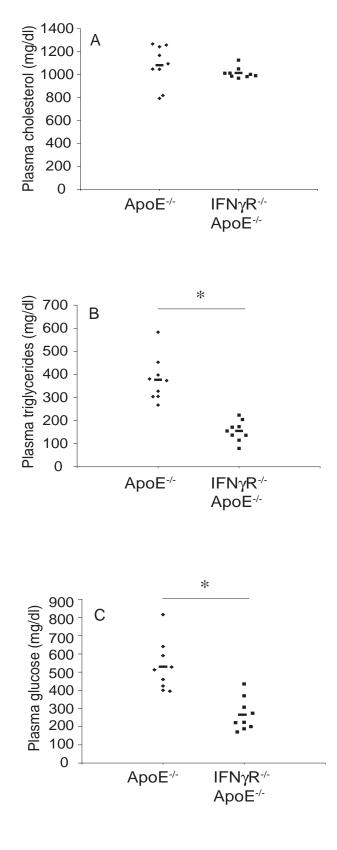
Supplementary figure 2. IFN γ deficiency limits the number of crown-like formations in obese visceral AT.

Peri-epididymal AT was fixed and paraffin-embedded. Sections were stained with anti-CD45 antibody, and "crowns" were counted in 10 consecutive fields in each slide. One crown is the result of positive cells around one single adipocyte. A representative picture from each group is shown (A-D). Numbers from each group were plotted in the graph (E). Differences were calculated by Student's t test. WT/LF, wild type mice/low fat diet; $IFN\gamma^{-/-}LF$, $IFN\gamma$ -deficient mice/low fat diet; WT/HF, wild type mice/high fat diet; $IFN\gamma^{-/-}HF$, $IFN\gamma$ -deficient mice/high fat diet; *p<0.05; n=5-6 in each group.


Supplementary figure 3. Plasma levels of total cholesterol, triglycerides, and glucose in ApoE^{-/-} and IFN γ R^{-/-}ApoE^{-/-}


Values representing the animals individually and the average in each group are plotted for each measurement. ApoE^{-/-}, apolipoprotein E-deficient mice; IFN γ R^{-/-} ApoE^{-/-}, IFN γ -receptor-deficient and ApoE-deficient mice. *p<0.01 vs ApoE^{-/-}; n=9 in each group.


Supplementary table 1. Transcription profiling study


Differentiated 3T3-L1 cells were stimulated with 100 U/ml of recombinant mouse IFN_γ or left untreated (controls). After 4 and 24 h, control and treated cells were harvested and mRNA was extracted and used in a microarray screening. The table shows the CC and CXC chemokines and receptors that significantly changed compared to controls, ranked by their p value at 24h. n=5 for each group at 4 h, and n=6 for each group at 24 h.

		4h	4h	24h	24h
Gene	Other denominations	paired t statistic	paired p value	paired t statistic	paired p value
Chemokine (C-X-C motif) ligand 9	Cxcl9, Mig	5.159	0.006703	31.630	0.000001
Chemokine (C-X-C motif) ligand 10	Cxcl10, IP-10	5.316	0.006020	20.312	0.000005
Chemokine (C-C motif) ligand 5	Ccl5, RANTES	4.797	0.008668	16.707	0.000014
Chemokine (C-C motif) ligand 8	Ccl8, MCP-2	9.577	0.000664	16.511	0.000015
Chemokine (C-X-C motif) ligand 11	Cxcl11, I-TAC	3.984	0.016351	8.116	0.000461
Chemokine (C-C motif) ligand 2	Ccl2, MCP-1	3.645	0.021865	6.508	0.001279
Chemokine (C-C motif) ligand 7	Ccl7, MCP-3	3.851	0.018286	5.907	0.001980
Chemokine (C-X-C motif) ligand 13	Cxcl13, BLC, BCA-1	4.013	0.015961	5.281	0.003243
Chemokine (C-C motif) receptor-like 1	Ccrl1	0.195	NS	5.151	0.003613
Chemokine (C-X-C motif) ligand 2	Cxcl2, GRO- β , MGSA- β	12.422	NS	4.976	0.004190
Chemokine (C-X-C motif) ligand 12	Cxcl12, SDF-1 α/β	14.831	NS	4.007	0.010249
Chemokine (C-X-C motif) receptor 3	Cxcr3	14.784	NS	3.999	0.010336
Chemokine (C-C motif) ligand 25	Ccl25, TECK	3.378	0.027842	3.934	0.011023
Chemokine (C-X-C motif) ligand 16	Cxcl16	3.317	0.029452	3.858	0.011907
Chemokine (C-X-C motif) ligand 7	Cxcl7, NAP-2	0.515	NS	3.734	0.013510
Chemokine (C-C motif) receptor 1	Ccr1	2.744	NS	3.619	0.015239
Chemokine (C-X-C motif) ligand 1	Cxcl1, GRO- α , MGSA- α	14.008	NS	3.403	0.019192
Chemokine (C-X-C motif) ligand 15	Cxcl15	1.027	NS	3.016	0.029567
Chemokine (C-C motif) ligand 28	Ccl28, MEC	27.063	NS	2.771	0.039325
Chemokine (C-C Motif) Ligand 12	Ccl12	8.944	0.000864	22.227	NS
Chemokine (C-X3-C Motif) Ligand 1	Cx3cl1, Fractalkine	6.665	0.002632	11.542	NS
Chemokine (C-C Motif) Ligand 4	Ccl4, MIP-1β	4.243	0.013233	12.488	NS
Chemokine (C-X3-C) receptor 1	Cx3cr1	3.384	0.027684	10.979	NS

