SUPPLEMENTAL TABLE AND FIGURES

Zhang *et al.* (2009) - "Enzymes in the NAD⁺ Salvage Pathway Regulate SIRT1 Activity at Target Gene Promoters"

This document contains supplemental data (1 table and 6 figures) as follows:

	Page
1) Table S1. Gene ontology analysis of NAMPT, NMNAT-1, and SIRT1 target genes	2
2) Figure S1. Comparison of different shRNA constructs in target protein knockdown and gene expression regulation	5
3) Figure S2. NAD ⁺ -independent regulation of gene expression by NAMPT and NMNAT-1	6
 Figure S3. Regulation of gene expression by the NAD⁺-producing enzymes requires their enzymatic activity 	7
5) Figure S4. Similar regulation of NAMPT- and NMNAT-1-responsive genes by SIRT1	8
6) Figure S5. Recruitment of SIRT1 and NMNAT-1 to ATXN10 and NELL2 genes	9
7) Figure S6. Knockdown of NAMPT and NMNAT-1 did not change SIRT1 recruitment to target gene promoters	10

Table S1. Gene ontology analysis of NAMPT-, NMNAT-1-, and SIRT1-regulated genes.

A. <u>NAMPT-Regulated Genes</u>

		Percent		
Category	Count	of Total	p-value	Example
Cell Cycle Regulation ¹	19	8.3%	< 0.0304	CCNE2, PLK4, MTSS1
Negative Regulation of	21	9.2%	< 0.0367	RDX, AMBP, NSD1
Biological Process ²				
Tumor Suppressor ³	3	1.3%	< 0.0206	RB1, FHIT, NF1
Transporter ⁴	8	3.5%	< 0.0305	SLC4A7, SLC7A8, SLC24A3

B. <u>NMNAT-1-Regulated Genes</u>

		Percent		
Category	Count	of Total	p-value	Example
Development and	38	21%	< 0.0142	STX2, GJA1, MID1
Morphogenesis ⁵				
Cell Organization and	30	16%	< 0.0031	TRAK1, LIMCH1, RAB14
Biogenesis				
Neuron Differentiation ⁶	6	3.3%	< 0.0357	AGRN, NRCAM, RTN1
Cell Signaling ⁷	30	16%	< 0.0491	SNF1LK2, SMAD5, GRB10
Ion Homeostasis ⁸	26	14%	< 0.0466	SLC9A2, CALR, ANXA1
Cell Proliferation ⁹	13	7.1%	< 0.0498	EPS15, COL4A3, LAMB1
Cell Adhesion ¹⁰	17	9.2%	< 0.0486	SGCE, PCDH7, PLEKHC1
Cytoskeletal Protein Binding	10	5.5%	< 0.0196	DIAPH2, MAPRE3, TRIM2
Enzyme Inhibitor Activity	8	4.4%	< 0.0178	TFPI, CSTA, THBS1

C. NAMPT and NMNAT-1 Commonly Regulated Genes

		Percent		
Category	Count	of Total	p-value	Example
Neuron Differentiation ⁶	3	8.1%	< 0.0254	SOCS2, RTN1, TGFB2
Cell Signaling ⁷	16	43%	< 0.0461	SMAD5, CXCR7, PLCL1
Cellular Membrane ¹¹	9	24%	< 0.0473	SCNN1A, CAV1, ST3GAL5

D. SIRT1-Regulated Genes

		Percent		
Category	Count	of Total	p-value	Example
Cell Signaling ⁷	17	8.6%	< 0.0484	DUSP8, PPP2R1B, PIK3R1
Metabolism ¹²	4	2.2%	< 0.0448	GMDS, PGM3, GNE

(Table S1 continues on the next page)

Table S1 (continued)

E. NAMPT and SIRT1 Commonly Regulated Genes

		Percent		
Category	Count	of Total	p-value	Example
Cellular Membrane ¹¹	6	15%	< 0.0450	ITPR1, CAV1, ATP11B
Metabolism ¹²	3	7.5%	< 0.0438	SLC35A3, PGM3, GNE

F. <u>NMNAT-1 and SIRT1 Commonly Regulated Genes</u>

		Percent		
Category	Count	of Total	p-value	Example
Cell Adhesion ¹⁰	5	16%	< 0.0350	LAMB1, THBS1, NELL2
Cellular Membrane ¹¹	4	13%	< 0.0321	CAV2, CAV1, ST3GAL5
Metabolism ¹²	2	6.3%	< 0.0472	SLC35A3, PGM3
Response to Wounding	4	13%	< 0.0482	TRGV9, LGALS3BP, TFPI

G. NAMPT, NMNAT-1 and SIRT1 Commonly Regulated Genes

		Percent		
Category	Count	of Total	p-value	Example
Cellular Membrane ¹¹	4	18%	< 0.0368	CAV2, CAV1, ST3GAL5
Metabolism ¹²	2	9.1%	< 0.0220	SLC35A3, PGM3

Associated GO terms:

¹Cell cycle, regulation of cell cycle, negative regulation of progression through cell cycle

²Negative regulation of biological process, negative regulation of physiological process,

negative regulation of cellular process, negative regulation of progression through cell cycle

³ Tumor suppressor, negative regulation of progression through cell cycle

⁴ Porter activity, electrochemical potential-driven transporter activity

⁵ Morphogenesis, development, organ morphogenesis, organ development, cellular morphogenesis

⁶ Neuron differentiation, positive regulation of neuron differentiation, neurogenesis, regulation of cell differentiation

⁷ Receptor binding, response to external stimulus, cell communication, signal transducer activity, transmembrane receptor protein tyrosine kinase signaling pathway, MAPKKK cascade, protein serine/threonine phosphatase activity, negative regulation of signal transduction, regulation of protein kinase activity, negative regulation of MAPK activity

⁸ Ion homeostasis, metal ion homeostasis, calcium ion binding, clustering of voltage-gated sodium channels, homeostasis

- ⁹Cell proliferation, regulation of cell proliferation,
- ¹⁰ Cell adhesion, basement membrane, basal lamina, extracellular matrix
- ¹¹ Integral to plasma membrane, intrinsic to plasma membrane, endomembrane system, Golgi membrane, organelle membrane, lipid raft, caveola, caveolar membrane
- ¹² Glucosamine metabolism, UDP-N-acetylglucosamine metabolism, nucleotide-sugar metabolism, amino sugar metabolism

(Table S1 continues on the next page)

Table S1 (continued)

Methods

The gene list for each factor was generated based on a two-tailed Student's t-test, p-value <0.05, and filtered using a fold change cutoff of $\log_2 < -0.5$ or > 0.5. Commonly regulated genes were identified by comparing individual gene sets. The gene sets were analyzed for enrichment of GO terms using the Functional Annotation Clustering and Functional Annotation Chart tools from the DAVID Bioinformatics Resources website (http://david.abcc.ncifcrf.gov/home.jsp).

FIGURES

Figure S1. Comparison of different shRNA constructs in target protein knockdown and regulation of gene expression. For each factor studied (NAMPT, NMNAT-1, and SIRT1), two distinct shRNA sequences were examined for target protein knockdown (A) and gene expression regulation (B). The expression levels of 38 genes were determined by RT-qRCR and presented as fold change relative to the luciferase knockdown control cells. For each target protein, the scatter plot (*left*) shows the expression fold changes of the 38 genes in response to the two different shRNAs. The Pearson's correlation coefficient (c.c.) and p-value are indicated. Similarly, the bar graph (*right*) highlights the expression responses of a subset of the genes. Error bars, SEM; $n \ge 3$ independent biological replicates.

Figure S2. NAD⁺-independent regulation of gene expression by NAMPT and NMNAT-1. Effect of NAMPT or NMNAT-1 knockdown with or without exogenously added NAD⁺ (1 mM) on the expression of an NAMPT- and NMNAT-1-regulated gene, *CAV1*. Gene expression levels were determined by RT-qRCR using β -actin as a reference gene. The data are normalized to *CAV1* expression levels in the Luciferase (Luc) control cells. Error bars, SEM; $n \ge 3$ independent biological replicates.

Figure S3. Regulation of gene expression by the NAD⁺-producing enzymes requires their enzymatic activity. In the NAMPT and NMNAT-1 knockdown MCF-7 cells, expression levels of *TGFB2* and *ATXN10* were rescued by re-expression of the respective NAD⁺-producing enzyme. The expression constructs for NAMPT and NMNAT-1 used in this experiment are RNAi-resistant through introduction of silent mutations in the shRNA target sequence. The catalytic mutants used are: NMNAT-1 W169A (1,2) and NAMPT H247A (3). GFP was used as a control for re-expression. The effect of wild type enzymes was compared to that of GFP control using two-tailed Student's t-test: * p<0.05, ** p<0.01. Error bars represent S.E.M. of at least three independent experiments.

Figure S4. Similar regulation of NAMPT- and NMNAT-1-responsive genes by SIRT1. Microarray expression analyses reveal similar expression profiles for 37 commonly regulated NAMPT and NMNAT-1 target genes upon knockdown of SIRT1 in MCF-7 cells. The genes were selected for significant regulation by both NAMPT and NMNAT-1 knockdown (p < 0.05, Student's t-test) with a fold change cutoff of $log_2 < -0.5$ or > 0.5.

Figure S5. Recruitment of SIRT1 and NMNAT-1 to *ATXN10* **and** *NELL2* **genes.** ChIPqPCR analysis of SIRT1 and FLAG-NMNAT-1 localization at upstream (approx. -10 kb), promoter and downstream (approx. +2 kb) regions of *ATXN10* and *NELL2* genes in MCF-7 cells. Error bars, SEM; $n \ge 3$ independent biological replicates. Statistical significance was determined by two-tailed Student's t-test (* p < 0.05, ** p < 0.01).

Figure S6. Knockdown of NAMPT and NMNAT-1 did not change SIRT1 recruitment to target gene promoters. ChIP-qPCR analysis of SIRT1 localization at promoter regions of target genes in MCF-7 cells. Error bars, SEM; $n \ge 3$ independent biological replicates.

REFERENCES

- 1. Zhou, T., Kurnasov, O., Tomchick, D. R., Binns, D. D., Grishin, N. V., Marquez, V. E., Osterman, A. L., and Zhang, H. (2002) *J Biol Chem* **277**(15), 13148-13154
- 2. Araki, T., Sasaki, Y., and Milbrandt, J. (2004) Science 305(5686), 1010-1013
- 3. Wang, T., Zhang, X., Bheda, P., Revollo, J. R., Imai, S., and Wolberger, C. (2006) *Nat Struct Mol Biol* **13**(7), 661-662