SI Appendix

Simplified Kinetic Scheme of Na/K Pump Function. ATP-dependent K_i^+ deocclusion, Na_i⁺ binding, and phosphorylation were lumped together in a single reaction rate, ρ (with the plausible assumption that the reverse reactions will not occur under our experimental conditions) similarly to Sagar and Rakowski (1). The differential equations describing the model are:

$$\frac{dE1P(Na_3)}{dt} = \rho \cdot E2(K_2) + \beta_3 \cdot E2P(Na_2) - \alpha_3 \cdot E1P(Na_3)$$

$$\frac{dE2P(Na2)}{dt} = \alpha_3 \cdot E1P(Na_3) + \beta_2 \cdot E2P - \beta_3 \cdot E2P(Na_2) - \alpha_2 \cdot E2P(Na_2)$$

$$\frac{dE2P}{dt} = \alpha_2 \cdot E2P(Na_2) + \beta_1 \cdot E2(K_2) - \beta_2 \cdot E2P - \alpha_1 E2P$$

$$\frac{dE2(K_2)}{dt} = \alpha_1 E2P - \rho \cdot E2(K_2) - \beta_1 \cdot E2(K_2)$$

and the conservation equation:

 $E1P(Na_3) + E2P(Na_2) + E2P + E2(K_2) = 1$

where $E1P(Na_3)$, E2P, etc. depict the fractional occupancy of each state. Analogous to Heyse et al. (2) we describe the release of the first Na⁺ ion as the most voltage-dependent pseudo first order reaction rate $\beta_3 = \beta_3^0 \cdot [Na]_o \cdot \exp(-\lambda_3 \cdot \frac{F}{RT} \cdot V)$, which combines Na⁺ binding to its exclusive site, Na⁺ re-occlusion, and the reverse conformational transition. F, R and T have their usual meaning, V is the transmembrane voltage and λ_3 is the fraction of the electric field traveled by the Na⁺ ion to its binding site (0.75; refs. 1, 2). The general model including the voltage-dependent binding of the two other Na⁺ ions (in the reverse reaction) or the two K⁺ ions (in the forward reaction) will include similar expressions for β_2 and α_1 , but with smaller λ (0.1-0.4). For simplicity, to illustrate the effect of modifying Na⁺ binding to the shared sites and to obtain an explicit expression for the centers (V_{1/2}) of the I_P-V curve and the Q-V curve as a function of the other rates, we consider the case in which ion binding to the shared sites is not voltage-dependent (i.e. $\beta_2 = \beta_2^0[Na]_o$ and $\alpha_1 = \alpha_1^0[K]_o$).

Similar to the description by (4), the steady state pump current (I_P) at any given time will be given by $I_P = \rho \cdot E2(K_2)$, in which

$$E2(K_2) = \frac{\alpha_1 \alpha_2 \alpha_3}{\alpha_1 \alpha_2 \alpha_3 + \alpha_2 \alpha_3 \rho + \alpha_2 \alpha_3 \beta_1 + \alpha_1 \alpha_2 \rho + \alpha_3 \beta_2 \rho + \beta_2 \beta_3 \rho + \beta_1 \beta_2 \beta_3 + \alpha_3 \beta_1 \beta_2 + \alpha_1 \alpha_3 \rho + \alpha_1 \beta_3 \rho}$$
[1]

In the absence of $K_0^+ \alpha_1 = 0$ and the kinetic scheme is reduced to the top line describing the transition between E1P(Na₃) and E2P. The steady state distribution of the slow component of charge movement associated with the release of the first Na⁺ ion is given by the steady state occupancy of $E1P(Na_3)$:

$$E1(Na_3) = \frac{\beta_2 \beta_3}{\alpha_2 \alpha_3 + \alpha_3 \beta_2 + \beta_2 \beta_3}$$
[2]

In order to find the center of the I_P-V curve in the presence of K_0^+ (V_{1/2}I_P) and of the Q-V curve in the absence of K_0^+ (V_{1/2}Q) we equated both *E*2(*K*₂) and *E*1(*Na*₃), respectively, to 0.5 and solved for the rate constant for Na⁺ binding to its exclusive site, β_3 (and therefore for V_{1/2}) as follows:

$$\mathbf{V}_{\text{V2IP}} = -0.033 * \ln \left[\frac{\alpha_1 \alpha_2 \alpha_3 - \alpha_2 \alpha_3 \rho - \alpha_2 \alpha_3 \beta_1 - \alpha_1 \alpha_2 \rho - \alpha_1 \alpha_3 \rho - \beta_2 (\alpha_3 \rho + \alpha_3 \beta_1)}{\beta_3^0 [\text{Na}]_0 \{\beta_2 (\rho + \beta_1) + \alpha_1 \rho\}} \right]$$
[3]

$$V_{\mu_{2Q}} = -0.033[\ln\alpha_{3} + \ln(\alpha_{2} + \beta_{2}) - \ln(\beta_{3}^{0} [Na]_{o}) - \ln\beta_{2}$$
[4]

Let's first note that, from Eqs. **3** and **4**, if the $\Delta KESYY$ mutation affected Na⁺ binding to the exclusive binding site (β_3^0) a large shift of identical magnitude would occur in both I_P- and Q-V curves. On the other hand, if β_3^0 is not modified by the mutation and only β_2 is affected, as we propose, β_3^0 cancels out when subtracting $V_{\lambda IP}^{\Delta KESYY} - V_{\lambda IP}^{control}$ and will not contribute to the magnitude of the shifts.

For simplicity we begin discussing the more straight forward effects on the Q-V. Assuming that the only effect of the Δ KESYY deletion is a 16-fold reduction in the rate of Na⁺ binding to the shared sites (i.e. a reduction in β_2^0), we can calculate the shift induced in the Q-V curve from Eq. (4) as the difference:

$$V_{\frac{1}{2}Q}^{\text{AKESYY}} - V_{\frac{1}{2}Q}^{\text{control}} = -0.033 * \{\ln[(16\alpha_2 + \beta_2)/16(\alpha_2 + \beta_2)] - \ln(1/16)\}$$

Although we cannot calculate values for α_2 and β_2 in our preparation, according to Heyse *et al.* (ref. 2; values in table V) at a $[Na_o^+] = 125 \text{ mM } \beta_2 \ll \alpha_2$. Thus, in our experiments the ratio of the first logarithmic term is ≈ 1 , which gives

$$V_{\mu_Q}^{\Delta \text{KESYY}} - V_{\mu_Q}^{\text{control}} \cong 0.033 * \ln(1/16) = -91 \text{ mV}$$

This value is almost identical to our observed values (-91 mV in TEVC and -94 mV in patch clamp data).

The effect of a reduction in β_2 in the center of the I_P-V curve is far less obvious and we need to use other estimates for the discussion. We estimate the maximum turnover rate, ρ , at ~15 s⁻¹ (I_{Pmax}/Q_{max}, see Fig. 2 legend), whereas the rate of transient charge movement at positive potentials yields an estimate of 200 s⁻¹ for α_3 (we use TEVC data because intracellular conditions are the same as those used for I_p measurements).

Again, based on Heyse et al. (2), $\alpha_2 \sim 1^* 10^4 \text{ s}^{-1}$ and $\beta_2^0 \sim 2^* 10^3 \text{ M}^{-1} \text{s}^{-1}$ and $\beta_1 \sim 10 \text{ s}^{-1}$. Thus, for a K_o affinity of 100 μ M, $\alpha_1^0 \sim 10^4 \text{ M}^{-1} \text{s}^{-1}$. Using 10 mM K_o⁺ for an initial calculation it is clear that any effect on β_2 will be insignificant in the numerator because $\alpha_1 \alpha_2 \alpha_3 \sim 10^8$, whereas the rest of the terms combined reach a maximum of $\sim 3^* 10^7$ and the terms with β_2 are on the order of 10^6 for RD control pumps.

In the denominator the results will depend on the actual values of α_1 and β_2 (which depend on [Na⁺] and [K⁺]). However, it is clear that if [K⁺]_o is high enough (i.e. near-saturating K⁺_o) $\alpha_1 \ge \beta_2$, even in control pumps and thus, no significant shift will be produced. Consequently, this model predicts a lack of effect of mutants that alter binding of extracellular Na⁺ to the shared sites on the I_P-V curve.

1. Sagar A, Rakowski RF (1994) Access channel model for the voltage dependence of the forward-running Na+/K+ pump. *J Gen Physiol* 103:869-893.

2. Heyse S, Wuddel I, Apell HJ, Sturmer W (1994) Partial reactions of the Na,K-ATPase: Determination of rate constants. *J Gen Physiol* 104:197-240.