Genes selected for checking.

	Why these genes are selected?	Pathway	References
Rkip	 In the pancreas, localizes specifically in the islets Controls beta cell proliferation RKIP binds to Raf-1, leading to the blockage of Mek and Erk activation Tungstate activates the classical MAPK pathway (Ras->Raf->Mek->Erk) in hepatocytes 	MAPK p42/44	 Surgery 136:708-715 J Biol Chem 278:42785-42794
Fgf13	 Fgf13 binds to islet-brain 2, recruiting p38δ, and increasing the activity of this kinase Tungstate increases the phosphorylation of p38 in the islets of nSTZ-rats 	МАРК р38	 J Biol Chem 277:49111-49119 Diabetologia 47:470- 477
Tspn8	 Tetraspanin 8 may exert tumor-promoting activities through an increase in cell motility and by inducing angiogenesis STZ damage provokes a reduction in islet capillary area and severe microcirculatory disturbances within pancreatic islets 		 Am J Physiol 273:E376-E382 Cancer Res 66:7083-7094
Usag-1	 Inhibits or increases Wnt signaling depending on the context and inhibits BMP signaling Controls the cell fate of cells in the kidney, tooth and hair Wnt and BMP signaling have been demonstrated to be essential for the development and regeneration of the pancreas 	Wnt BMP	 Development. 130:4295-305 Cytokine Growth Factor Rev. 16:309-17 Kidney Int. 73:181-91 Science. 309:2067-70 Proc Natl Acad Sci U S A. 102:14653-8 Proc Natl Acad Sci U S A. 104:6247-52 BMC Dev Biol. 7:4 Gastroenterology. 134:544-55 J Cell Sci. 115:753-60
Tgfb3	 Controls epithelial mesenchymal transformation, mesenchymal proliferation and angiogenesis during mouse palate development Regulates neuron differentiation and blood- testis barrier dynamics through the Sertoli junctions Other members of the TGF family have biological activities that also control adhesion, proliferation, and differentiation, which are important processes for pancreas regeneration 	Tgf-beta	 Plast Reconstr Surg 108:938-948 J Cell Biol. 163:1291-301 Birth Defects Res A Clin Mol Teratol. 73:956-65 Stem Cells. 24:2120-9 Biol Reprod. 68:1597-612 Annu Rev Biochem. 67:753-91 Science 306:2261-2264 Mol. Endocrinol 21:1467-477
Xbp1	 Key role in the unfolded protein response Xbp1 knockout animals display abnormalities exclusively in secretory organs such as exocrine pancreas which lead to early postnatal lethality 	UPR (Unfolding protein response)	 Mol Cell Biol 23:7448-7459 EMBO J 24:4368-80
Sel1h	 Present in the acini and the islet in the pancreas Implicated in beta-cell growth Inhibits Notch pathway Can modulate the TGFbeta pathway Both pathways, TGFbeta and Notch pathway, can control the cell fate and are essential for the pancreas development 	UPR (Unfolding protein response) Notch Tgf-beta	 Oncogene 22:6359-68 DNA Cell Biol. 23:510-518 FEBS Lett. 581:5355-60 Res Commun Mol Pathol Pharmacol. 102:265-72 Am J Pathol 169:1206-1214