ARTICLE IN PRESS

Supplemental data

Figure S1. HSC derived adipocytes in multiple sites *in vivo*. Peritoneal (A-D and M-P), omental (E-H) and peri-nephric (I-L) fat pads from mice transplanted with a clonal population of cells derived from a single EGFP⁺ HSC were sectioned (5 μm) and examined using high magnification epi-fluorescent and DIC microscopy. Shown are representative sections from each. Numerous EGFP⁺ cells (A, E, I, M, arrows) with characteristic morphology of adipocytes (B, F, J, N, arrows), were observed. Sections were stained using antibodies to leptin (C, G, K, O). Superimposition of the green EGFP images and red images of leptin demonstrate co-expression of EGFP and leptin (D, H, L, P, arrows). Panels M-P show EGFP expression, DIC and negative control for leptin staining, respectively. Scale bar in A-P equals 25 μm.

Figure S2. Analysis of nuclear DNA content of cultured adipocytes. The adipocytes were fixed in 70% ethanol and stained with propidium iodide in the presence of RNase. Controls are B16 melanoma cells and peripheral blood (PB) MNCs. The left peaks indicate cells in G_0/G_1 and the right peaks G_2/M states in adipocytes and PB MNCs.

ARTICLE IN PRESS

Primer			GeneBank	Amplicon	Та
Name	Sequence 5`-3`		Accession #	Size	°C
Resistin	TTGGCAGGACTGAGGTTCCAT	CCACTGAATCATCTCACCAGCC	NM_022984	211	58
PPAR- <i>γ</i>	GTGCCAGTTTCGATCCGTAGAA	TCCCTGGTCATGAATCCTTGG	NM_011146	201	58
PAI1	ACATGTTTAGTGCAACCCTGGC	GCCGAACCACAAAGAGAAAGG	NM_008871	201	60
Leptin	CATGTCCCTGTGGTTAGACCCT	ATCCCGTGTCAACAGTGTGCT	NM_008493	217	60
C/EBP-a	GCCCCTCAGTCCCTGTCTTTAG	ATGGTCCCCGTGTCCTCCTA	NM_007678	302	60
FABP4	TGAAATCACCGCAGACGACA	AGGCCTCTTCCTTTGGCTCAT	NM_024406	201	59
Sox9	TCCCAAAACCGACGTGCAA	TGCCGTAACTGCCAGTGTAGGT	NM_011448	242	62
HPRT	GCTGGTGAAAAGGACCTCTC	ATGGCCACAGGACTAGAACAC	J00423	254	62

Table S1. PCR primer sequences and GeneBank Accession Numbers

TnQTable2Ta, annealing temperature; PPAR- γ , peroxisome proliferator-activated receptor- γ ; PAI1, plasminogen activator inhibitor type 1; C/EBP- α , CCAAT/enhancer binding protein- α ; FABP4, fatty acid binding protein 4; Sox9, SRY-box containing gene 9; HPRT, hypoxanthine phosphoribosyl transferase.

Hematopoiesis							
Clone	Type of	Differe	ential co	unts, %			
Number	clones	n	m	Ε	Μ	Im	Adipogenesis
1	nmEM	84.0	6.5	7.5	2.0	0	+
2	nmEM	87.0	4.0	7.5	1.5	0	+ /
3	nmEM	62.5	12.0	20.5	2.0	3.0	+
4	nm	88.5	11.5	0	0	0	+
5	nmEM	57.5	12.5	29.5	0.5	0	+
6	nm	67.0	33.0	0	0	0	+
7	nmEM	56.5	33.0	10.0	0.5	0	+
8	nmEM	59.0	12.5	13.5	9.5	5.5	+
9	nE	92.0	0	8.0	0	0	-
10	nmE	79.0	6.0	15.0	0	0	+
11	nmEM	85.5	11.0	2.0	0.5	1.0	+
12	nmE	72.0	3.5	24.5	0	0	+
13	nmE	72.5	5.0	22.5	0	0	+
14	nmE	79.0	6.0	15.0	0	0	+
15	nmE	59.0	33.0	7.0	0	1.0	+
16	nm	67.5	30.5	0	0	2.0	+
17	nmEM	73.5	20.5	3.5	1.0	1.5	+
18	nmE	83.0	11.0	6.0	0	0	+
19	nmEM	43.5	22.5	28.5	1.0	4.5	+
20	nmEM	67.0	24.5	4.5	1.5	2.0	+
21	nmM	74.0	25.0	0	1.0	0	-
22	nmE	87.0	8.5	4.5	0	0	+
23	nmE	95.0	3.0	2.0	0	0	+
24	nmEM	40.0	8.5	49.5	2.0	0	-
25	nmM	76.0	23.0	0	1.0	0	+
26	nmE	91.5	4.5	4.0	0	0	+
27	nm	96.0	4.0	0	0	0	+
28	nmEM	69.0	5.5	19.0	1.5	5.0	+
29	nmE	81.0	9.0	8.0	0	2.0	+
30	nmE	68.5	10.5	20.5	0	0.5	-
31	nE	88.0	0	12.0	0	0	-
32	nmE	83.0	8.5	8.5	0	0	+
33	nmEM	60.0	10.0	27.5	2.5	0	+

 Table S2. Relationship between hematopoietic lineage expression and adipogenesis

 observed from single hematopoietic progenitors

34	n	100	0	0	0	0	-
35	nmE	65.0	23.0	6.5	0	5.5	+
36	nmE	61.5	34.0	4.5	0	0	+
37	nmEM	77.5	11.5	7.5	1.0	2.5	+
38	nmE	88.5	8.0	2.5	0	1.0	+
39	nm	82.5	17.5	0	0	0	+
40	nmE	89.0	8.5	2.5	0	0	-
41	nmEM	72.0	3.0	24.0	1.0	0	+
42	nmEM	75.5	7.5	14.5	1.0	1.5	+
43	nmEM	84.0	12.5	3.0	0.5	0	+
44	nmEM	65.5	9.5	24.5	0.5	0	+)
45	nmEM	89.0	6.5	3.0	1.5	0	+
46	nmEM	32.5	23.0	37.5	1.5	5.5	+
47	nmEM	33.0	36.5	20.0	1.0	9.5	+
48	nmEM	53.5	14.0	8.5	0.5	23.5	+
49	nmE	63.0	33.0	4.0	0	0	+
50	nmE	38.5	50.0	3.5	0	8.0	+
51	nmEM	55.5	20.5	14.0	5.5	4.5	+
52	nmE	63.5	23.5	13.0	0	0	+
53	nE	93.5	0	6.5	0	0	-
54	nmEM	18.0	53.5	25.0	0.5	3.0	+
55	nmEM	40.0	12.0	35.5	3.5	9.0	+
56	nmEM	19.5	8.5	46.0	2.0	24.0	+
57	nmEM	25.0	20.5	30.0	2.0	22.5	+
58	nmE	42.5	19.5	13.0	0	25.0	+
59	nmEM	66.5	7.0	12.5	2.0	12.0	+
60	nmEM	55.5	14.5	23.0	2.0	5.0	+
61	nmE	45.5	45.0	9.5	0	0	+
62	nmE	76.0	9.0	10.5	0	4.5	+
63	nmEM	70.0	18.5	3.5	0.5	7.5	+
64	nmEM	31.5	15.5	38.0	1.5	13.5	+
65	nmE	45.5	48.5	6.0	0	0	+
66	nmE	52.5	26.5	21.0	0	0	+
67	nmEM	70.0	12.0	10.5	1.0	6.5	+
68	nmE	54.0	28.5	7.5	0.5	9.5	+
69	nmE	74.0	15.0	11.0	0	0	+
70	nmE	81.5	7.0	11.5	0	0	+
71	nmE	43.5	40.0	11.0	0	5.5	+

72	nmEM	77.0	9.5	3.0	2.0	8.5	+
73	nmE	48.5	20.0	31.5	0	0	+
74	nmEM	69.5	16.0	9.0	2.0	3.5	+
75	m	0	100	0	0	0	+
76	nmE	72.0	11.0	14.5	0	2.5	+
77	m	0	100	0	0	0	+
78	m	0	100	0	0	0	+
79	nmE	53.5	29.0	17.5	0	0	+
80	nmE	39.0	18.0	18.0	0	25.0	+
81	nmE	56.5	37.5	6.0	0	0	4

TnQTable3Twelve days after single cell deposition and culture, smears were made from individual samples and stained with May-Grünwald Giemsa. Differential counting was carried out on 200 cells. n indicates neutrophil; m, macrophage/monocyte; E, erythrocyte; M, megakaryocyte and Im, immature cell.

42

