cSupporting Information

Qiang, et al. 10.1073/pnas.0907360106

SI Text Synthesis of 5-19F-DPPC

Scheme 1. Synthesis of 5-19F-palmitic acid.

[Scheme S1](http://www.pnas.org/cgi/data/0907360106/DCSupplemental/Supplemental_PDF#nameddest=SS1) summarizes the synthesis of 5-19F-palmitic acid which was used to make 1-palmitoyl-2-(5-fluoropalmitoyl)-*sn*-glycero-3-phosphocholine (5-¹⁹F-DPPC) (1–5). The overall yield of 5-¹⁹F-palmitic acid was \approx 40% and each step was monitored by using thin layer chromatography with iodine and phosphomolybdic acid as visualization reagents. The intermediate products were purified by using silica gel column chromatography with a mixture of pentane and ethyl acetate as developing solutions. The 5-¹⁹F-DPPC was synthesized by Avanti Polar Lipids.

Reaction conditions in Scheme S1 included: (*i*) 68.2 g of undecyl bromide in 350 mL of dry diethyl ether was added to 6.94 g Mg in 100 mL of dry diethyl ether. Reflux at 34 °C for 2 h. (*ii*) The diethyl ether was removed and 28.0 g of methyl 4-(chloro-formyl) butyrate in 100 mL of dry benzene was added to the Grignard solution from step a and 27.5 g of CdCl₂ in 350 mL of dry benzene. Reflux at 78 °C for 1 h. *(iii)* NaBH₄, NaH₂PO₄ and 5-keto-methyl palmitate each at 1 M concentration were dissolved in dry methanol. The mixture was stirred at 0 °C for 15 min and at ambient temperature for 1 h. (*iv*) 5-hydroxy-methyl palmitate and 0.5 M tosyl chloride each at 0.5 M concentration were dissolved in dry CH₂Cl₂ with 0.025 M 4-(dimethylamino)pyridine. The mixture was cooled and held at 0 °C, dry pyridine was added dropwise >40 min to reach a final concentration 0.5 M, and then the mixture was stirred at 0 °C for 2 h. (*v*) 0.05 M 5-O-tosyl-methyl palmitate and 0.1 M tetrabutylammonium fluoride in dry CH3CN were stirred at ambient temperature for 96 h. (*vi*) 5-F-methyl palmitate and KOH powder were each added into dry methanol at 0 °C to reach a final concentration of 0.1 M of each reagent. The mixture was stirred at 0 °C for 2 h.

Sample Preparation. HFPmn and HFPmn_mut were synthesized manually by using Fmoc chemistry. HFPtr was synthesized by using a Cys cross-linking reaction between monomer and dimer building blocks (6). In Table 1, the residues that are C-terminal of Ser-23 are nonnative and act as 280 nm chromophores for HFP quantitation (W), improve aqueous solubility (K), or are used for cross-linking (K and C). The line between K and C denotes a peptide bond between the Cys carbonyl and the Lys ε -NH and a line between two Cs denotes a disulfide bond. All peptides were purified by using reverse-phase HPLC with a H₂O-CH₃CN gradient containing 0.1% TFA and identified with MALDI-TOF mass spectrometry. Membrane preparation began with dissolution in chloroform of a mixture of 16 μ mol DTPC, 4 μ mol DTPG, 2 μ mol 16-¹⁹F-DPPC (purchased from Avanti Polar Lipids) or 5 -¹⁹F-DPPC, and 10 μ mol cholesterol. The chloroform was removed under a stream of nitrogen followed by overnight vacuum pumping. The lipid film was suspended in 2 mL of 5 mM *N*-(2-hydroxy-ethyl)piperazine-*N*-2-ethanesulfonic acid (Hepes) buffer with $pH = 7.0$ and 0.01% NaN₃ and homogenized with 10 freeze-thaw cycles. Large unilamellar vesicles were formed by extrusion through a polycarbonate filter with 100-nm diameter pores (Avestin). HFPmn or HFPmn_mut (0.8 μ mol) or HFPtr (0.27 μ mol) (as determined by using $\varepsilon_{280} = 5700$ cm⁻¹ M⁻¹ for HFPmn mut and HFPmn or $\varepsilon_{280} = 17100$ cm⁻¹ M⁻¹ for HFPtr) was dissolved in 2 mL of Hepes buffer, and the HFP and vesicle solutions were then gently vortexed together overnight. The mixture was ultracentrifuged at \approx 150,000 \times g for 5 h. The membrane pellet with associated bound HFP was transferred to a 4-mm diameter NMR rotor. Unbound HFP does not pellet under similar conditions (7).

Solid-State NMR Spectroscopy. Experiments were conducted on a 9.4 T solid-state NMR spectrometer (Varian Infinity Plus) with a quadruple-resonance magic angle spinning (MAS) probe equipped for 4-mm diameter rotors and tuned to ${}^{1}H$, ${}^{13}C$, ${}^{31}P$, and ${}^{19}F$ nuclei. The ¹³C shifts were externally referenced to the methylene resonance of adamantane at 40.5 ppm. The REDOR experiments were done by using a pulse sequence in which the dephasing period had one ¹³C π pulse per rotor cycle for the *S*₀ and *S*₁ acquisitions and one ³¹P or ¹⁹F π pulse per rotor cycle for the *S*₁ acquisition (8) and one ³¹P or ¹⁹F π pulse per rotor cycle for the S_1 acquisition (8). The dephasing period of the S_0 acquisition did not contain the ${}^{31}P$ or ¹⁹F π pulses. Experimental parameters included: 8.0 kHz M ramped ¹³C fields during 1-ms cross polarization; 50 kHz ¹³C and 50 kHz ³¹P or 33 kHz ¹⁹F π pulses during the dephasing period; 95 kHz 1H decoupling during the dephasing and acquisition periods; and 1-s recycle delay. Most of the setup of the NMR experiments was the same as described in earlier studies and included calibration of the ${}^{1}H$, ${}^{13}C$, and ${}^{31}P$ rf fields (6, 8). Nitrogen gas cooled to -50 °C was flowed over the sample to enhance signal-to-noise but this sample cooling does not affect HFP conformation (9). There is also no phase transition of the cholesterol-rich membranes between ambient and low temperature (10).

After acquisition of the REDOR NMR data, a 1 ppm region around the peak chemical shift of each S_0 and S_1 spectrum was integrated, and the integration values were denoted as S_0^{exp} and S_1^{exp} . The experimental normalized dephasing (ΔS / S_0 ^{exp} = $(S_0^{exp} - S_1^{exp})/S_0^{exp}$.

The 13CO-19F experiments were validated by using a lyophilized sample containing helical peptide F whose sequence EQLLKALEFLLKELLEKL was modified by substitution of Phe-9 with *p*-fluorophenylalanine (11). A 13CO label was placed at Leu-10 and the REDOR-determined ¹³CO-¹⁹F distance was 7.8 Å and correlated with the 7.1-Å distance between the Leu-10 carbonyl carbon and the Phe-9 aromatic C4 carbon in the crystal structure of nonfluorinated peptide F.

Effect of mol Fraction Fluorinated Lipid on (S/S0) exp. A 100% 16-19F-DPPC lipid sample forms a nonbilayer structure (12). To maintain bilayer structure in the NMR samples, the membrane composition was 16 μ mol DTPC, 4 μ mol DTPG, 10 μ mol cholesterol, and 2μ mol ¹⁹F-DPPC. This 0.09 lipid mol fraction of ¹⁹F-DPPC was initially determined with measurements on a series of samples which differed in their mol fraction of 5-¹⁹F-DPPC [\(Fig. S1\)](http://www.pnas.org/cgi/data/0907360106/DCSupplemental/Supplemental_PDF#nameddest=SF1). The choice of 0.09 mol fraction ¹⁹F-DPPC for subsequent samples was based on: (*i*) maximum ¹³CO-¹⁹F ($\Delta S/S_0$)^{exp}; and (*ii*) relatively constant $(\Delta S/S_0)$ ^{exp} over the 0.07–0.14 mol fraction range. Static ³¹P NMR spectra were consistent with overall bilayer structure in samples containing 0.09 mol fraction 5-¹⁹F-DPPC and HFPs (13).

Calculation of ($\Delta S/S_0$ **)**^{lab}. Removal of the natural abundance ¹³CO contribution to $(\Delta S/S_0)^{exp}$ resulted in $(\Delta S/S_0)^{lab}$ which reflected the labeled ¹³CO contribution to the experimental data. The experimental ¹³CO signals have three contributions: (1) labeled ¹³COs; (2) natural abundance HFP ¹³COs; and (3) natural abundance ¹³COs of the ¹⁹F-DPPC lipid. In each sample, the labeled S_0 ¹³CO contribution is assigned a value of 1, the fractional 13C natural abundance is 0.011, the ratio of unlabeled to labeled HFP residues is \approx 29, and the ¹⁹F-DPPC:HFP strand mol ratio is \approx 2.5 with two COs per ¹⁹F-DPPC.

$$
S_0^{exp} = S_0^{lab} + S_0^{na}(HFP) + S_0^{na}(DPPC) = 1 + (29 \times 0.011) + (2.5 \times 2 \times 0.011) = 1.374
$$
 [S1]

$$
S_1^{exp} = S_1^{lab} + S_1^{na}(HFP) + S_1^{na}(DPPC)
$$
 [S2]

$$
S_1^{na}(HFP) = S_0^{na}(HFP) \times g^{na}(HFP)
$$
\n
$$
(S3a)
$$

$$
S_1^{na}(DPPC) = S_0^{na}(DPPC) \times g^{na}(DPPC)
$$
 [S3b]

Calculation of the $g^{na}(HFP)$ and $g^{na}(DPPC)$ are discussed in the next paragraph. Algebraic manipulation of Eqs. **S1–S3** yields:

$$
\left(\frac{\Delta S}{S_0}\right)^{exp} = \frac{S_0^{exp} - S_1^{exp}}{S_0^{exp}} = \frac{1.374 - S_1^{lab} - [0.319 \times g^{na}(HFP)] - [0.055 \times g^{na}(DPPC)]}{1.374}
$$
 [S4]

$$
\left(\frac{\Delta S}{S_0}\right)^{lab} = \frac{S_0^{lab} - S_1^{lab}}{S_0^{lab}} = \left[1.374 \times \left(\frac{\Delta S}{S_0}\right)^{exp}\right] + \left[0.319 \times g^{na}(HFP)\right] + \left[0.055 \times g^{na}(DPPC)\right] - 0.374
$$
 [S5]

The $g^{na}(HFP)$ for each construct, dephasing time τ , and lipid nucleus type, i.e., ³¹P, 16⁻¹⁹F, or 5⁻¹⁹F, was approximated as the average of the $(S_1/S_0)^{exp}$ of all samples with these same parameters. This approximation considers that the HFP ¹³COs contribute $\approx 96\%$ of the *S*₀ signal (Eq. **S1**) and assumes that the distribution of membrane locations of the labeled ¹³CO sites is reflective of the average membrane location of the HFP. The $g^{na}(DPPC)$ for each τ and lipid nucleus ty ¹³CO-³¹P or ¹³CO-¹⁹F spin pair with details of the $(S_1/S_0)^{sim}$ calculations given in the next section. The $(S_1/S_0)^{sim}$ depends on internuclear distance and the ¹³CO-³¹P distance was set to 5.6 Å which is the experimentally derived average (lipid ¹³CO)-³¹P distance in a sample containing DPPC lipid and unlabeled HFPmn (8). The ¹³CO-(16-¹⁹F) and ¹³CO-(5-¹⁹F) distances were 5.6 Å and 15.2 Å, respectively, and were derived from a computational structure of gel phase DPPC (14). The *gna*(*HFP*) and *gna*(*DPPC*) are presented in [Table S2](http://www.pnas.org/cgi/data/0907360106/DCSupplemental/Supplemental_PDF#nameddest=ST2) and [Table S3.](http://www.pnas.org/cgi/data/0907360106/DCSupplemental/Supplemental_PDF#nameddest=ST3)

Fitting of ($\Delta S/S_0$ **)^{lab}**. For samples with significant nonzero $(\Delta S/S_0)^{lab}$, fitting was done with a model of two types of ¹³CO-³¹P or ¹³CO-¹⁹F spin pairs. One type had fractional population *f* and the other had population $1 - f$. The magnitude of dipolar coupling *d* was fitted for the *f* population and was set to 0 for the $1 - f$ population. The $1 - f$ population was included because many of the samples had $(\Delta S/S_0)^{lab}$ < 1 at large τ . The $(\Delta S/S_0)^{lab}$ were compared with:

$$
\left[\left(\frac{\Delta S}{S_0} \right) (d, \tau) \right]^{sim} = \left\{ 1 - [J_0(\sqrt{2}d\tau)]^2 + \left[2 \times \sum_{k=1}^5 \frac{[J_k(\sqrt{2}d\tau)]^2}{16k^2 - 1} \right] \right\}
$$
 [S6]

using:

AS.

 \overline{A}

$$
\chi^2(d,f) = \sum_{i=1}^T \frac{\left\{ \left(\frac{\Delta S}{S_0} \right)_i^{lab} - \left[f \times \left(\frac{\Delta S}{S_0} \left(d \right) \right)_i^{sim} \right] \right\}^2}{(\sigma_i^{lab})^2}
$$
 [S7]

where J_k is the *k*th order Bessel function of the first kind, each *i* corresponds to a particular value of τ , *T* is the number of REDOR data points, and σ^{lab} is the uncertainty of $(\Delta S/S_0)^{lab}$ (15). The fitting parameters in Eq. **S7** are *d* and *f*. Using Eq. **S5**, the σ^{lab} is calculated from σ^{exp} , the uncertainty in $(\Delta S/S_0)^{exp}$:

$$
\sigma^{exp} = \frac{\sqrt{S_0^2 \sigma_{S_1}^2 + S_1^2 \sigma_{S_0}^2}}{S_0^2}
$$
 [S8]

$$
\sigma^{lab} = 1.374 \times \sigma^{exp} \tag{S9}
$$

where σ_{S0} and σ_{S1} were the experimental root-mean-square deviations of integrated intensities $>$ 1 ppm in 12 different noise regions in the S_0 and S_1 spectra (16). The parameter *d* in Hz can be converted to the internuclear distance *r* in Å of a single ¹³CO-³¹P or ¹³CO-¹⁹F spin pair (17):

$$
d = 12250/r^3 \qquad ({}^{13}CO^{-31}P \text{ data})
$$
 [S10a]

$$
d = 28540/r^3 \qquad ({}^{13}CO-{}^{19}F \text{ data})
$$
 [S10b]

Example plots of $(\Delta S/S_0)^{lab}$ and best-fit $(\Delta S/S_0)^{sim}$ vs. τ are shown in [Fig. S2](http://www.pnas.org/cgi/data/0907360106/DCSupplemental/Supplemental_PDF#nameddest=SF2) and best-fit parameters are given in [Table S4.](http://www.pnas.org/cgi/data/0907360106/DCSupplemental/Supplemental_PDF#nameddest=ST4) [Fig. S3](http://www.pnas.org/cgi/data/0907360106/DCSupplemental/Supplemental_PDF#nameddest=SF3) shows 13CO-31P spectra for a sample containing HFPmn-A21 and 13CO-(5-19F) spectra for a sample containing HFPmn-L9. The large $(\Delta S/S_0)^{exp}$ in [Fig. S3](http://www.pnas.org/cgi/data/0907360106/DCSupplemental/Supplemental_PDF#nameddest=SF3)*a* indicates that the C terminus of HFPmn has close contact with ³¹P. This conclusion was further supported by fitting of $(\Delta S/S_0)^{lab}$ to $(\Delta S/S_0)^{sim}$, [Fig. S4,](http://www.pnas.org/cgi/data/0907360106/DCSupplemental/Supplemental_PDF#nameddest=SF4) and may be due to Arg-22 and lysine side chains which have positive charges and which are attracted to the negatively charged phosphate groups. The full width at half maximum for the HFPmn-A21 ¹³CO signal is \approx 8 ppm, whereas the typical linewidth for residues in the Ala-1 to Ala-14 region is 3–5 ppm (Fig. 1) which probably means that the C-terminal region of HFP is less structured than the N-terminal region. In [Fig. S3](http://www.pnas.org/cgi/data/0907360106/DCSupplemental/Supplemental_PDF#nameddest=SF3)b, the ¹³CO-(5-¹⁹F) ($\Delta S/S_0$)^{exp} ≈ 0.3 and should be compared with Fig. 2, which shows that for another sample containing HFP ${}^{13}CO$ - $(16-{}^{19}F)$ data. Together with the spectra and dephasing curves shown in Fig. 5, the data support insertion of HFPmn into a single membrane leaflet (Fig. 3*B*).

1. Birdsall NJ, Lee AG, Levine YK, Metcalfe JC (1971) 19F NMR of monofluorostearic acids in lecithin vesicles. *Biochim Biophys Acta* 241:693– 696.

IAS

- 2. McDonough B, Macdonald PM, Sykes BD, McElhaney RN (1983) Fluorine-19 nuclear magnetic resonance studies of lipid fatty acyl chain order and dynamics in Acholeplasma laidlawii B membranes. A physical, biochemical, and biological evaluation of monofluoropalmitic acids as membrane probes. *Biochemistry* 22:5097–5103.
- 3. Sibi, MP, Rutherford, D, Sharma, R (1994) A new electrophilic alaninol synthon. A general route to oxazolidinones of D or (*R*)-2-amino alcohols from L-serine.*J Chem Soc Perkin Trans* 1:1675–1678.
- 4. Jackson RFW, Perez-Gonzalez Μ (2005) Synthesis of N-(tert-butoxycarbonyl)-βiodoalanine methyl ester: A useful building block in the synthesis of nonnatural -amino acids via palladium catalyzed cross coupling reactions. *Org Synth* 81:77– 81.
- 5. Lang LX, Jagoda E, Ma Y, Sassaman MB, Eckelman WC (2006) Synthesis and in vivo biodistribution of F-18 labeled 3-*cis*-, 3-*trans*-, 4-*cis*-, and 4-*trans*-fluorocyclohexane derivatives of WAY 100635. *Bioorg Med Chem* 14:3737–3748.
- 6. Qiang W, Weliky DP (2009) HIV fusion peptide and its cross-linked oligomers: Efficient syntheses, significance of the trimer in fusion activity, correlation of β strand conformation with membrane cholesterol, and proximity to lipid headgroups. *Biochemistry* 48:289 –301.
- 7. Yang R, Prorok M, Castellino FJ, Weliky DP (2004) A trimeric HIV-1 fusion peptide construct which does not self-associate in aqueous solution and which has 15-fold higher membrane fusion rate. *J Am Chem Soc* 126:14722–14723.
- 8. Qiang W, Yang J, Weliky DP (2007) Solid-state nuclear magnetic resonance measurements of HIV fusion peptide to lipid distances reveal the intimate contact of beta strand peptide with membranes and the proximity of the Ala-14-Gly-16 region with lipid headgroups. *Biochemistry* 46:4997–5008.
- 9. Bodner ML, et al. (2004) Temperature dependence and resonance assignment of ^{13}C NMR spectra of selectively and uniformly labeled fusion peptides associated with membranes. *Magn Reson Chem* 42:187–194.
- 10. Bloom M, Evans E, Mouritsen OG (1991) Physical properties of the fluid lipid-bilayer component of cell membranes: A perspective. *Quart Rev Biophys* 24:293–397.
- 11. Taylor KS, Lou MZ, Chin TM, Yang NC, Garavito RM (1996) A novel, multilayer structure of a helical peptide. *Protein Sci* 5:414 – 421.
- 12. Hirsh DJ, et al. (1998) A new monofluorinated phosphatidylcholine forms interdigitated bilayers. *Biophys J* 75:1858 –1868.
- 13. Gabrys CM, et al. (2009) Nuclear magnetic resonance evidence for retention of a lamellar membrane phase with curvature in the presence of large amounts of the HIV fusion peptide. *Biochim Biophys Acta*, in press.
- 14. Venable RM, Brooks BR, Pastor RW (2000) Molecular dynamics simulations of gel (L_{BI}) phase lipid bilayers in constant pressure and constant surface area ensembles. *J Chem Phys* 112:4822– 4832.
- 15. Mueller KT (1995) Analytical solutions for the time evolution of dipolar-dephasing NMR signals. *J Magn Reson Ser A* 113:81–93.
- 16. Bevington, PR, Robinson, DK (1992) *Data Reduction and Error Analysis for the Physical Sciences* (McGraw-Hill, Boston).
- 17. Schmidt-Rohr, K, Spiess, HW (1994) *Multidimensional Solid*-*State NMR and Polymers* (Academic, San Diego).

Fig. S1. Plot of ¹³CO-¹⁹F ($\Delta S/S_0$)^{exp} vs. lipid mol fraction of 5-¹⁹F-DPPC at τ = 16 ms. All samples contained HFPmn-L9.

PNAS PNAS

Fig. S2. Plots of (*S*/*S*0)*lab* (black squares with error bars) and best-fit (*S*/*S*0)*sim* (red circles) vs. dephasing time for the (*a*) 13CO-31P data of the sample and the (*b*) ¹³CO-(5-¹⁹F) data of the HFPmn-A6 sample. The χ^2_{min} for the best-fits were (*a*) 0.7 and (*b*) 0.5.

PNAS

 $\frac{1}{2}$

Fig. S3. (*a*) 13CO-31P *S*⁰ and *S*¹ spectra of a sample containing HFPmn-A21 and (*b*) 13CO-(5-19F) spectra of a sample containing HFPmn-L9. The dephasing time was (*a*) 32 ms or (*b*) 24 ms. All spectra were processed with 200 Hz Gaussian line broadening and polynomial baseline correction. Each spectrum was the sum of (*a*) 50,000 or (*b*) 20,000 scans.

A C

Fig. S4. 13CO-31P REDOR data and fitting for HFPmn-A21. For each , the (*S*/*S*0)*lab* are represented by black squares with error bars and best-fit (*S*/*S*0)*sim* are represented by red circles. The best-fit r , f , and χ^2 were 6.9 (2) Å, 0.98 (4), and 3.0, respectively.

AS PNAS

Table S1. Peak 13CO chemical shifts*†‡

*The peak shift was measured in the ¹³CO-³¹P *S*₀ spectrum with $\tau = 2$ ms. The signal from the labeled ¹³CO nucleus is ~75% of the total ¹³CO signal intensity (*[SI](http://www.pnas.org/cgi/data//DCSupplemental/Supplemental_PDF#nameddest=STXT) [Text](http://www.pnas.org/cgi/data//DCSupplemental/Supplemental_PDF#nameddest=STXT)*).

[†]The distributions of database ¹³CO chemical shifts in β strand or helical conformation are: Ala, 176.09 \pm 1.51 or 179.40 \pm 1.40 ppm, respectively; Ile, 174.86 \pm 1.39 or 177.72 ± 1.29 ppm; and Leu, 175.65 ± 1.47 or 178.53 ± 1.30 ppm [Zhang, HY, Neal, S, Wishart, DS (2003) RefDB: A database of uniformly referenced protein chemical shifts. *J Biomol NMR* 25:173–195].

‡HFPtr-A21 was not studied.

PNAS PNAS

Table S2. The *gna* **(***HFP***)**

PNAS

PNAS

*The 13CO-31P values were based on the (*S*1/*S*0)*exp* of samples labeled at Ala1, Ile4, Ala6, Leu9, Leu12, or Ala14, and for HFPmn_mut and HFPmn, Ala21. The ¹³CO-(16-¹⁹F) values were based on samples labeled at Ala1, Ile4, Ala6, Leu9, Leu12, or Ala14 and the ¹³CO-(5-¹⁹F) values were based on samples labeled at Ala1, Ala6, or Leu9.

[†]The maximum τ for ¹³CO-¹⁹F experiments was 24 ms.

Table S3. The *gna* **(***DPPC***)**

PNAS PNAS

*The maximum τ for ¹³CO-¹⁹F experiments was 24 ms.

Table S4. Best-fit distance and population parameters*†‡

*Best-fit *d* and *f* were determined using Eq. S7 with typical χ^2_{min} < 5. The uncertainties of *d* and *f* in parentheses were determined from the region encompassed by $\chi^2 = \chi^2_{min} + 1$ (16). The best-fit *r* and associated uncertainty was calculated with either Eqs. **S10a** or **S10b**.

[†]n.d. means ″not determined″ and refers to samples with (ΔS/S₀)^{exp} < 0.1 at τ = 32 ms (¹³CO-³¹P) or at τ = 24 ms (¹³CO-¹⁹F), or to samples with no clear buildup curve.

‡A solid line means the experiment was not done.

PNAS PNAS