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Summary

Microarrays are one of the most widely used high-throughput technologies. One of the main

problems in the area is that conventional estimates of the variances required in the t-statistic

and other statistics are unreliable due to the small number of replications. Various methods have

been proposed in the literature to overcome this lack of degrees of freedom problem. In this context,

it is commonly observed that the variance increases proportionally with the intensity level, which

has led many authors to assume that the variance is a function of the mean. Here we concentrate on

estimation of the variance as a function of an unknown mean in two models: the constant coefficient

of variation model and the quadratic variance-mean model.

Because the means are unknown and estimated with few degrees of freedom, naive methods that

use the sample mean in place of the true mean are generally biased because of the errors-in-variables

phenomenon. In this paper we propose three methods for overcoming this bias. The first two are

variations on the theme of the so-called heteroscedastic-SIMEX estimator, modified to consistently

estimate the variance function. The third class of estimators is entirely different, being based on

semiparametric information calculations. Simulations show the power of our methods and their

lack of bias compared to the naive method that ignores the measurement error. The methodology

is illustrated using microarray data from leukemia patients.

Some Key Words: Heteroscedasticity; Measurement error; Microarray; Semiparametric meth-

ods; Simulation-extrapolation; Variance function estimation.

Short Title: Variance Function Estimation



1 Introduction

Microarrays are one of the most widely used high-throughput technologies, enabling scientists to

simultaneously measure the expression of thousands of genes (Nguyen, Arpat, Wang and Carroll

2002, Leung and Cavalieri 2003). A microarray experiment typically involves a large number of

genes and a relatively small number of replications. This new paradigm presents many challenges to

standard statistical methods. For example, the standard t-test for detecting differentially expressed

genes under two experimental conditions usually has low power (Callow, Dudoit, Gong, Speed and

Rubin 2000, Cui, Hwang, Qiu, Blades and Churchill 2005).

One of the main problems is that conventional estimates of the variances required in the t-

statistic and other statistics are unreliable due to the small number of replications. Various methods

have been proposed in the literature to overcome this lack of degrees of freedom problem (Rocke and

Durbin 2001, Kamb and Ramaswami 2001, Huang and Pan 2002, Storey and Tibshirani 2003, Lin,

Nadler, Attie and Yandell 2003, Jain, Thatte, Braciale, Ley, O’Connell and Lee 2003, Strimmer

2003, Tong and Wang 2006). A key idea for getting better estimates of variances is to borrow

information from different genes with similar variances. It is commonly observed that the variance

increases proportionally with the intensity level, which has led many authors to assume that the

variance is a function of the mean (Chen, Dougherty and Bittner 1997, Rocke and Durbin 2001,

Huang and Pan 2002). Chen et al. (1997), Rocke and Durbin (2001), Chen, Kamat, Dougherty,

Bittner, Meltzer and Trent (2002) and Weng, Dai, Zhan, He, Stepaniants and Bassett (2006)

modeled the variance-mean function parametrically while Kamb and Ramaswami (2001), Huang

and Pan (2002), Lin et al. (2003) and Jain et al. (2003) modeled it nonparametrically. We will

limit ourself to parametric variance-mean models in this article. Specifically, for simplicity and

applicability in microarray data analysis, we will concentrate on two models: the constant coefficient

of variation model proposed by Chen et al. (1997) and the quadratic variance-mean model proposed

by Rocke and Durbin (2001) and Chen et al. (2002). Of course, our results can be generalized to

other parametric models, but since the two mentioned about are often used, we confine our attention

to them.

Strimmer (2003) fitted the quadratic variance-mean model using quasi-likelihood. He estimated

parameters in the variance function together with all mean parameters for each gene. Since the

number of genes is large, it is likely that the estimates of variance parameters are inconsistent,

i.e., this is a Neyman-Scott type problem. Strimmer found that the variance parameters are un-
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derestimated in his simulations. An alternative approach which could lead to consistent estimates

of variance parameters is to fit a variance-mean model using reduced data consisting of sample

means and variances (Huang and Pan 2002). However, as we will illustrate in this article, due to

sampling error that has a similar effect here as measurement errors, which has not been noted in

the literature, naive estimates based on sample means and variances are inconsistent. We will also

show that the well-known simulation extrapolation (SIMEX) method fails to correct biases in some

estimators and propose new consistent estimators.

Our key insight into this problem is that technically it is closely related to a measurement er-

ror problem (Carroll, Ruppert, Stefanski and Crainiceanu 2006) where the measurement error has

nonconstant variance and the structure of the variance function is of interest. Thus it is amenable

to analyses similar to measurement error models. However, because of the special structure of the

problem, where independence between the measurement error and regression model as in classical

measurement error model fails, and the fact that it is the variance function itself that is of inter-

est, direct application of measurement error methods typically does not work. This requires new

methods that do not exist in the standard measurement error literature.

In this paper, we propose two methods for attacking the problem.

• The first is a novel modification of the SIMEX method, which we call the permutation SIMEX.

The key notion is that the ordinary SIMEX method requires that the responses and the

additional noise added in a part of the algorithm be independent. In our problem, this

independence does not hold. Our method breaks this connection between the response and

the noise, thus allowing the possibility of consistent estimation that classical SIMEX is not

able to obtain.

• The second approach is based on our insight of casting the problem in a semiparametric

framework while treating the unobservable variable distribution as a nuisance parameter.

We employ a projection approach to achieve consistency without making any distributional

assumptions about the mean gene expression.

We consider an asymptotic approach for increasing number of genes and fixed number of repli-

cations. Section 2 introduces the model and briefly describes a moment estimator and a regres-

sion estimator for the constant coefficient of variation model and the quadratic variation model,

respectively. We show that the naive estimators are inconsistent. Section 3 applies a simulation

extrapolation (SIMEX) approach to the moment estimators and shows that the resulting estimators
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are consistent. Section 4 illustrates that in general, SIMEX is prone to be implemented improperly,

because of the special structure of our problem. A novel modified SIMEX-type methodology that

applies to all parametric models is described. Because it is based on a permutation-type philoso-

phy, it is termed permutation SIMEX. Section 5 takes an entirely different approach, and casts this

problem within the context of semiparametric models (Bickel, Klaassen, Ritov and Wellner 1993).

We show how to construct general estimators that are consistent and have local semiparametric

efficiency. We apply the methods to a data example in Section 6 and conduct simulation studies

in Section 7. Discussion and concluding remarks are given in Section 8. All the technical deriva-

tions are provided in an Appendix. Derivations that are largely algebraic in nature are included in

Supplemental Materials available at http://www.pstat.ucsb.edu/faculty/yuedong. Computer code

is also available at the same web site.

2 The Model

The central model of interest arising from microarray data analysis has the form

Yi,j = Xi + g1/2(Xi; θ)ǫi,j , i = 1, · · · , n; j = 1, · · · , m, (1)

where Yi,j is the jth replicate of observed expression level of gene i, Xi is the expected expression

level of gene i, ǫi,j are independent random errors with mean 0, variance 1 and at least finite fourth

moments, and θ is a d-dimensional parameter vector. For convenience, throughout the paper we

assume that ǫi,j is a standard normal random variable. As in any SIMEX-type method, strictly

speaking this normality is required, although it is well-known that the methods are robust to

modest departures from normality (Carroll et al, 2006, p. 101). The semiparametric methods can

be applied for any distribution. Our goal is to estimate θ in the variance function g(·) from the

observations Yij ’s, for i = 1, . . . , n, j = 1, . . . , m.

The most popular parametric models for the variance function in the microarray data analysis

literature include the constant coefficient of variation model and the quadratic variance-mean model.

The constant coefficient of variation model has the form

g(x; θ) = θx2, θ ≥ 0. (2)

Chen et al. (1997) assumed this model for cDNA microarray data. While it is adequate for genes

with high expression levels, it is inaccurate when the signal is weak in comparison to the background.
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To overcome this problem, Rocke and Durbin (2001), Chen et al. (2002) and Strimmer (2003)

considered the following quadratic model:

g(x; θ) = α + βx2, α ≥ 0, β ≥ 0, (3)

where θ = (α, β). For ease of exposition, we assume that the background (stray) signal has

been removed. One may estimate the background signal by including a linear term in model (3)

(Strimmer 2003).

For simplicity, we use the notations g(x; θ) and g(x) interchangeably. Let Y i,· be the sample

mean for the ith unit, and let Si be the sample variance based on Yi,j . In the hypothetical situation

when X is observed, two simple consistent estimators can be obtained using either the method

of moments or least squares (LS). For the constant coefficient of variation model (2), the two

estimators have the form

θ̂M =
n−1

∑n
i=1 Si

n−1
∑n

i=1 X2
i

; (4)

and θ̂R , argmin
θ

{
n−1

n∑

i=1

(Si − θX2
i )2

}
=

n−1
∑n

i=1 X2
i Si

n−1
∑n

i=1 X4
i

, (5)

while for the quadratic model (3), they are respectively given as

α̂M = n−1
n∑

i=1

Si − β̂Mn−1
n∑

i=1

X2
i ,

β̂M =

√
m−1
m+1n−1

∑n
i=1 S2

i − (n−1
∑n

i=1 Si)2

n−1
∑n

i=1 X4
i − {n−1

∑n
i=1 X2

i }2
; (6)

and α̂R = n−1
n∑

i=1

Si − β̂Rn−1
n∑

i=1

X2
i ,

β̂R =
n−1

∑n
i=1 X2

i Si − (n−1
∑n

i=1 X2
i )(n−1

∑n
i=1 Si)

n−1
∑n

i=1 X4
i − {n−1

∑n
i=1 X2

i }2
. (7)

The LS estimators in (7) are minimizers of n−1
∑n

i=1(Si−α−βX2
i )2. For simplicity, LS instead

of weighted LS is used. The moment estimator θ̂M is derived from the equation matching the first

moment θ
∑n

i=1 X2
i =

∑n
i=1 Si. The moment estimators α̂M and β̂M are derived from the following

equations matching the first two moments:

α + βn−1
n∑

i=1

X2
i = n−1

n∑

i=1

Si,

α2 + 2αβn−1
n∑

i=1

X2
i + β2n−1

n∑

i=1

X4
i =

m − 1

m + 1
n−1

n∑

i=1

S2
i . (8)
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Note that the normality assumption was used in the derivation of (8). We take the positive square

root for β since β ≥ 0.

Since Y i,· is an unbiased estimator of Xi, a naive approach in the absence of Xi’s is to replace

Xi in (4)-(7) by Y i,·. Unfortunately, this approach ignores the sampling error in Y i,·, and leads

to inconsistent estimates in general. See Lemmas 1 and 4 in the Appendix Sections A.1 and A.2

for detailed calculations. Asymptotically, the parameters θ in model (2) and β in model (3) are

under-estimated, resulting in the classic problem of attenuation to the null. Throughout this paper,

asymptotics are based on n → ∞ with a fixed m.

3 The SIMEX Moment Estimator

Models described in (1) with Xi unobserved are latent variable models. They can also be viewed

as heteroscedastic measurement error models, because by their very nature the Yi,j are error-prone

unbiased measures of Xi with non-constant variation. This viewpoint enables us to adopt a SIMEX

method developed in the heteroscedastic measurement error model framework, see Devanarayan

and Stefanski (2002). The method requires that we specify a method for parameter estimation

in the case that Xi is observed. When the method of moments is specified, the resulting SIMEX

algorithm is the following:

1. Generate Zb,i,j
iid∼ N(0, 1), i = 1, · · · , n, j = 1, · · · , m, b = 1, · · · , B. Let

cb,i,j =
Zb,i,j − Zb,i,·√∑m

j=1(Zb,i,j − Zb,i,·)2
.

2. For i = 1, · · · , n, j = 1, · · · , m, b = 1, · · · , B, let Wi,j = Yi,j and

Wb,i(ζ) = W i,· + (
ζ

m
)1/2

m∑

j=1

cb,i,jWi,j .

Then E{Wb,i(ζ)|Xi} = Xi and var{Wb,i(ζ)|Xi} = {(1 + ζ)/m}g(Xi).

3. Estimate θ by replacing Xi in (4) and (6) by Wb,i(ζ) for each b and then average over b.

4. Extrapolate back to ζ = −1.

In general, the essential idea of a SIMEX-type method is to add via simulation (the SIM step)

increasing amounts of measurement error to understand how measurement error affects a parameter
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estimate, and then to extrapolate (the EX step) back to the case of no measurement error. Steps

1, 2 and 3 above are the SIM step for heteroscedastic models, although see Section 4 for a subtlety.

Note that as ζ increases, since var{Wb,i(ζ)|Xi} = {(1 + ζ)/m}g(Xi), the measurement error also

increases, and in this sense the Wb,i(ζ) fulfill the requirement of adding noise. Also note that when

ζ = −1, var{Wb,i(ζ)|Xi} = 0, and hence extrapolating back to ζ = −1 is a means to obtain an

estimator that avoids bias.

The resulting estimators for models (2) and (3) as a function of ζ are

θ̂S.M (ζ) = B−1
B∑

b=1

n−1
∑n

i=1 Si

n−1
∑n

i=1 W 2
b,i(ζ)

;

and α̂S.M (ζ) = n−1
n∑

i=1

Si − β̂S.M (ζ)B−1
B∑

b=1

n−1
n∑

i=1

W 2
b,i(ζ),

β̂S.M (ζ) = B−1
B∑

b=1

√√√√
m−1
m+1n−1

∑n
i=1 S2

i − (n−1
∑n

i=1 Si)2

n−1
∑n

i=1 W 4
b,i(ζ) − {n−1

∑n
i=1 W 2

b,i(ζ)}2
,

respectively for any fixed extrapolant point ζ.

Theorem 1. The SIMEX approach leads to consistent moment estimators. Specifically, θ̂S.M (ζ)
p→

s1(ζ), α̂S.M (ζ)
p→ s2(ζ), β̂S.M (ζ)

p→ s3(ζ) as n → ∞, and s1(−1) = θ, s2(−1) = α, s3(−1) = β.

In addition, for any smooth extrapolant function including the correct one is used, the SIMEX

moment estimators are asymptotically normally distributed.

[Proof] The actual forms of sk’s can be found in Sections A.1, A.2 and A.3 in the Appendix. The

proofs are in the Supplemental Materials.

Remark 1. In Section A.3, we provide an explicit analysis of the SIMEX moment estimator θ̂S,M (ζ)

for the constant coefficient of variation model (2). Similar analysis can be performed for all other

variance models. In practice however, the bootstrap could be more effective and straightforward

albeit computationally expensive, see Carroll et al. (2006) and Section 6 for details.

4 The Permutation SIMEX Estimator

4.1 A Subtlety and Problems with the SIMEX Approach

There is a subtlety that makes Theorem 1 rather surprising. In general, SIMEX-type methods

and indeed most measurement error methods require nondifferential measurement error, i.e., the
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measurement error is independent of the response. However, this is not the case here: the “response”

Si can be shown to be not independent of Wb,i(ζ), and hence the measurement error in the SIMEX

steps is differential. This makes Theorem 1 very unexpected: the measurement error is differential

and yet SIMEX works for method of moments.

As it turns out, asymptotic validity of the SIMEX method described in the previous section is not

a general phenomenon, and it fails for the regression estimators. Consider the constant coefficient

of variation model (2) and the regression through the origin estimator (5). If Xi were observable,

then n−1
∑

i X
2
i Si/n−1

∑
i X

4
i is a consistent estimator of θ. However, if one uses heteroscedastic-

SIMEX and replaces Xi by Wb,i(ζ), the limiting value as n → ∞ for any ζ is (Lemma 2 in the

Appendix)

θ
1 + θ {(1 + ζ)/m + 2ζ/m(m − 1)}
1 + 6θ(1 + ζ)/m + 3θ2(1 + ζ)2/m2

,

and does not extrapolate to θ when ζ = −1. Similarly, the SIMEX approach fails to correct biases

in the regression estimators for the quadratic model (3) (Lemma 5 in the Appendix) as well.

In summary, the usual heteroscedastic-SIMEX approach is not a general prescription for this

problem, and we need new methods.

4.2 The Permutation SIMEX Estimator

The fact that Si and Wb,i(ζ) are constructed from the same repeated measures Yi,j ’s can cause

perfectly plausible estimators to fail to extrapolate correctly because of the induced correlation

of the response and the measurement errors. We now describe a method that guarantees correct

extrapolation, in the sense that the limiting value as first n → ∞ and then ζ = −1 is the correct

population-level quantity.

The main idea is to ”break” the connection between the response and the measurement er-

rors, and force nondifferential error, thus placing the estimator within the context of standard

heteroscedastic-SIMEX. The method requires that m ≥ 3. The algorithm is the following, where

the construction of W
(j)
b,i (ζ) is based on all observations except Yi,j and then its deviation S

(j)
i is

measured against the Yi,j , as in step 1b.

1. Do j = 1, · · · , m,
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(a) Generate Zb,i,k
iid∼ N(0, 1), i = 1, · · · , n, k = 1, · · · , m − 1, b = 1, · · · , B. Let

c
(j)
b,i,k =

Zb,i,k − Zb,i,·√∑m−1
k=1 (Zb,i,k − Zb,i,·)2

.

(b) For i = 1, · · · , n, k = 1, · · · , m − 1, b = 1, · · · , B, let

W
(j)
i,k =





Yi,k 1 ≤ k ≤ j − 1,

Yi,k+1 j ≤ k ≤ m − 1,

W
(j)
b,i (ζ) = W

(j)
i,· + (

ζ

m − 1
)1/2

m−1∑

k=1

c
(j)
b,i,kW

(j)
i,k ,

S
(j)
i = {Yi,j − W

(j)
b,i (ζ)}2.

Then E{W (j)
b,i (ζ)|Xi} = Xi and var{W (j)

b,i (ζ)|Xi} = 1+ζ
m−1g(Xi).

2. Note that, by construction, Yi,j and W
(j)
b,i (ζ) are independent, and hence the measurement

error in W
(j)
b,i (ζ) as a predictor of Yi,j is nondifferential. It is this fact that makes permutation

SIMEX work. Hence, estimate θ by replacing Si and Xi in (4)-(7) by S
(j)
i and W

(j)
b,i (ζ),

respectively, for each combination of j and b, and then average over all j and b.

3. Extrapolate to ζ = −1.

Remark 2. An alternative approach when m ≥ 4 is to split m replications into two parts with

at least two replications in each part: one part for computing sample variances (unbiased and

independent of simulated samples from SIMEX) and one part for the SIMEX procedure.

Because we have forced nondifferential measurement error by construction, the estimators in

step 2 can be either the moment estimator or the regression estimator. For any ζ and the constant

coefficient of variation model (2), the moments and regression estimators are respectively,

θ̂PS.M (ζ) = B−1
B∑

b=1

m−1
m∑

j=1

n−1
∑n

i=1 S
(j)
i

n−1
∑n

i=1{W
(j)
b,i (ζ)}2

;

θ̂PS.R(ζ) = B−1
B∑

b=1

m−1
m∑

j=1

n−1
∑n

i=1{W
(j)
b,i (ζ)}2S

(j)
i

n−1
∑n

i=1{W
(j)
b,i (ζ)}4

.
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For the quadratic model (3), the moment and regression estimators are, respectively,

α̂PS.M (ζ) = B−1
B∑

b=1

m−1
m∑

j=1

{
n−1

n∑

i=1

S
(j)
i − β̂PS.M (ζ)n−1

n∑

i=1

{W (j)
b,i (ζ)}2

}
,

β̂PS.M (ζ) = B−1
B∑

b=1

m−1
m∑

j=1

√√√√
1
3n

∑n
i=1(S

(j)
i )2 − (n−1

∑n
i=1 S

(j)
i )2

n−1
∑n

i=1{W
(j)
b,i (ζ)}4 − [n−1

∑n
i=1{W

(j)
b,i (ζ)}2]2

;

α̂PS.R(ζ) = B−1
B∑

b=1

m−1
m∑

j=1

{
n−1

n∑

i=1

S
(j)
i − β̂PS.Rn−1

n∑

i=1

{W (j)
b,i (ζ)}2

}
,

β̂PS.R(ζ) = B−1
B∑

b=1

m−1
m∑

j=1

n−1
∑n

i=1{W
(j)
b,i (ζ)}2S

(j)
i − [n−1

∑n
i=1{W

(j)
b,i (ζ)}2](n−1

∑n
i=1 S

(j)
i )

n−1
∑n

i=1{W
(j)
b,i (ζ)}4 − [n−1

∑n
i=1{W

(j)
b,i (ζ)}2]2

.

Theorem 2. The permutation SIMEX approach leads to consistent moment and regression esti-

mators. Specifically, θ̂PS.M (ζ)
p→ s4(ζ), α̂PS.M (ζ)

p→ s5(ζ), β̂PS.M (ζ)
p→ s6(ζ), θ̂PS.R(ζ)

p→ s7(ζ),

α̂PS.R(ζ)
p→ s8(ζ), β̂PS.R(ζ)

p→ s9(ζ) as n → ∞, and s4(−1) = s7(−1) = θ, s5(−1) = s8(−1) = α,

s6(−1) = s9(−1) = β.

[Proof] The actual forms of sk’s can be found in the Appendix in Sections A.1 and A.2. The proofs

are in the Supplemental Materials.

5 The Semiparametric Estimator

The insight of viewing the unobservable variable Xi as latent allows us to treat the problem in the

semiparametric framework. The choice of using a projection approach instead of estimating the

latent variable distribution, while still achieving consistency, makes the approach very appealing.

As far as we know, despite the fact that general semiparametric methodology is well developed, no

consistent estimator is known for this specific problem.

5.1 Method Development

To facilitate the computation of multi-dimensional integration, we consider here a slightly more

general model Yi,j = Xi + ajg
1/2(Xi; θ)ǫi,j . The only difference between this model and the one in

(1) is the inclusion of the known constants aj , j = 1, . . . , m. The original model (1) corresponds to

aj = 1. The need of such generalization will become evident when we look into the implementation

in Section 5.2. The probability density function (pdf) of a single observation Yi = (Yi,1, . . . , Yi,m)T
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is

pY(Yi, θ, η) = C

∫
η(Xi){g(Xi; θ)}−m/2 exp



− 1

g(Xi; θ)

m∑

j=1

(Yi,j − Xi)
2

2a2
j



 dµ(Xi),

where C is a constant and η(Xi) represents the unspecified density function of the latent variable

Xi. The problem of estimation of θ is thus a semiparametric estimation problem. We proceed to

construct a class of semiparametric estimator of θ through deriving its efficient influence function.

The efficient influence function contains the unknown nuisance parameter η(·), the estimation of

which is difficult. In line with several related techniques (Tsiatis and Ma 2004, Ma, Genton and

Tsiatis 2005), we avoid estimating η(·), and argue instead that various possibly misspecified η∗(·)
can be plugged into the result estimating equation to obtain a class of consistent estimators. When

η∗(·) happens to be the truth, denoted by η0(·), then the resulting estimator is optimal in terms of

its asymptotic efficiency.

The approach we take to derive the influence function is geometric. Consider the Hilbert space

H of all the mean zero functions of Y with finite variance, where the inner product of H is defined

as the covariance between two functions. Here all the expectations in H are calculated under

the true distribution of Y. We decompose H into a nuisance tangent space Λ and its orthogonal

complement Λ⊥, so that each function in Λ⊥ corresponds to an influence function (Bickel et al.

1993, Tsiatis 2006). The efficient influence function can be calculated via orthogonal projection of

the score function of pY(Yi, θ, η) with respect to θ. In the Appendix, we calculate the projection

to be

Seff = Sθ(Y) − E{f(X)|Y}, (9)

where Sθ(Y, θ, η) = ∂ log pY(Y, θ, η)/∂θ is the score function, and f(X) satisfies

E(Sθ|X) = E[E{f(X)|Y}|X]. (10)

Estimation based on the form of Seff given in (9) and (10) is not realistic, since it depends on

η(X), which itself is unknown and notoriously difficult to estimate. However, the structure of the

estimator allows us to plug in an “arbitrary” model η∗(X) into the computation and the consistency

will be retained. Intuitively, this is because E(Seff ) = E{E(Seff |X)}, while E(Seff |X) = 0 is

guaranteed by our operation in (10), whether or not computed under a true η.

The algorithm for the semiparametric estimator is the following:

1. Propose a distribution model for the latent variable Xi, say η∗(X).

10



2. Solve for f(X, θ) from the equation

E{S∗
θ
(Y)|X} = E[E∗{f(X, θ)|Y}|X], (11)

where S∗
θ
(Y) = E∗{∂ log pY|X(Y|X, θ)/∂θ|Y}, E∗ represents the expectation calculated

under η∗.

3. Form the estimating equation

n∑

i=1

S∗
eff (Yi, θ) = 0 (12)

where S∗
eff = S∗

θ
(Yi) − E∗{f(Xi, θ)|Yi}.

4. Solve (12) to obtain θ̂.

Various proposals for η∗ lead to different consistent estimators. Within this class of estimators,

the optimal one occurs when η∗(·) = η0(·). Hence, a practical and reasonable approach is to propose

an η∗(·) based on some averaged observations Ỹi,· =
∑m

j=1 ωjYi,j . The optimal weights ωj ’s naturally

should minimize the variance of Ỹi,·, and it can be easily verified to be ωj = a−2
j /(

∑m
j=1 a−2

j ).

5.2 Implementation

In implementing the algorithm, the integral equation (11) can be solved using various numerical

methods, for example, discretization, to convert it to a problem of solving a linear system. The

computation of E∗{f(X, θ)|Y} can be typically performed by the approximation

E∗{f(X, θ)|Y} ≈
∑K

ℓ=1 f(sℓ, θ)p(Y|sℓ)wℓ∑K
ℓ=1 p(Y|sℓ)wℓ

,

where the sℓ’s are the support points for X and the wℓ’s are weights we choose to approximate the

proposed η∗(X), and K is the total number of approximation points that we take.

The computation of conditional expectations E(·|X) is more challenging, especially when m is

large, because it involves an m-dimensional integration. Although many computational methods

exist to compute multiple dimensional integration, the nature of the problem itself dictates that

they are all highly time consuming. Incorporation of such an integration procedure in an estimating

equation solving procedure demands even more computational capacity. Thus, direct calculation

of (11) is not really feasible.

11



To lower the dimensionality, we propose to separate the m components of Yi into either two

or three groups, and use the average value of each group as if they formed the observed data. If

the original Yi,j has variance g(Xi, θ), then the average observation in the kth group has variance

a2
kg(Xi, θ), where a2

k is the inverse of the number of observations in the kth group. This is why we

considered the problem in a more general form than (1) in this section. With this convention in

mind, solving (11) is relatively straightforward. We then have the following result.

Theorem 3. Under regularity conditions, the estimator in (12) is asymptotically consistent, and

√
n(θ̂ − θ0) → N(0, A−1BA−T )

in distribution when n → ∞, where A = −E(∂S∗
eff/∂θ) and B = E(S∗

effS∗T
eff ). If η∗ = η0, then

A = B and A−1BA−T = B−1 achieves the optimal semiparametric efficiency bound.

Here, the regularity conditions mainly include some sufficient smoothness conditions to permit

differentiation and the exchange of differentiation and expectation. It also includes some nonsingu-

larity conditions of the variance matrix to exclude the existence of superefficient estimators. Details

of these regularity conditions can be found in Newey (1990). The variance matrix A−1BA−T can

be estimated via sample average to compute A and B. In choosing η∗ in our problem, we could use

Y i,·, i = 1, . . . , n to obtain an approximation of η0 and proceed with the estimator. Although the

approximation is not a valid consistent estimator of η0, it usually provides a reasonable approxi-

mation. The proof of Theorem 3 is in the Supplemental Materials.

6 Application

We applied our methods to the leukemia data from high-density Affymetrix oligonucleotide arrays

(Golub et al., 1999). After preprocessing and filtering as in Golub et al. (1999), the data consists of

expression level of 3051 genes from 38 bone marrow samples: 27 ALL (acute lymphocytic leukemia)

and 11 AML (acute myelogenous leukemia). The data were calibrated and background corrected.

To remove possible artifacts due to arrays, as in Huang and Pan (2002), observations on each array

are standardized by subtracting the median expression level and dividing by the inter-quantile

range of the expression levels on that array. To avoid negative values in the expression level, we

then subtract the smallest value across all tumors and all genes from the data set.

Strimmer (2003) used this data to illustrate a quasi-likelihood approach to the estimation of

parameters in the quadratic model. To illustrate our methods, we select two subsets, one with two

12



tumor samples (tumors 1 and 27) and the other with five tumor samples (tumors 1, 8, 13, 21 and

27), from 27 ALL samples. We fit the quadratic model to these two subsets using the naive moment,

SIMEX moment and semiparametric methods, where the η∗ function used in the semiparametric

method is the result of a nonparametric estimation of the averaged tumor sample densities. Obser-

vations and fits are shown in Figure 1. As expected, the naive estimator underestimates the trend.

Estimates based on other subsets of ALL samples behave similarly.
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Figure 1: Leukemia data illustration. Left: plot of the subset with two tumor samples. Right:
plot of the subset with five tumor samples. Points: sample variances vs sample means. Dashed,
long dashed and solid lines are the naive moment, SIMEX moment and semiparametric estimates,
respectively.

R, Matlab and Fortran codes have been developed for computing SIMEX and semiparametric

estimators. These codes are available from the first author. The CPU times required for computing

the parameter estimators are reasonable. For example, permutation SIMEX estimator for 5 selected

tumors took about 17 seconds CPU time. The semiparametric method took 7 and 98 seconds

respectively for 2 and 3 group estimators.

7 Simulations

We conducted two simulation experiments, one for the constant coefficient of variation model and

one for the quadratic variance-mean model. For all simulations, we set B = 200 for SIMEX

methods.
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7.1 Simulations in the Constant Coefficient of Variation Model

For the constant coefficient of variation model, we generate 100 simulation data sets from model

(2) with Xi = Uniform[1, 3]. We used a factorial design with n = 250 or 500, m = 3 or 9, and

θ = .25 or 1.

Tables 1 and 2 list squared biases, empirical variances, average of the estimated variances

and empirical mean squared errors. Labels “N.M” and “N.R” correspond to the naive moment

and regression estimators, “C.M” and “C.R” correspond to the corrected moment and regression

estimators defined in (A.3) and (A.4), “S.M” and “S.R” correspond to the SIMEX moment and

regression estimators, “PS.M” and “PS.R” correspond to the permutation SIMEX moment and

regression estimators, and “Semi.3” and “Semi.2” correspond to the semiparametric estimator,

where Yi is partitioned to three and two groups respectively. To emphasize the semiparametric

estimator’s ability to tolerate a misspecified model η∗, we used a normal model with a pre-fixed

mean 2 and variance 1 in the simulation.

The simulation confirms the asymptotic results: (a) the naive approach leads to underestimation

for both moment and regression estimators; (b) the SIMEX approach corrects bias in the moment

estimator, but does not corrects bias in the regression estimator and is badly biased when m = 3;

(c) the permutation SIMEX and semiparametric approaches corrects bias in both the moment and

regression estimators. Bias in the SIMEX regression estimator increases with θ and decreases with

m.

It is clear from Tables 1 and 2, that the moments-based approaches are all considerably more

efficient that the regression-based approaches. The SIMEX-type moments-based approaches are

sometimes less efficient and sometimes more efficient than the semiparametric approaches. It is

striking that the moments-based permutation SIMEX method is so competitive with the semi-

parametric method. When Yi’s are partitioned into three groups, the semiparametric estimation

improved over using two groups. However, such improvement requires much more computation,

hence in practice, one may be content with a two group partition.

For the SIMEX and permutation SIMEX, we used the bootstrap procedure to estimate vari-

ances of the moment and regression estimators. Variances of the semiparametric estimators were

estimated directly. Specifically, consider a data matrix with elements Yi,j given in model (1). The

1, 000 bootstrap samples were generated by resampling rows of the data matrix with replacement.

The SIMEX/permutation SIMEX moment/regression estimates were then computed for each boot-
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BSQ VAR EVAR MSE BSQ VAR EVAR MSE

m = 3 m = 9

θ = .25, n = 250

N.M 2.84 3.63 – 6.47 0.42 0.92 – 1.34

N.R 47.45 4.21 – 51.66 9.18 1.33 – 10.51

C.M 0.09 5.05 – 5.13 0.00 1.02 – 1.02

C.R 0.60 17.78 – 18.38 0.00 2.24 – 2.24

S.M 0.03 4.91 5.00 4.95 0.00 1.01 1.24 1.01

S.R 9.18 9.27 8.83 18.45 0.19 2.09 2.23 2.28

PS.M 0.10 5.08 5.14 5.18 0.00 1.02 1.24 1.03

PS.R 0.32 12.00 11.90 12.32 0.00 2.28 2.35 2.28

Semi.3 0.00 3.06 3.09 3.07 0.00 2.91 2.89 2.91

Semi.2 0.01 4.89 5.02 4.90 0.01 5.63 5.43 5.64

θ = .25, n = 500

N.M 3.58 1.68 – 5.25 0.41 0.58 – 0.99

N.R 49.71 1.33 – 51.04 8.82 0.75 – 9.57

C.M 0.00 2.31 – 2.31 0.00 0.64 – 0.64

C.R 0.11 5.04 – 5.15 0.00 1.26 – 1.26

S.M 0.00 2.27 2.39 2.27 0.00 0.64 0.60 0.64

S.R 10.59 2.72 4.22 13.30 0.12 1.19 1.09 1.31

PS.M 0.00 2.32 2.45 2.32 0.00 0.64 0.60 0.64

PS.R 0.04 4.15 5.62 4.18 0.00 1.20 1.14 1.20

Semi.3 0.00 1.59 1.55 1.59 0.00 1.53 1.45 1.53

Semi.2 0.00 2.72 2.52 2.72 0.00 3.05 2.74 3.05

Table 1: Squared bias (BSQ), sample variance (VAR), estimated variance (EVAR) and mean
squared error (MSE) for estimates of θ in the constant coefficient of variation model (2) as described
in Section 7.1 when θ = .25. All quantities are multiplied by 10000. The symbols “N”, “C”, “S”
and “PS” refer to the naive, corrected, SIMEX and Permutation-SIMEX estimators, respectively.
“M” and “R” refer to moments and least square estimators. Semi.j is the semiparametric estimator
partitioned into j groups.
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BSQ VAR EVAR MSE BSQ VAR EVAR MSE

m = 3 m = 9

θ = 1, n = 250

N.M 6.24 0.45 – 6.69 0.78 0.27 – 1.05

N.R 36.07 0.38 – 36.45 11.49 0.26 – 11.76

C.M 0.00 1.44 – 1.44 0.02 0.41 – 0.43

C.R 0.34 18.56 – 18.90 0.06 1.39 – 1.45

S.M 0.30 1.04 1.27 1.34 0.01 0.40 0.40 0.41

S.R 23.64 1.32 1.18 24.96 1.79 0.69 0.67 2.49

PS.M 0.00 1.43 1.88 1.44 0.03 0.42 0.42 0.44

PS.R 0.00 4.33 5.28 4.33 0.06 1.13 1.19 1.20

Semi.3 0.00 0.83 0.89 0.83 0.00 0.52 0.53 0.52

Semi.2 0.00 1.06 1.09 1.06 0.00 0.77 0.81 0.77

θ = 1, n = 500

N.M 6.30 0.21 – 6.51 0.99 0.16 – 1.15

N.R 35.14 0.20 – 35.34 11.85 0.15 – 12.01

C.M 0.00 0.67 – 0.67 0.00 0.25 – 0.25

C.R 0.51 7.36 – 7.88 0.01 0.84 – 0.85

S.M 0.32 0.47 0.62 0.79 0.00 0.24 0.19 0.24

S.R 22.26 0.68 0.59 22.94 1.96 0.40 0.33 2.36

PS.M 0.00 0.68 0.89 0.68 0.00 0.25 0.20 0.25

PS.R 0.03 2.13 2.44 2.16 0.02 0.69 0.56 0.71

Semi.3 0.00 0.42 0.44 0.42 0.00 0.27 0.26 0.27

Semi.2 0.00 0.58 0.54 0.58 0.00 0.44 0.41 0.44

Table 2: Squared bias (BSQ), sample variance (VAR), estimated variance (EVAR) and mean
squared error (MSE) for estimates of θ in the constant coefficient of variation model (2) as described
in Section 7.1 when θ = 1. All quantities are multiplied by 100. The symbols “N”, “C”, “S” and
“PS” refer to the naive, corrected, SIMEX and Permutation-SIMEX estimators, respectively. “M”
and “R” refer to moments and least square estimators. Semi.j is the semiparametric estimator
partitioned into j groups.
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strap sample. The variances of these estimates were used as the bootstrap estimates of variances.

The average of the estimated variances are also listed in Tables 1 and 2. The estimated variances

all match reasonably well with the empirical variances.

7.2 Simulations in the Quadratic Variation Model

In a simulation not reported here, where the true error distribution is normal, we have observed

that the permutation SIMEX method and the semiparametric method had similar performance.

However, to conduct a simulation that is based upon an actual data application, we use the

leukemia data in Section 6 to create simulation settings. We first created X as the collection of

gene-specific sample means from the 27 ALL samples with a few very large values excluded. We

then fit a quadratic variance model to the 27 ALL samples and create R as centered and scaled

residuals. We note that the distribution of R is asymmetric and has a heavy right tail. Therefore,

the assumptions made in our theory do not hold and this simulation provides a challenge to our

methods.

We generated 1000 simulation data sets according to model (1) with Xi sampled with replace-

ment from X , g(x) = .2037 + .1779x2 which is the semiparametric estimate based on tumors 1 and

27 (solid line in the left panel of Figure 1), and ǫi,j sampled with replacement from R. We set

n = 3051, the sample size of the leukemia data, and m = 5, 10, 15, 20.

Note that equation (8) is derived based on the normality assumption and especially on fourth

moments. As expected, we find that moment estimators have large biases in this simulation since the

distribution of R is far from normal. Therefore, the moment estimator is excluded. The asymptotic

extrapolant functions for α̂PS.R and β̂PS.R have the non-linear form (a+bζ+cζ2)/(c+dζ+ζ2) which

is difficult to implement. We tested various lower order polynomial approximations and found that

quartic polynomial functions have the best overall performance for α̂PS.R and β̂PS.R. Therefore,

in our simulations, quartic functions are used for permutation SIMEX regression estimators. To

implement the semiparametric method, we used a gamma model for η∗(X) with mean and variance

estimated from the generated samples. Such a gamma model allows for the heavier right tail we

see in R.

Table 3 lists squared biases, variances and the mean squared errors. Both naive and ordinary

SIMEX estimators overestimate α and underestimate β, drastically so when m is small. The bias

is especially large for the SIMEX estimator. Both findings are consistent with the simulation in
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Section 7.1. The permutation SIMEX estimator reduces both biases and variances in the estimates

of β, and the reduction is still substantial even when m equals 20. The permutation SIMEX

estimator increases the biases in the estimates of α, especially when m is small. Nevertheless,

except for m = 5, the permutation SIMEX estimator reduces variances and thus the MSEs of the

estimates of α.

The semiparametric estimator provides excellent estimation in terms of mean squared errors

for all m values. Noting that the table gives squared bias multiplied by 100, we see that even for

m = 20 it has an approximate 13% bias for estimating β. The gain in MSE is largely through

greatly decreased variability.

It is interesting to see what one would get from the regression-type approaches that SIMEX

is based on. To do this, we also computed least squares estimates in the ideal situation where

the true means X’s are used as the regressor. This ideal estimator serves as a benchmark. It

has small biases but variances that are approximately the same as that of permutation SIMEX.

Indeed, the semiparametric estimator performs better than the ideal regression estimator with

X known for all m. This is not surprising since the least squares used to derive all estimators

except the semiparametric estimator are sensitive to very large values in R. The performance of

the permutation SIMEX estimator is close to that of the ideal estimator when m = 15 or 20.

Therefore, it is likely that the performance of the permutation SIMEX estimator is caused by

non-robustness associated with the least square method and the fact that R has a heavy right

tail. A robust approach could have been used, although this is beyond the scope of this article. A

comparison with the ideal estimator indicates that the performance of both permutation SIMEX

and the semiparametric methods are acceptable, even when the distributional assumption about

the random errors is violated. We would like to caution that such seemingly robust behavior does

not have a theoretical justification and further research is needed before similar behavior can be

expected in general situations.

7.3 Simulation Conclusions and Recommendations

There are a few major points that can be gleaned from these simulations. The bias in the naive

moment and LS estimators can be substantial, whether the error distribution is normal or not.

When the errors are normal, both permutation SIMEX and the semiparametric methods perform

well. Which one works better depends on factors such as m. In practice, the errors could be far

from normal. In this case, the permutation SIMEX method performs well for the least squares
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BSQ VAR MSE BSQ VAR MSE

α = 0.2037 β = 0.1779

m = 5

N.R 1.3433 4.4321 5.7754 12.4622 23.1686 35.6308

S.R 65.0631 214.7426 279.8057 11.0667 35.6630 46.7297

PS.R 6.3592 19.3418 25.7011 0.9517 3.4602 4.4119

Semi.2 0.2218 0.8070 1.0288 0.0286 2.2274 2.2559

I.R 0.0037 1.7305 1.7342 0.0023 0.7512 0.7536

m = 10

N.R 0.1874 0.9545 1.1419 2.4045 3.9017 6.3062

S.R 6.1626 9.9917 16.1543 1.0934 2.2355 3.3289

PS.R 0.3231 0.4425 0.7656 0.0555 0.1278 0.1833

Semi.2 0.1008 0.2546 0.3554 0.0759 0.0630 0.1390

I.R 0.0001 0.4850 0.4851 0.0000 0.2314 0.2314

m = 15

N.R 0.0379 0.6179 0.6558 0.8797 2.3901 3.2698

S.R 2.2256 4.7006 6.9262 0.3842 1.1034 1.4876

PS.R 0.0404 0.4312 0.4716 0.0088 0.1575 0.1663

Semi.2 0.0053 0.1214 0.1268 0.0429 0.0457 0.0886

I.R 0.0004 0.3912 0.3916 0.0003 0.1823 0.1827

m = 20

N.R 0.0081 0.3162 0.3243 0.4198 1.0678 1.4876

S.R 1.1577 1.5012 2.6589 0.2022 0.4225 0.6247

PS.R 0.0101 0.2219 0.2320 0.0021 0.1019 0.1040

Semi.2 0.0020 0.1017 0.1037 0.0515 0.0365 0.0880

I.R 0.0000 0.2659 0.2659 0.0000 0.1273 0.1273

Table 3: Squared bias (BSQ), variance (VAR), and mean squared error (MSE) for the data-based
simulation of a quadratic variance function described in Section 7.2. All quantities are multiplied
by 100. Sample size is n = 3051. The symbols “N”, “S”, “PS” and “I” refer to the naive, SIMEX,
Permutation-SIMEX and Ideal estimators, respectively, where Ideal here means that X is observed.
“R” refer to the least square estimators. Semi.2 is the semiparametric estimator partitioned into 2
groups.
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estimator, however a robust estimator should be used. Whether the SIMEX and permutation

SIMEX methods will reduce bias in a robust estimator remain to be investigated, both in theory

and simulations. The semiparametric method performs well in the real data simulation, at least

when the chosen distribution for the errors is tuned to the data. It has the ability to be adapted to

other specified error distributions. For now, the semiparametric method is recommended. We note

that both permutation-SIMEX and the semiparametric method can be improved further: a better

extrapolant can improve the performance of permutation SIMEX, and a better approximation of

the high dimensional integrals can improve the performance of the semiparametric method.

8 Discussion

The key insights of this article are that the naive approach of ignoring sampling error will lead

to inconsistent estimates, and the well-known heteroscedastic-SIMEX approach to dealing with

the measurement error should be applied with caution, especially outside the constant coefficient

of variation model. Two parametric variance-mean models used in microarray data analysis, the

constant coefficient of variation model and the quadratic variance-mean model, are used to illus-

trate these insights. We believe that the inconsistency problems associated with the naive and

direct SIMEX estimators persist for general models and the proposed permutation SIMEX and

semiparametric methods work for general models.

The key to our analysis of SIMEX-type methods was to note that direct application of standard

heteroscedastic-SIMEX will not generally work because of an induced differential measurement

error. Our permutation SIMEX approach avoids this problem, forcing nondifferential error, and

in all cases considered equals or vastly outperforms ordinary heteroscedastic-SIMEX. The key to

our semiparametric method was to note that this is indeed a measurement error problem, and to

realize that grouping observations can lead to great gains in computationally efficiency. Both the

theoretical derivation and simulation studies demonstrated the satisfactory performance of our two

methods in terms of asymptotic consistency and valid inference.

One important future research topic is to evaluate the impact of the proposed methods on

microarray data analysis and compare them with alternative methods such as VarMixt (Delmar,

Robin and Daudin 2005) and data-driven Haar-Fisz (Motakis, Nason, Fryzlewicz and Rutter 2006).
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Appendix: Theoretical Results

This Appendix states the major results, with some derivations. Derivations that are largely alge-

braic in nature are included in Supplemental Materials available at http://www.pstat.ucsb.edu/

faculty/yuedong. The main techniques used in the proofs are law of large numbers and the central

limit theorem.

A.1 Limiting Results for the Constant Coefficient of Variation Model (2)

Lemma 1. The naive approach that replaces Xi by Y i,· has moments and regression estimates

that have limiting values

θ̂N.M ,
n−1

∑n
i=1 Si

n−1
∑n

i=1 Y
2
i,·

p→ θ

1 + θ/m
; (A.1)

θ̂N.R ,
n−1

∑n
i=1 Y

2
i,·Si

n−1
∑n

i=1 Y
4
i,·

p→ θ
1 + θ/m

1 + 6θ/m + 3θ2/m2
. (A.2)

Based on (A.1) and (A.2), simple corrections to the naive moment and regression estimators

are (taking positive solution in the regression estimator)

θ̂C.M =
θ̂N.M

1 − θ̂N.M/m
; (A.3)

θ̂C.R =
−(m − 6θ̂N.R) +

√
m2 − 8mθ̂N.R + 24θ̂

2

N.R

2(1 − 3θ̂N.R/m)
. (A.4)

It is easy to see that θ̂C.M is consistent. These corrected estimators work very well in simulations

(see Tables 1 and 2). However, it is difficult to get simple corrections for other estimators.
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Lemma 2. The SIMEX approach has moments and regression estimates that have limiting values

θ̂S.M (ζ) , B−1
B∑

b=1

n−1
∑n

i=1 Si

n−1
∑n

i=1 W 2
b,i(ζ)

p→ θ

1 + (1 + ζ)θ/m
;

θ̂S.R(ζ) , B−1
B∑

b=1

n−1
∑n

i=1 W 2
b,i(ζ)Si

n−1
∑n

i=1 W 4
b,i(ζ)

p→ θ
1 + θ {(1 + ζ)/m + 2ζ/m(m − 1)}
1 + 6θ(1 + ζ)/m + 3θ2(1 + ζ)2/m2

.

Lemma 3. The permutation SIMEX approach has moments and regression estimates that have

limiting values

θ̂PS.M (ζ) , B−1
B∑

b=1

m−1
m∑

j=1

n−1
∑n

i=1 S
(j)
i

n−1
∑n

i=1{W
(j)
b,i (ζ)}2

p→ θ
1 + (1 + ζ)/(m − 1)

1 + (1 + ζ)θ/(m − 1)
; (A.5)

θ̂PS.R(ζ) , B−1
B∑

b=1

m−1
m∑

j=1

n−1
∑n

i=1{W
(j)
b,i (ζ)}2S

(j)
i

n−1
∑n

i=1{W
(j)
b,i (ζ)}4

p→ θ
1 + (1 + θ)(1 + ζ)/(m − 1) + 3θ(1 + ζ)2/(m − 1)2

1 + 6θ(1 + ζ)/(m − 1) + 3θ2(1 + ζ)2/(m − 1)2
. (A.6)

A.2 Limiting Results for the Quadratic Variation Model (3)

Lemma 4. The naive approach that replaces Xi by Y i,· has moments and regression estimates

that have limiting values

α̂N.M , n−1
n∑

i=1

Si − β̂N.Mn−1
n∑

i=1

Y
2
i,·

p→ α + A;

β̂N.M ,

√√√√
m−1
m+1n−1

∑n
i=1 S2

i − (n−1
∑n

i=1 Si)2

n−1
∑n

i=1 Y
4
i,· − (n−1

∑n
i=1 Y

2
i,·)

2

p→ β

√
var(X2)

var(X2) + C
;

α̂N.R , n−1
n∑

i=1

Si − β̂N.Rn−1
n∑

i=1

Y
2
i,·

p→ α + D;

β̂N.R ,
n−1

∑n
i=1 Y

2
i,·Si − (n−1

∑n
i=1 Y

2
i,·)(n

−1
∑n

i=1 Si)

n−1
∑n

i=1 Y
4
i,· − (n−1

∑n
i=1 Y

2
i,·)

2

p→ β
(1 + β/m)var(X2)

var(X2) + C
,

where

A = βE(X2)

{
1 −

√
var(X2)

var(X2) + C

}
− β

m
E{g(X)}

√
var(X2)

var(X2) + C
,

C = m−1

{
4αE(X2) + 4βE(X4) + 2βvar(X2) +

2α2

m
+

4αβ

m
E(X2)

+
β2

m
var(X2) +

2β2

m
E(X4)

}
,

D =
β(mC − βvar{X2)}E(X2) − β(1 + β/m){α + βE(X2)}var(X2)

m{var(X2) + C} .
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Lemma 5. The SIMEX approach has moments and regression estimates that have limiting values

α̂S.M (ζ) , n−1
n∑

i=1

Si − B−1
B∑

b=1

β̂S.M (ζ)n−1
n∑

i=1

W 2
b,i(ζ)

p→ α + F ;

β̂S.M (ζ) , B−1
B∑

b=1

√√√√
m−1
m+1n−1

∑n
i=1 S2

i − (n−1
∑n

i=1 Si)2

n−1
∑n

i=1 W 4
b,i(ζ) − {n−1

∑n
i=1 W 2

b,i(ζ)}2

p→ β

√
var(X2)

var(X2) + (1 + ζ)G
;

α̂S.R(ζ) , n−1
n∑

i=1

Si − B−1
B∑

b=1

β̂S.R(ζ)n−1
n∑

i=1

W 2
b,i(ζ)

p→ α + H;

β̂S.R(ζ) , B−1
B∑

b=1

n−1
∑n

i=1 W 2
b,i(ζ)Si − {n−1

∑n
i=1 W 2

b,i(ζ)}(n−1
∑n

i=1 Si)

n−1
∑n

i=1 W 4
b,i(ζ) − {n−1

∑n
i=1 W 2

b,i(ζ)}2

p→ βvar(X2) + β2(1 + ζ)var(X2)/m + 2ζE{g2(X)}/{m(m − 1)}
var(X2) + (1 + ζ)G

,

where

F = βE(X2)

{
1 −

√
var(X2)

var(X2) + (1 + ζ)G

}
− β(1 + ζ)

m
E{g(X)}

√
var(X2)

var(X2) + (1 + ζ)G
,

G =
6

m
E{X2g(X)} − 2

m
E(X2)E{g(X)} +

3(1 + ζ)

m2
E{g2(X)} − (1 + ζ)

m2
[E{g(X)}]2,

H = βE(X2) − βvar(X2) + β2(1 + ζ)var(X2)/m + 2ζE{g2(X)}/{m(m − 1)}
var(X2) + (1 + ζ)G

×
[
E(X2) +

1 + ζ

m
E{g(X)}

]
.

Lemma 6. The permutation SIMEX approach has moments and regression estimates that have

limiting values

α̂PS.M (ζ) , B−1
B∑

b=1

m−1
m∑

j=1

{
n−1

n∑

i=1

S
(j)
i − β̂PS.M (ζ)n−1

n∑

i=1

{W (j)
b,i (ζ)}2

}
p→ α + (1 + ζ)I;

β̂PS.M (ζ) , B−1
B∑

b=1

m−1
m∑

j=1

√√√√
1
3n

∑n
i=1(S

(j)
i )2 − (n−1

∑n
i=1 S

(j)
i )2

n−1
∑n

i=1{W
(j)
b,i (ζ)}4 − [n−1

∑n
i=1{W

(j)
b,i (ζ)}2]2

p→ β

√
var(X2) + (1 + ζ)J

var(X2) + (1 + ζ)K
;

α̂PS.R(ζ) , B−1
B∑

b=1

m−1
m∑

j=1

[
n−1

n∑

i=1

S
(j)
i − β̂PS.Rn−1

n∑

i=1

{W (j)
b,i (ζ)}2

]
p→ α + (1 + ζ)L;

β̂PS.R(ζ) , B−1
B∑

b=1

m−1
m∑

j=1

n−1
∑n

i=1{W
(j)
b,i (ζ)}2S

(j)
i − [n−1

∑n
i=1{W

(j)
b,i (ζ)}2](n−1

∑n
i=1 S

(j)
i )

n−1
∑n

i=1{W
(j)
b,i (ζ)}4 − [n−1

∑n
i=1{W

(j)
b,i (ζ)}2]2

p→ βvar(X2) + (1 + ζ)M

var(X2) + (1 + ζ)K
,
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where

I = βE(X2)

{
1 −

√
var(X2) + (1 + ζ)J

var(X2) + (1 + ζ)K

}

+
1 + ζ

m − 1
E{g(X)}

{
1 − β

√
var(X2) + (1 + ζ)J

var(X2) + (1 + ζ)K

}
,

J =
6

m − 1
E{g2(X)} − 2

m − 1
[E{g(X)}]2 +

3(1 + ζ)

(m − 1)2
E{g2(X)}

− (1 + ζ)

(m − 1)2
[E{g(X)}]2,

K =
6

m − 1
E{X2g(X)} − 2

m − 1
E(X2)E{g(X)} +

3(1 + ζ)

(m − 1)2
E{g2(X)}

− (1 + ζ)

(m − 1)2
[E{g(X)}]2,

L = E(X2)

{
β − βvar(X2) + (1 + ζ)M

var(X2) + (1 + ζ)K

}

+
1 + ζ

m − 1
E{g(X)}

{
1 − βvar(X2) + (1 + ζ)M

var(X2) + (1 + ζ)K

}
,

M =
β + β2

m − 1
var(X2) +

(1 + ζ)

(m − 1)2
{
3E{g2(X)} − [E{g(X)}]2

}
.

A.3 Asymptotic Normality of SIMEX Estimates

Asymptotic normality for all the estimators follows along the same lines as the asymptotic theory

for constant-variation SIMEX (Carroll, Lombard, Kuechenhoff and Stefanski, 1996).

Here we merely sketch the argument for the SIMEX moment estimator θ̂S,M (ζ) for the constant

coefficient of variation model (2): all other estimators follow along similar lines. For any fixed b,

the estimator θ̂S,M,b(ζ) solves

0 = n−1
n∑

i=1

{Si − θ̂S,M,b(ζ)W 2
b,i(ζ)},

and of course θ̂S,M (ζ) = B−1
∑B

b=1 θ̂S,M,b(ζ). Using Fact 8, n−1
∑n

i=1 W 2
b,i(ζ)

p→ {1 + (1 +

ζ)/m}E(X2). As seen in Lemma 2,

θ̂S,M,b(ζ)
p→ θS.M (ζ) =

θ

1 + (1 + ζ)θ/m
.

Using standard estimating equation calculations, we see that for any fixed b,

{1 + (1 + ζ)/m}E(X2)n1/2
{

θ̂S,M,b(ζ) − θS.M (ζ)
}

= n−1/2
n∑

i=1

{Si − θS,M (ζ)W 2
b,i(ζ)} + op(1).

Since B is fixed, this means that

n1/2
{

θ̂S,M (ζ) − θS.M (ζ)
}

=
n−1/2

∑n
i=1{Si − θS,M (ζ)B−1

∑B
b=1 W 2

b,i(ζ)}
{1 + (1 + ζ)/m}E(X2)

+ op(1).
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Since

0 = E{Si − θS,M (ζ)B−1
B∑

b=1

W 2
b,i(ζ)},

the central limit theorem shows that for any finite set (ζ1 = 0, ..., ζM ),



n1/2
{

θ̂S,M (ζ1) − θS.M (ζ1)
}

...

n1/2
{

θ̂S,M (ζM ) − θS.M (ζM )
}




(A.7)

has a joint multivariate normal limiting distribution. The extrapolated (to ζ = −1) estimators are

smooth functions of (A.7), the delta-method shows that the extrapolated estimators are asymptot-

ically normally distributed as well.

It is possible to estimate the joint limiting covariance matrix of (A.7) using the following al-

gorithm. Because from Fact 8 (nB)−1
∑B

b=1

∑n
i=1 W 2

b,i(ζ) is a consistent estimate of {1 + (1 +

ζ)/m}E(X2), a consistent estimate of the asymptotic covariance matrix of (A.7) is just the sample

covariance matrix of the terms



{Si − θ̂S,M (ζ1)B
−1

∑B
b=1 W 2

b,i(ζ1)}/(nB)−1
∑B

b=1

∑n
i=1 W 2

b,i(ζ1)

...

{Si − θ̂S,M (ζM )B−1
∑B

b=1 W 2
b,i(ζM )}/(nB)−1

∑B
b=1

∑n
i=1 W 2

b,i(ζM )




.

A.4 Derivation of Λ, Λ
T and Seff

Replacing the nuisance function η(X) with pX(X, γ) for some finite dimensional parameter γ, then

the score function of pY(Y, θ, γ) with respect to γ has the form

Sγ = ∂ log

∫
pX(X, γ)pY(Y, θ)dµ(X)/∂γ = E{∂ log pX(X, γ)/∂γ|Y }

Since pX(X, γ) is an arbitrary pdf, ∂ log pX(X, γ) can be an arbitrary mean zero function of X.

Take into consideration all possible parametrization of η(X), we obtain the nuisance tangent space

Λ = [E{f(X)|Y} : ∀f(X) s.t. E(f) = 0].

The nuisance tangent space orthogonal complement Λ⊥ can be easily verified to be

Λ⊥ = {g(Y) : E(g|X) = 0}.

The projection of the score function to Λ⊥, Seff needs to satisfy two conditions, Seff ∈ Λ⊥ and

Sθ − Seff ∈ Λ. It can be easily verified that this leads to the expression in (9) and (10).
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Supplemental Materials: Sketch of Technical Arguments

The following text is included for refereeing purpose only. It will not be part of the paper.

Some Simple Facts

Assume that Xi are iid random variables which are independent of ǫi,j , and ǫi,j
iid∼ N(0, 1).

1. Y i,· = Xi + g1/2(Xi)ǫi,· where ǫi,· =
∑m

j=1 ǫi,j/m ∼ N(0, 1/m).

2. Si = g(Xi)Si,ǫ where Si,ǫ =
∑m

j=1(ǫi,j − ǫi,·)
2/(m − 1).

3. n−1
∑n

i=1 Y
2
i,·

p→ E(Y
2
1·) = E(X2

1 ) + E(g(X1))/m.

4. n−1
∑n

i=1 Si
p→ E(S1) = E(g(X1)).

5. n−1
∑n

i=1 Y
2
i,·Si

p→ E(Y
2
1·S1) = E(X2

1g(X1)) + E(g2(X1))/m.

6. n−1
∑n

i=1 Y
4
i,·

p→ E(Y
4
i,·) = E(X4

1 ) + 6E(X2
1g(X1))/m + 3E(g2(X1))/m2.

7. Wb,i(ζ) = Xi + g1/2(Xi)Ωi, where Ωi = ǫi,· + (ζ/m)1/2
∑m

j=1 cb,i,jǫi,j ∼ N(0, (1 + ζ)/m).

8. n−1
∑n

i=1 W 2
b,i(ζ)

p→ E(W 2
b,1(ζ)) = E(X2

1 ) + (1 + ζ)E(g(X1))/m.

9. n−1
∑n

i=1 W 4
b,i(ζ)

p→ E(W 4
b,1(ζ)) = E(X4

1 )+6(1+ ζ)E(X2
1g(X1))/m+3(1+ ζ)2E(g2(X1))/m2.

10. n−1
∑n

i=1 W 2
b,i(ζ)Si

p→ E(W 2
b,1(ζ)S1) = E(X2

1g(X1))+{(1 + ζ)/m + 2ζ/m(m − 1)}E(g2(X1)).

11. n−1
∑n

i=1 S
(1)
i

p→ E(S
(1)
1 ) = (1 + (1 + ζ)/(m − 1))E(g(X1)).

12. n−1
∑n

i=1(W
(1)
b,i (ζ))2S

(1)
i

p→ E{(W (1)
b,1 (ζ))2S

(1)
i }

= E(X2
1g(X1)) + (1 + ζ){E(X2

1g(X1)) + E(g2(X1))}/(m− 1) + 3(1 + ζ)2E(g2(X1))/(m− 1)2.

13. n−1
∑n

i=1 S2
i

p→ E(S2
1) = (m + 1)E(g2(X1))/(m − 1).

14. n−1
∑n

i=1(S
(1)
i )2

p→ E(S
(1)
1 )2 = 3(1 + (1 + ζ)/(m − 1))2E(g2(X1)).

[Proof of 10]

E(W 2
b,1(ζ)S1) = E(X2

1g(X1)) + 2E(X1g
3/2(X1))E(Ω1S1,ǫ) + E(g2(X1))E(Ω2

1S1,ǫ).

It is easy to see that E(Ω1S1,ǫ) = 0. Let

Ω2
1 = ǫ21,· + 2(

ζ

m
)1/2ǫ1,·

m∑

j=1

cb,1,jǫ1,j +
ζ

m
(

m∑

j=1

cb,1,jǫ1,j)
2 , A1 + A2 + A3.

Since ǫ1,· is independent of S1,ǫ, we have

E(A1S1,ǫ) = m−1. (8)
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Now

E(A2S1,ǫ) =
2(ζ/m)1/2

m − 1



m−1E




m∑

j=1

ǫ1,j

m∑

k=1

cb,1,kǫ1,k

m∑

l=1

ǫ21,l


 − mE

(
ǫ3i,·

m∑

k=1

cb,1,kǫ1,k

)



=
2(ζ/m)1/2

m(m − 1)



E




m∑

j=1

cb,1,jǫ
4
1,j


 + E




m∑

j=1

∑

l 6=j

cb,1,jǫ
2
1,jǫ

2
1,l








=
2(ζ/m)1/2

m(m − 1)



3

m∑

j=1

cb,1,j + (m − 1)
m∑

j=1

cb,1,j





= 0, (9)

where we have used the facts that ǫ1,· and
∑m

k=1 cb,1,kǫ1,k are independent and
∑m

j=1 cb,1,j = 0.

Finally,

E(A3S1,ǫ) =
ζ

m(m − 1)
E








m∑

j=1

cb,1,jǫ1,j




2
m∑

j=1

ǫ21,j −




m∑

j=1

cb,1,jǫ1,j




2

mǫ21,·





=
ζ

m(m − 1)



E




m∑

j=1

c2
b,1,jǫ

2
1,j

m∑

k=1

ǫ21,k


 − mE




m∑

j=1

cb,1,jǫ1,j




2

E
(
ǫ21,·

)




=
ζ

m(m − 1)



E




m∑

j=1

c2
b,1,jǫ

4
1,j


 + E




m∑

j=1

m∑

k 6=j

c2
b,1,jǫ

2
1,jǫ

2
1,k


 − 1





=
ζ

m(m − 1)



3

m∑

j=1

c2
b,1,j + (m − 1)

m∑

j=1

c2
b,1,j − 1





=
(m + 1)ζ

m(m − 1)
, (10)

where we have used the fact that
∑m

j=1 c2
b,1,j = 1. Collecting terms, we have the fact 10.

[Proof of 11] Let

Ω
(j)
i =

1

m − 1

∑

k 6=j

ǫi,j + (
ζ

m − 1
)1/2

∑

k 6=j

c
(j)
b,i,kǫi,k ∼ N(0,

1 + ζ

m − 1
).

Ω
(j)
i is independent of ǫi,j . Then

E(S
(1)
1 ) = E(Y1,1 − W

(1)
b,1 (ζ))2

= E
{

g(X1)(ǫ1,1 − Ω
(1)
1 )2

}

= (1 +
1 + ζ

m − 1
)E(g(X1)).
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[Proof of 12]

E
{

W
(1)
b,1 (ζ)2S

(1)
1

}

= E
{

(X1 + g1/2(X1)Ω
(1)
1 )2(ǫ1,1 − Ω

(1)
1 )2g(X1)

}

= E
[{

X2
1 + 2X1g

1/2(X1)Ω
(1)
1 + g(X1)(Ω

(1)
1 )2

} {
ǫ21,1 − 2ǫ1,1Ω

(1)
1 + (Ω

(1)
1 )2

}
g(X1)

]

= E(X2
1g(X1)) +

1 + ζ

m − 1
E(X2

1g(X1)) +
1 + ζ

m − 1
E(g2(X1)) +

3(1 + ζ)2

(m − 1)2
E(g2(X1))

= E(X2
1g(X1)) +

1 + ζ

m − 1
(E(X2

1g(X1)) + E(g2(X1))) +
3(1 + ζ)2

(m − 1)2
E(g2(X1)).

[Proof of 14]

E(Y1,1 − W
(1)
b,1 (ζ))4

= E
{

g2(X1)(ǫ1,1 − Ω
(1)
1 )4

}

= {3 + 6(1 + ζ)/(m − 1) + 3(1 + ζ)2/(m − 1)2}E(g2(X1))

= 3(1 + (1 + ζ)/(m − 1))2E(g2(X1))

Proofs of Lemmas 1, 2 and 3

Since g(x) = θx2, then E{g(X)} = θE(X2), E{X2g(X)} = θE(X4) and E{g2(X)} = θ2E(X4).

Lemma 1 follows from facts 3 to 6. Lemma 2 follows from facts 4 to 8. Lemma 3 follows from facts

8, 9, 11, and 12.

Proof of Lemma 4

Since g(x) = α + βx2, then E{g(X)} = α + βE(X2), E{X2g(X)} = αE(X2) + βE(X4),

E{g2(X)} = α2+2αβE(X2)+β2E(X4), var{g(X)} = β2var(X2) and E{X2g(X)}−E(X2)E{g(X)} =

βvar(X2).

From facts 4 and 13,

m − 1

m + 1
n−1

n∑

i=1

S2
i − (n−1

n∑

i=1

Si)
2 p→ E(g2(X)) − (E(g(X)))2 = var(g(X)) = β2var(X2). (11)
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Using facts 3 and 6,

n−1
n∑

i=1

Y
4
i,· − (n−1

n∑

i=1

Y
2
i,·)

2

p→ E(X4) +
6

m
E(X2g(X)) +

3

m2
E(g2(X)) −

{
E(X2) + m−1E(g(X))

}2

= var(X2) +
4

m
E(X2g(X)) +

2

m

{
E(X2g(X)) − E(X2)E(g(X))

}
+

2

m2
E(g2(X))

+
1

m2
var(X2)

= var(X2) + C. (12)

Combining (11) and (12) leads to the result for β̂N.M . Now,

α̂N.M
p→ E(g(X)) − β

√
var(X2)

var(X2) + C

{
E(X2) + m−1E(g(X))

}

= α + βE(X2)

{
1 −

√
var(X2)

var(X2) + C

}
− β

m

√
var(X2)

var(X2) + C
E(g(X))

= α + A.

Using facts 3 to 5,

n−1
n∑

i=1

Y
2
i,·Si − (n−1

n∑

i=1

Y
2
i,·)(n

−1
n∑

i=1

Si)

p→ E(X2g(X)) + m−1E(g2(X)) −
{
E(X2) + m−1E(g(X))

}
E(g(X))

= E(X2g(X)) − E(X2)E(g(X)) + m−1var(g(X2))

= βvar(X2) +
β2

m
var(X2)

= β(1 +
β

m
)var(X2). (13)

Combining (13) and (12) leads to the result for β̂N.R. Now,

α̂N.R
p→ E(g(X)) − β

(1 + β/m)var(X2)

var(X2) + C

{
E(X2) + m−1E(g(X))

}

= α +
β(mC − βvar(X2))E(X2) − β(1 + β/m){α + βE(X2)}var(X2)

m(var(X2) + C)

= α + D.

Proof of Lemma 5
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Using facts 8 and 9,

n−1
n∑

i=1

W 4
b,i(ζ) − (n−1

n∑

i=1

W 2
b,i(ζ))2

p→ E(X4) +
6(1 + ζ)

m
E(X2g(X)) +

3(1 + ζ)2

m2
E(g2(X)) −

{
E(X2) +

1 + ζ

m
E(g(X))

}2

= var(X2) + (1 + ζ)G. (14)

Combining (11) and (14) leads to the result for β̂S.M . Now

α̂S.M
p→ E(g(X)) − β

√
var(X2)

var(X2) + G

{
E(X2) +

1 + ζ

m
E(g(X))

}

= α + βE(X2)

{
1 −

√
var(X2)

var(X2) + G

}
− (1 + ζ)β

m
E(g(X))

√
var(X2)

var(X2) + G

= α + F.

Using facts 4, 8 and 10,

n−1
n∑

i=1

W 2
b,i(ζ)Si − (n−1

n∑

i=1

W 2
b,i(ζ))(n−1

n∑

i=1

Si)

p→ E(X2g(X)) +

{
1 + ζ

m
+

2ζ

m(m − 1)

}
E(g2(X))

−
{

E(X2) +
1 + ζ

m
E(g(X))

}
E(g(X))

= βvar(X2) +
1 + ζ

m
β2var(X2) +

2ζ

m(m − 1)
E(g2(X)). (15)

Combining (15) and (14) leads to the result for β̂S.M . Result for α̂S.M is straightforward.

Proof of Lemma 6

We only need to show the results with j = 1. Using facts 11 and 14,

1

3n

n∑

i=1

(S
(1)
i )2 − (n−1

n∑

i=1

S
(1)
i )2

p→ (1 +
1 + ζ

m − 1
)2E(g2(X)) − (E(g(X)))2 = β2var(X2) + (1 + ζ)J.(16)

Using facts 8 and 9,

n−1
n∑

i=1

(W
(j)
b,i (ζ))4 − (n−1

n∑

i=1

(W
(j)
b,i (ζ))2)2

p→ E(X4) +
6(1 + ζ)

m − 1
E(X2g(X)) +

3(1 + ζ)2

(m − 1)2
E(g2(X)) −

{
E(X2) +

1 + ζ

m − 1
E(g(X))

}2

= var(X2) + (1 + ζ)K. (17)
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Combining (16) and (17) leads to the result of β̂PS.M . Now

α̂PS.M
p→ E(g(X)) +

1 + ζ

m − 1
E(g(X)) − β

√
var(X2) + (1 + ζ)J

var(X2) + (1 + ζ)K

{
E(X2) +

1 + ζ

m − 1
E(g(X))

}

= α + I.

Using facts 8, 11 and 12,

n−1
n∑

i=1

(W
(1)
b,i (ζ))2S

(1)
i − (n−1

n∑

i=1

(W
(1)
b,i (ζ))2)(n−1

n∑

i=1

S
(1)
i )

p→ E(X2g(X)) +
1 + ζ

m − 1

{
E(X2g(X)) + E(g2(X))

}
+

3(1 + ζ)2

(m − 1)2
E(g2(X))

−
{

E(X2) +
1 + ζ

m − 1
E(g(X))

} {
1 +

1 + ζ

m − 1

}
E(g(X))

= βvar(X2) +
1 + ζ

m − 1

{
E(X2g(X)) − E(X2)E(g(X)) + E(g2(X)) − (E(g(X)))2

}

+
(1 + ζ)

(m − 1)2
{
3E(g2(X)) − (E(g(X)))2

}

= βvar(X2) + (1 + ζ)M. (18)

Combining (18) and (17) leads to the result of β̂PS.R. Now

α̂PS.R

p→ E(g(X)) +
1 + ζ

m − 1
E(g(X)) − βvar(X2) + (1 + ζ)M

var(X2) + (1 + ζ)K

{
E(X2) +

1 + ζ

m − 1
E(g(X))

}

= α + E(X2)

{
β − βvar(X2) + (1 + ζ)M

var(X2) + (1 + ζ)K

}
+

1 + ζ

m − 1
E(g(X))

{
1 − βvar(X2) + (1 + ζ)M

var(X2) + (1 + ζ)K

}

= α + L.

Proof of Theorem 3

Assume the true value of θ is θ0. Using (12) we have

0 =
n∑

i=1

S∗
eff (Yi, θ̂) =

n∑

i=1

S∗
eff (Yi, θ0) +

n∑

i=1

∂S∗
eff (Yi, θ

∗)

∂θ
T

(θ̂ − θ0),

where θ
∗ is in between θ0 and θ̂. Therefore,

√
n(θ̂ − θ0) =

1√
n

n∑

i=1

{
n−1

n∑

i=1

∂S∗
eff (Yi, θ

∗)

∂θ
T

}−1

S∗
eff (Yi, θ0)

=
1√
n

n∑

i=1

[
E

{
∂S∗

eff (Yi, θ
∗)

∂θ
T

}
+ op(1)

]−1

S∗
eff (Yi, θ0).
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Because of (11), E
{

S∗
eff (Yi, θ0)

}
= 0, hence

√
n(θ̂ − θ0) =

1√
n

n∑

i=1

[
E

{
∂S∗

eff (Yi, θ
∗)

∂θ
T

}]−1

S∗
eff (Yi, θ0) + op(1),

consequently, θ̂ is a root-n consistent, asymptotically normal estimator of θ0, with variance given

as A−1BA−T in Theorem 3. When η∗ = η0,

A = −E

{
∂Seff (Y, θ0)

∂θT

}
= −

∫
∂Seff (Y, θ0)

∂θT
pY(Y, θ0)dµ(Y)

=

∫
Seff (Y, θ0)

∂pY(Y, θ)

∂θ
T

|θ0
dµ(Y) =

∫
Seff (Y, θ0)

∂ log pY(Y, θ)

∂θ
T

|θ0
pY(Y, θ0)dµ(Y)

= E(SeffST
θ
) = E(SeffST

eff ) = B,

because Seff is the orthogonal projection of Sθ.
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